第 42 回 NMR 討論会

講演要旨集

会期 2003 年 11 月 26 日(水)~11 月 28 日(金)

会場 大阪大学コンベンションセンター

主催

日本核磁気共鳴学会

共催

高分子学会·日本化学会·日本磁気共鳴医学会·日本生化学会 日本薬学会·日本生物物理学会·日本農芸化学会·日本物理学会 日本分析化学会·大阪大学大学院医学系研究科

阪急電車・千里線
 地下鉄・北大阪急行線
 大阪モノレール彩都線
 阪急電車・京都線
 JR・東海道線

大阪空港(伊丹)から

北千里駅(終点)より東へ徒歩約20分 千里中央駅から阪急バスで「阪大本部前」行 または「茨木美穂ケ丘」行*約10分 万博記念公園駅乗り換え、阪大病院前駅下車約5分 茨木市駅から近鉄バスで「阪大本部前」行*約30分 茨木駅から近鉄バスで「阪大本部前」行*約20分 上記大阪モノレール利用約30分

(*いずれも阪大本部前下車)

☆ 連絡先

大阪大学大学院医学系研究科保健学専攻医用物理工学講座

藤原 英明

〒565-0871 大阪府吹田市山田丘 1-7

TEL/FAX: 06-6879-2573 E-MAIL : fujiwara@sahs.med.osaka-u.ac.jp

☆ 当日連絡先

06-6877-5111 内線 3151(大阪大学コンベンションセンター内)

第 42 回 NMR 討論会

会期 11月26日(水)~28日(金) 会場 大阪大学コンベンションセンター(大阪府吹田市山田丘 1-1)

第一日 11月26日(水)

(9:45-9:50) 開会の挨拶

(9:50-10:30)

座長 平沖敏文

- 1L1 化学シフトにおける相対論的効果の計算 (北見工大)〇福井洋之、工藤慶一
- 1L2 パルス磁場勾配 NMR による液体サンプルの自己拡散係数測定と対流効果
 (産総研) 〇早水紀久子 秋葉悦男

(10:30-11:10)

座長堤 耀廣

1L3	微量サンプル・表面サンプル用高感度固体 NMR プローブの製作と材料系サンプルへの応用	10
	(ナイメーヘン大・物理化学/固体 NMR)〇山内一夫、H. Janssen、J. van Bentum、A. P.M. Kentgens	

 1L4 ³H 粉末スペクトルにおける¹H->³H CP (京大院理) 〇水野 敬、竹腰清乃理、寺尾武彦

-休憩-

(11:25-12:25)

座長 林 繁信

1L5	偏極キセノンによる液体分子の核スピン偏極 (姫工大院理)〇今井宏彦、石川 潔、高木芳弘	16
1L6	自動化された超偏極希ガス生成装置の実用化研究開発 (産総研つくば1、産総研関西 ² 、東横化学 ³)〇服部峰之 ¹ 、平賀 隆 ² 、斎藤もよこ ² 、中井敏晴 ² 、本間一弘 ¹ 、田中 亮 ³ 、 大竹紀夫 ³ 、村山守男 ³	20
1L7	四極子核の固体NMRにおける高感度化	22

1L7 四極子核の固体NMRにおける高感度化 (新日本製鐵(株)・先端研、日鐵テクノリサーチ)金橋康二、〇齋藤公児、畠山盛明

(12:30-13:00)

NMR 学会総会

-昼食-

(13:30-15:20) ポスターセッション (説明義務ポスター番号:1P)

(15:20-16:00)

座長 安藤 勲

- 1L8 パイ共役系高分子の準秩序構造のダイナミクス
 (東工大院理工、東工大資源研、東工大院生命理工)〇浅川直紀、守 誠一朗、大平 学、松原清彦、M. Gomboo、山本隆一、井上義夫
- 1L9 有機 EL 素子における電荷輸送性材料の構造とダイナミックス

(京大化研、科技団さきがけ 21) 〇梶 弘典、塚本直樹、山田知典、堀井文敬 (16:00-17:00)

座長 堀井文敬

1L10 固体高分解能¹³CNMR によるポリビニルアルコール/ポリアクリル酸ブレンド試料の高次構造解析 (奈良女子大院) 〇吉澤綾子、松生 勝、黒子弘道 26

30

34

2

6

14

1L11	二次元 'H スピン拡散 NMR によるジフェニルヘキサトリエン誘導体の分子配列 (産総研) 〇林 繁信、園田与理子		36
1L12	¹⁷ O NMR によるポリジエチルシロキサンの固体及び液晶構造解析 (東工大院理工 ¹ 、高分子センター ² 、防衛大 ³ 、東京家政大 ⁴ 、アイオワ州立大 ⁵) 〇木村英昭 ¹ 、金坂 将 安藤 勲 ^{1,2} 、浅野牧志 ³ 、藤重昇永 ⁴ 、J. Wiench ⁵ 、M. Pruski ⁵	¹ 、黒木重樹 ^{1.2} 、	38
第二日 11)	月 27 日(木)		
特別セッショ	ン「NMR の高感度化」		
(9:30-9:40) 緒言 寺尾	武彦(京大理)		43
(9:40-10:10 座長 江口太 2SSL1 招待調)) <郎 清演 「Studies on dynamic nuclear polarization using photo-excited triplet electron spins」 (京大院理 ¹ 、CREST ² 、阪大基礎工 ³)〇武田和行 ^{1,2,3} 、竹腰清乃理 ¹ 、寺尾武彦 ^{1,2}		44
(10:10-10:4 座長 寺尾武 2SSL2 招待詞	40) 【彦 講演 「高磁場NMRマグネットの現状と将来」 (物質材料研)吉川正敏		48
(10:40−1 1:1 座長 藤原 英 2SSL3 招待請	10) 5明 隣演 「人体用高磁場MRIの挑戦」		52
-休憩-	(现现如)二%大人们		
(11:25-11:5 座長 村瀬 研 2SSL4 招待計	97 中也 準演 『Fast MR imaging in clinical applications [《] (Philips Med. Sys.)M. VanCauteren		56
(11: 55-12:4 座長 飯田秀 2SSL5 特別講	10) 持續 《NMR of hyperpolarized noble gases and other nuclei" (Univ. of Michigan)S. D. Swanson		60
-昼食-			
(13:40-15:2 ポスターセッ	20) ション (説明義務ポスター番号:2P)		
(15:20−16:00 座長 朝倉哲	D) [鉑]		
2L1	常磁性金属効果を用いた新規距離制限法の開発 (奈良先端大バイオ・、三菱生命研 ⁻²)〇野村 誠 、小林俊達 、河野俊之 ² 、三島正規 、児嶋長次郎	1	62
2L2	静水圧3000気圧下の蛋白質の構造とダイナミクス:ユビキチンのもう1つのフォールド構造の解明 (理研播磨 ¹ 、東大院理 ² 、近大生物理工 ³) 〇北原 亮 ¹ 、横山茂之 ^{1,2} 、赤坂一之 ^{1,3}		66
(16:00-17:00) 座長 甲斐荘 2SL 特別講 (18:00-20:00) 懇親会) 王 正恒 演 ["] The development of solution NMR as a key method in structural biology ["] (Swiss Federal Institute of Technology)K.Wüthrich		71

目次2

第三日 11月28日(金)

(9:30	-10:10		
崖長 3Li	闪藤	晶 NMR を利用したユビキチンリガーゼの分子認識の解析 (名市大院薬、CREST/JST)〇加藤晃一	74
3L2		56kDa 大腸菌 NikA 蛋白質のNMR解析 (理研生体超分子構造 ¹ 、横市大院総理分子生理学 ² 、CREST/JST ³ 、横市大院総理設計科学 ¹ 、ケンプリッジ大 ⁵ 、 横市大院総理計測科学 ⁶) 〇伊藤 隆 ^{1,2,3} 、S. Rajesh1 ⁴ 、倉島かおり ^{1,2} 、D. Nietlispach ⁵ 、J. Heddle ⁴ 、J. Tame ⁴ 、 白川 昌宏 ⁶	76
(10:1(座長)10:5 和垣	50)	•
3L3	14-2	安定同位体標識 DNA/RNA を用いた機能性核酸及びタンパク質-核酸複合体の構造解析 (横国大院環境情報 ¹ 、京大院生命科学 ³) 榎園能章 ¹ 、大橋 粛 ¹ 、小西由紀 ¹ 、宮ノ入洋平 ¹ 、松上明正 ¹ 、外谷英嗣 ¹ 、 池田哲郎 ¹ 、上杉晴一 ¹ 、石川冬木 ² 、〇片平正人 ¹	80
3L4		立体整列同位体標識(SAIL)法の開発 ~高分子量タンパク質の高効率、高精度な立体構造決定に向けて (CREST/JST ¹ 、都立大院理 ²) 〇鳥澤拓也 ¹ 、寺内 勉 ¹ 、小野 明 ¹ 、甲斐荘正恒 ^{1,2}	82
-休憩	-		
(11.05			
(11.00	11.4	(/) // · · · · · · · · · · · · · · · · · ·	
3L5		F7年 NMRを用いた CD44 のEアルロン酸認識機構の解析 (東大院薬系 ¹ 、JBIC・JBIRC ² 、明治薬科大院・薬品化学 ³ 、阪大院医系 ⁴ 、AIST,BIRC ⁵)武田光広 ^{1,2} 、寺沢宏明 ¹ 、 5月6正基 - 山口苦樹 - 梶原正安 ³ 川島博人 4 宮坂島之 4 〇嶋田一キ ^{1,5}	84
3L6		自発磁場配向膜中メリチンの高分解能動的構造の解析 (横国大院工機能発現工)〇虎谷秀一、西村勝之、内藤 晶	86
(11:45 应星	j~12:2 構山∩	25) ** 2	
3L7	19 4 144	繊維状タンパク質の繰り返し構造に関するモデルペプチドの固体 NMR 構造解析 (農工大)〇大郷耕輔、川瀬泰司、朝倉哲郎	90
3L8		マジック角回転条件での多次元固体 NMR による ¹³ C、 ¹⁵ N 標識タンパク質の全構造解析 (阪大蛋白研)〇藤原敏道、阿久津秀雄	92
-昼食	_		
/10.0	F 1F.	10)	
ポスタ	0-10: -tz:	10) y ション (説明義務ポスター番号:3P)	
(15:1	0-16:	10)	
座長	小林	祐次	
3L9		NMR ダイナミクス情報に基づく抗プリオン薬の開発 (岐阜大医)〇桑田一夫	94
3L10		REDORを用いたアンフォテリシン B-リン脂質会合体の構造研究 (阪大院理 '、CREST ²)〇松岡 茂 ^{1,2} 、松森信明 ¹ 、池内宏貴 ¹ 、植野嘉之 ¹ 、大石 徹 ¹ 、村田道雄 ¹	98
3L11		高等動植物の構造プロテオミクス (理研) 木川隆則、武藤裕、林文晶、畠中秀樹、山崎和彦、山崎俊夫、 P. Guentert、前田秀明、好田真由美、廣田洋、 白水美香子、田仲昭子、荒川貴博、カルニンチピエロ、河合 純、林崎良英、関原 明、篠崎一雄、中山 学、小原 收、 〇横山茂之	100
(16:10 座長	⊢16:5 渡部	0) 遼子	

3L12 MRIを用いた遺伝子発現解析システムの構築 (横市大院総理)〇杉原文徳、栃尾豪人、森田将史、奇世媛、岡田あずさ、笠原浩司、古久保哲郎、白川昌宏 102

3L13 超並列型MRマイクロスコープを用いたビト胚子三次元撮像(1)ーシステム開発と撮像実験ー (筑波大物工¹、(株)エム・アール・テクノロジー²)〇松田善正¹、小野真也¹、半田晋也¹、拝師智之²、巨瀬勝美¹ 5**104**

~ポスターセッション 演題~ (★印は"若手ポスター賞"応募ポスター)

第一日 11月26日(水) 【溶液測定法の開発】

1P1★	タンパク質溶液 NMR 測定における自動化の試み (日本電子(株))〇朝倉克夫、栗本智充、根本暢明	- 110
1P2★	非線形最小自乗フィッティングを用いた 90 度パルス幅等の最適パラメータ決定 (日本電子(株)) 〇栗本智充、朝倉克夫、山崎千春、根本暢明	112
1P3★	極端条件下における核磁気共鳴法の開発と超臨界流体への応用 (産総研、CREST) 〇梅木辰也、金久保光央、相澤崇史、増田善雄、生島豊	114
1P4★	NMRを用いた高度好熱菌 RecR 蛋白質の機能解析 (理研生体超分子機能 ¹ 、横市大院総理 ² 、科技団 CREST ³) 〇本多賢吉 ^{1,2} 、井上 仁 ^{1,2} 、S. Rajesh ¹ 、美川 務 ^{1,2,3} 、 伊藤 隆 ^{1,2,3} 、柴田武彦 ^{1,2,3}	116
1P5★	流通式 NMR 装置を用いた超臨界水中における有機反応の観測 (京大院理)〇浦崎洋平、網田富士嗣、岡 博之、向出政伸、梶本興亜、竹腰清乃理、寺尾武彦	118
【溶液応月	利(蛋白質、ペプチド)】	
1P6 ★	好中球活性酸素産生系 p67º ^{bac} とp40 ^{øbat} の PB1ドメイン複合体の NMR 解析 (北大院薬 ¹ 、タンパク 3000 ² 、九大生医研 ³)○吉永壮佐 ^{1,2} 、小椋賢治 ¹ 、藤岡優子 ^{1,2} 、国府島庸之 ³ 、湯澤 聰 ^{1,2} 、 堀内正隆 ¹ 、住本英樹 ^{2,3} 、稲垣冬彦 ^{1,2}	120
1P7★	マウス構造プロテオミクス:Growth Arrest Specific 2 タンパク質のC末端ドメインの溶液構造 (理研 GSC ¹ 、東大院理 ² 、理研播磨 ³) 〇宮本和英 ¹ 、井上 真 ¹ 、小柴生造 ¹ 、白水美香子 ¹ 、寺田貴帆 ¹ 、宇田広子 ¹ 、 矢吹 孝 ¹ 、青木雅昭 ¹ 、松田貴意 ¹ 、関 英子 ¹ 、布川絵未 ¹ 、藤倉由紀子 ¹ 、柴田真希 ¹ 、宮本瑞夕 ¹ 、廣田 洋 ¹ 、 好田真由美 ¹ 、長内 隆 ¹ 、田仲昭子 ¹ 、荒川貴博 ¹ 、P. Carninci ¹ 、河合 純 ¹ 、林崎良英 ¹ 、P. Guentert ¹ 、木川隆則 ¹ 、 横山茂之 ^{1,2,3}	122
1P8★	溶液 NMR によるロドプシン様 7 回膜貫通型蛋白質 phR 及び ppR の構造解析 (奈良先端大バイオ ¹ 、北大院薬 ² 、北大院理 ³)〇奥田秀泰 ¹ 、須藤雄気 ² 、三島正規 ¹ 、佐藤麻希 ³ 、出村誠 ³ 、新田勝利 ³	124
	加茂直樹 ² 、児嶋長次郎 ¹	
J1P9★	立体整列同位体標識(SAIL)技術による高分子量タンパク質の NMR 解析~ シロイヌナズナ由来 At3g16450 (32 kDa)に関して (都立大院理 ¹ 、CREST/JST ² 、ウィスコンシン大 ³) 〇杉森 望 ¹ 、鳥澤拓也 ² 、寺内 勉 ² 、J. L.Markley. ³ 、D. Aceti. ³ 、 甲斐荘正恒 ^{1, 2}	126
1P10+	Musachi タンパク質の 2 つの RNA 結合ドメインの結合能の差の起源	128
	(横国大院環境情報 ¹ 、慶大医 ³) 〇宮ノ入洋平 ¹ 、斎藤 智 ¹ 、丸本佳代子 ¹ 、小林央典 ¹ 、渡辺道直 ¹ 、宮下博之 ¹ 、 永田 崇 ¹ 、上杉晴一 ¹ 、今井貴雄 ² 、岡野栄之 ² 、片平正人 ¹	120
1P11★	高安定化磁場配向膜の開発とその応用 一生体膜・タンパク質の高分解能 NMR 解析一 (理研 GSC1、横市大院総理 2、理研細胞情報 3、東大院理 4) 〇菊地淳 ^{1,2} 、前田秀明 ^{1,2} 、横山茂之 ^{1,3,4}	130
1P12★	¹⁹ F NMR による還元型ミオグロビンの電子構造解析 (筑波大化 ¹ 、長岡高専 ³) 〇長尾 聡 ¹ 、平井佑紀 ¹ 、猪瀬達徳 ¹ 、照井教文 ¹ 、三田 肇 ¹ 、山本泰彦 ¹ 、鈴木秋弘 ²	132
1P13★	根粒菌 FixJ 蛋白質 C 末端ドメインの DNA との相互作用の解析 (横市大院総理 ¹ 、理研構造機能 G ² 、CREST/JST ³ 、理研生体物理 ¹) 〇倉島かおり ^{1,2} 、葛西祐一 ^{1,4} 、伊藤 隆 ^{1,2,3} 、 柴田武彦 ^{1,2,3} 、田村浩二 ⁴ 、中村寛夫 ^{1,4} 、城 宮嗣 ¹	134

≪1P14 ★	酸化型シトクロム c 変異体における超微細電子構造解析 (筑波大化 '、食総研 ^a 、阪大院工 ³ 、阪大院薬 ⁴ 、東大院農 ⁵ 、広大院生物圏 ⁶) 〇立入直紀 ¹ 、逸見 光 ² 、高山真一 ¹ 、 太 虎林 ¹ 、三上真一 ¹ 、三田 肇 ¹ 、照井教文 ¹ 、内山 進 ³ 、小林祐次 ⁴ 、五十嵐泰夫 ⁵ 、三本木至宏 ⁶ 、山本泰彦 ¹	136
【溶液応用	fl(核酸)】	
1P15★	安定同位体標識を用いた機能性 RNA 及び DNA の構造決定 (横国大院環境情報 ¹ 、産総研 ² 、三菱生命研 ³)〇松上明正 ¹ 、池田哲朗 ¹ 、外谷英嗣 ¹ 、田村裕介 ¹ 、丸本佳代子 ¹ 、 大橋 粛 ¹ 、小林伸一郎 ¹ 、奥泉智之 ¹ 、上杉晴一 ¹ 、P. Kumar ² 、河野俊之 ³ 、片平正人 ¹	138
【溶液応用	1(蛋白質、ペプチド、核酸以外)】	
1P16★	スペルミジン-ATP 複合体の NMR 解析 -弱い分子間相互作用解明への新しい試み- (阪大院理) 〇丸吉京介、出村哲夫、松森信明、村田道雄	140
1P17★	NMR study on an intramolecular CHO interaction17O, 13C and1H NMR analyses of overcrowded ketones (産総研生物情報解析研究セ) 〇秦旭栄、中西洋志	142
1P18★	安定同位体標識と磁場配向を利用した糖タンパク質の高次構造解析 (名市大院薬 [」] 、CREST/JST ² 、理研 GSC ³ 、横市大院総理 ¹) 〇山口芳樹 ^{1, 2} 、菊池 淳 ^{3, 4} 、西村真美子 ¹ 、加藤晃一 ^{1, 2, 3}	144
1P19	金属酸化物をコアにもつ無機-有機分子ハイブリッドのシラノールとの置換反応および生成物の構造 (京大化研)〇日下康成、山本 靖、祝 弘典、堀井文敬	146
【液晶、膜	1、不均一系]	
1P20★ ·	超高磁場勾配 ¹³ C 及び ¹ H NMR 法を用いた等方相及び液晶相における棒状高分子の高精度拡散係数解析 (東工大院理工 ¹ 、高分子センター ² 、東京家政大 ³) 〇金坂 将 ¹ 、木村英昭 ¹ 、黒木重樹 ^{1,2} 、安藤 勲 ^{1,2} 、藤重昇永 ³	148
1P21★	キラル液晶 NMR 法による光学異性体の分離 III - フッ素を有するトリアゾール系化合物への応用 - (神戸薬大 、埼玉大理工 ³ 、理研 ³ 、阪大院医 ⁴)〇中尾佳範 ¹ 、杉浦眞喜子 ¹ 、伊藤允好 「、関亦克彦 ² 、鵜澤 洵 ³ 、 吉田茂男 ³ 、浅見忠男 ³ 、木村敦臣 ⁴ 、藤原英明 ⁴	152
1P22★	磁場勾配 NMR 法による高分子ミクロキャビティー中のメタン及びエタン分子の拡散過程の研究 (東工大院理工) 〇松井政徳、山根祐治、木村英昭、黒木重樹、安藤 勲、付 凱、渡辺順次	154.
【医用/in	a vivoNMR とイメージング】	
1P23★	超偏極二次元 NMR 法による Xe-129 ガスのダイナミクス評価 -多孔質微粒子およびマウス肺胞表面でのキセノンガス交換現象について- (阪大院医) 〇若山哲也、木村敦臣、藤原英明	158
【固体測定	2法の開発】	
1P24★	低出カラジオ波を用いた新規固体 NMR 双極子磁場分離法の開発 (横国大) 〇西村勝之 内藤 晶	160
/ 1P25★	強度位相変調 rf 磁場を用いた試料回転の下での核スピン相互作用の decoupling/recoupling と化学シフト異方性の決定への応用 (理研 GSC ¹ 、京大院理 ³) 〇西山裕介 ¹ 、山崎俊夫 ¹ 、寺尾武彦 ²	164
1P26★	¹⁹ N オーバートーン照射による近接 ¹³ C の線幅増大を利用したポリペプチド構造解析 (京大院理) 〇深澤 隼、竹腰清乃理、寺尾武彦	168
1P27★	新しい強度変調 CP 法の開発 (京大院理) 〇福地将志、竹腰清乃理、寺尾武彦	170
【固体物性	E、高分子、固体イメージング】	
1P28★	絹セリシンおよびそのモデルペプチドの構造とダイナミクスに関する研究 (豊工士工 - 生物資源研 ³) ○専教あや - 亀田恒徳 - 山本俊雄 ² 胡合哲郎 -	172

目次5

1P29★	高磁場勾配 NMR 法による尿素アダクトチャンネル中の n-パラフィン鎖の拡散過程の研究 (東工大院理工 ¹ 、高分子センター ²) 〇金 善美 ¹ 、黒木重樹 ^{1,2} 、安藤 勲 ^{1,2}	174
1P30 ★	³¹ P CP/MAS NMR による InP の間接核スピン-スピン結合の研究 (物材機構 ¹ 、CREST/JST ²) 〇飯島隆広 ¹ 、端 健二郎 ¹ 、後藤 牧 ¹ 、清水 禎 ¹ 、大木 忍 ²	178
1P31★	バクテリオロドプシンの高速 MAS 固体高分解能 NMR スペクトルの解析 (横国大院工 ¹ 、姫路工大院理 ²)〇川村 出 ¹ 、山口 悟 ² 、西村勝之 ¹ 、辻 暁 ² 、斉藤 肇 ² 、内藤 晶 ¹	180
1P32★	¹ H→ ¹⁹ F CP/MAS NMR 法を用いた全芳香族ポリイミドの分子間パッキング様式の推定 (東工大院理工) 〇相見敬太郎、安藤慎治	184
1P33	└H MAS NMR 法を用いたペンタクロロフェノール塩の水素結合の研究 (横市大院総理) ○本多 尚	186
1P34	固体高分解能 NMR による放線菌由来ポリ(٤ -リジン)およびその誘導体の分子構造解析 (福井大工 ¹ 、金沢大院 ³) 〇前田史郎 ¹ 、森貴志 ¹ 、武藤勝紀 ¹ 、佐々木千鶴 ² 、国本浩喜 ²	188
【固体化学	における NMR】	
1P35★	イオン交換型ゼオライトに対するキセノンの吸着挙動の高圧 ¹³⁸ XeNMR による研究 (阪大理 1、阪大博物館 ³) 〇前澤国芳 ¹ 、上田貴洋 ^{1、2} 、宮久保圭祐 ¹ 、江口太郎 ^{1、2}	190
1P36★	固体 NMR によるモンモリロナイトの水和挙動の解析 (東工大原子炉研 ¹ 、新日鐵(株)先端研 ²) 〇大窪貴洋 ¹ 、金橋康二 ² 、齋藤公児 ² 、池田泰久 ¹	192
1P37 ★	固体 NMR によるバクテリオクロロフィル c モデル系の構造解析 (阪大蛋白研 ¹ 、関西学院大理工 ²) 〇秋庭健吾 ¹ 、江川文子 ¹ 、柿谷吉則 ² 、高橋大樹 ¹ 、小山 泰 ² 、藤原敏道 ¹ 、 阿久津秀雄 ¹	194
1P38 ★	酸素-17ラベル化技術を用いた、ガラスネットワーク構造変化高感度解析法の開発 (新日鐵(株)先端研 「、日本電子 ²) 〇金橋康二 「、下池田勇一 ² 、齋藤公児」	198
1P39	^I H-および ¹³ C-NMRスピン格子緩和時間に基づく非晶質医薬品に対する PVP の安定化機構の解析 (国立衛研) 〇阿曽幸男、吉岡澄江、小嶋茂雄	202
1P40	各種 Recoupling 技術を用いた絹モデルペプチドの精密立体構造の決定 (農工大工 ¹ 、バリアンテクノロジーズジャパン ²)〇中澤靖元 ¹ 、亀田恒徳 ¹ 、芦田 淳 ² 、朝倉哲郎 ¹	204
1P41	天然存在比 REDOR による精密原子間距離測定と分子構造の解析 (横国大院工) 〇内藤 晶、虎谷秀一、西村勝之	206
【ハードウェ	7]	
1P42★	スポーツ選手用コンパクト MRI の開発 (筑波大物工 ¹ 、(株)エム・アール・テクノロジー ² 、筑波大臨床医 ³) 〇栗本岳明 ¹ 、白猪 亨 ¹ 、冨羽貞範 ¹ 、松田善正 ¹ 、 宇津澤 慎 ² 、拝師智之 ² 、巨瀬勝美 ¹ 、吉岡 大 ³ 、新津 守 ³	208
1P43★)	マウス用コンパクトMRIの開発 (筑波大物工、(株)エム・アール・テクノロジー ²) 〇白猪 亨 ¹ 、松田善正 ¹ 、拝師智之 ² 、字津澤 慎 ² 、巨瀬勝美 ¹	212
【NMR の高	感度化】	
1P44	理研GSCにおけるNMR施設・装置・測定法・解析法の高度化 (理研GSC) 〇廣田 洋、前田秀明、山崎俊夫、武藤 裕、木川隆則、白水美香子、田仲昭子、P. Guentert、畠中秀樹、 林 文晶、好田真由美、横山茂之	216
1P45	生成条件の最適化を行った超偏極 ¹³⁹ Xe ガス自動生成装置の開発 (東横化学(株) ¹ 、新日鐵(株)先端研 ² 、産総研光技術 ³ 、東工大原子炉研 ⁴) 〇田中 亮 ¹ 、大竹紀夫 ¹ 、斎藤公児 ² 、 服部峰之 ³ 、大窪貴洋 ⁴	218

【その他】

- 1P46 ★	ハロゲン架橋一次元錯体[NiBr(chxn)2]Br2における Spin-Peierls 転移 (筑波大化 '、物材機構 ²) 〇藤部康弘 '、高石慎也 '、北川 宏 '、池田龍一 '、後藤 敦 ² 、清水 禎 ²	220
1P47	アルキルフェノール類の LC-NMR による定量 (産総研) 〇齋藤 剛、中家幸子、岩澤良子、衣笠晋一	222
第二日 【溶液測	11月 27日(木) 定法の開発]	
. 2P1	日本電子のタンパク質溶液 NMR 測定技術開発への取り組み (日本電子(株)) O根本暢明、朝倉克夫、栗本智充、氣田佳喜、末松浩人、田中良二、宮本哲雄、石川彦成、木田 惇、 高杉憲司、内海博明、藤井直之、阿部 敦、百名一男、松倉順一、山崎千春、佐藤浩三、J. Malcolmson、A. Weimer、 T. McKay、S. Mukasa、A. Krishnaswami、 穴井孝弘、細野政美、栗原範明、日元 徹、大塚紀一郎	<u>2</u> 24
2P2	単一核複数帯域の励起方法;マルチシーケンサのタンパク質多核溶液測定への応用 (日本電子(株))〇根本暢明、穴井孝弘	228
2P3	タンパク質 NMR 解析における可溶化タグ法の検討 (奈良先端大バイオ ¹ 、三菱生命研 ²)〇小林俊達 ¹ 、河野俊之 ² 、三島正規 ¹ 、児嶋長次郎 ¹	232
2P4	1 量子と2 量子スペクトルの同時測定法の開発 (日本女子大理 -、国立精神神経セ ³)〇高橋征三 ¹ 、加藤 恵 ¹ 、荻野孝史 ²	234
【溶液応	用(蛋白質、ペプチド)】	
2P5	小麦胚芽抽出物を用いた無細胞合成系によるタンパク質の選択的標識法 (愛媛大総合科学研究支援セ ¹ 、三菱生命研 ² 、愛媛大工 ³) 〇森田勇人 ¹ 、清水真人 ¹ 、河野俊之 ² 、遠藤弥重太 ³	236
2P6	インデラクティブな NMR 解析ツール,Kujira,および NOE 自動帰属モジュール CYANA による結晶構造に迫る 高精度なマウスラミンC末ドメインの溶液構造決定 (理研 CSC ¹ 、東大院理 ² 、理研播磨 ³) 〇小林直宏 ¹ 、小柴生造 ¹ 、井上 真 ¹ 、P. Guentert ¹ 、白水美香子 ¹ 、寺田貴帆 ¹ 、 矢吹 孝 ¹ 、青木雅昭 ¹ 、松田貴意 ¹ 、関 英子 ¹ 、布川絵末 ¹ 、松田夏子 ¹ 、碇 正臣 ¹ 、廣田 洋 ¹ 、好田真由美 ¹ 、長内 隆 ¹ 、 田仲昭子 ¹ 、荒川貴博 ¹ 、P. Carninci ¹ 、河合 純 ¹ 、林崎良英 ¹ 、木川隆則 ¹ 、横山茂之 ^{1,2,3}	238
2P7	Phytochrome B PAS2 domain の構造 (奈良先端大バイオ ¹ 、農業生物資源研 ³)〇田畑亮 ¹ 、三島正規 ¹ 、赤木香予 ² 、加藤悦子 ² 、高野 誠 ² 、山崎俊正 ² 、 児嶋長次郎 ¹	240
2P8	マウス構造プロテオミクス:MARK3 C 末端 KA1 ドメインの溶液構造 (理研 GSC ¹ 、東大院理 ² 、理研播磨 ³) 〇栃尾尚哉 ¹ 、小柴生造 ¹ 、小林直宏 ¹ 、白水美香子 ¹ 、寺田貴帆 ¹ 、矢吹 孝 ¹ 、 青木雅昭 ¹ 、松田貴意 ¹ 、関 英子 ¹ 、布川絵未 ¹ 、鞆 康子 ¹ 、元田容子 ¹ 、小林敦夫 ¹ 、廣田 洋 ¹ 、好田真由美 ¹ 、長内 隆 ¹ 、 田仲昭子 ¹ 、荒川貴博 ¹ 、P. Carninci ¹ 、河合 純 ¹ 、林崎良英 ¹ 、P. Guentert ¹ 、木川隆則 ¹ 、横山茂之 ^{1,2,3}	242
2P9	立体整列同位体標識(SAIL)法による分子量 42 kDa のタンパク質・MBP の立体構造決定 (都立大院理 ¹ 、CREST/JST ²) 〇岩下由紀 ¹ 、鳥澤拓也 ² 、寺内勉 ² 、甲斐荘正恒 ^{1,2}	244
2P10	NMR structure of the ENTH-VHS-like domain At3g16270 from <i>Arabidopsis thaliana</i> (理研 GSC1、理研播磨 ² 、東大院理 ³) OB. Lopez-Mendez ¹ 、T. Tomizawa ¹ 、S. Koshiba ¹ 、M. Shirouzu ^{1,2} 、 T. Terada ^{1,2} 、T. Kigawa ¹ 、M. Inoue ¹ 、T. Yabuki ¹ 、M. Aoki ¹ 、E. Sek ¹ i、T. Matsuda ¹ 、H. Hirota ¹ 、M. Yoshida ¹ 、 A. Tanaka ¹ 、T. Osanai ¹ 、M. Seki ¹ 、K. Shinozaki ¹ 、S. Yokoyama ^{1,2,3} 、P. Guentert ¹	246
2P11	hHR23B ユビキチン相同ドメイン-プロテアソームS5aサブユニットユビキチン結合モチーフ複合体の構造解析 (横市大院総理 ¹ 、理研 ² 、愛媛大院理工 ³ 、生物分子工研 ⁴ 、奈良先端大院 ⁵) 〇藤原健一朗 ¹ 、天野剛志 ^{1,3} 、菅澤薫 ² 、J. JunGool ² 、大木 出 ⁴ 、児嶋長次郎 ⁵ 、栃尾豪人 ¹ 、廣明秀一 ¹ 、花岡文雄 ² 、白川昌宏 ¹	248
2P12	二成分情報伝達系レスポンスレギュレーターFixJの構造解析 (横市大院総理 ¹ 、理研遺伝生化学 ² 、CREST/JST ³ 、理研播磨 ⁴) 〇葛西佑一 ¹ 、倉島かおり ¹ 、伊藤 隆 ^{1,2,3} 、中村寛夫 ^{1,4} 、 柴田武彦 ^{1,2,3} 、城 宜嗣 ⁴	250

2P13	マウス構造プロテオミクス:hypothetical protein 2610208M17Rik N 末端ドメインの溶液構造 (理研 GSC ¹ 、東大院理 ² 、理研播磨 ³) 〇李華 ¹ 、富沢 忠 ¹ 、小柴生造 ¹ 、井上 真 ¹ 、白水美香子 ¹ 、寺田貴帆 ¹ 、 矢吹 孝 ¹ 、青木雅昭 ¹ 、松田貴意 ¹ 、関 英子 ¹ 、布川絵未 ¹ 、齋藤深雪 ¹ 、渡辺 恵 ¹ 、平戸麻里 ¹ 、廣田 洋 ¹ 、好田真由美 ¹ 、 長内 隆 ¹ 、田仲昭子 ¹ 、荒川貴博 ¹ 、P. Carninci ¹ 、河合純 ¹ 、林崎良英 ¹ 、P. Guentert ¹ 、木川隆則 ¹ 、横山茂之 ^{1,2,3}	252
2P14	マウス構造プロテオミクス: COP9 複合体サブユニット4の PCI ドメインの溶液構造 (理研 GSC ¹ 、理研播磨 ² 、東大院理 ³) 〇鈴木咲良 ¹ 、畠中秀樹 ¹ 、井上 真 ¹ 、木川隆則 ¹ 、寺田貴帆 ¹ 、白水美香子 ¹ 、 林崎良英 ¹ 、横山茂之 ^{1, 2, 3}	254
2P15	膜蛋白質から単離した新規 N&D 様ドメインの構造解析 (横市大院総理 「、産総研 JBIRC ²) 〇森井太一 「、廣明秀一 「、杤尾豪人 「、横山英志 ² 、松井郁夫 ² 、白川昌宏 「	256
2P16	マウス構造プロテオミクス:BAG domain の構造解析 (理研 GSC ¹ 、東大院理 ³) 遠藤 弘 ¹ 、八田玲子 ¹ 、〇林文晶 ¹ 、好田真由美 ¹ 、清宮恭子 ¹ 、白水美香子 ¹ 、寺田貴帆 ¹ 、 木川隆則 ¹ 、井上 真 ¹ 、矢吹 孝 ¹ 、青木雅昭 ¹ 、関 英子 ¹ 、松田貴意 ¹ 、廣田 洋 ¹ 、田仲昭子 ¹ 、長内 隆 ¹ 、松尾 洋 ¹ 、 荒川貴博 ¹ 、Piero Carninci ¹ 、河合 純 ¹ 、林崎良英 ¹ 、横山茂之 ^{1,2}	258
2P17	大腸菌 DNA 修復蛋白質 Ada の立体構造解析と機能スイッチ機構の解明 (阪大院薬) 〇瀧之脇浩人、松田安弘、吉田卓也、小林祐次、大久保忠恭	260
2P18	TraR-DNA 結合ドメインの立体構造解析 (三菱生命研 ¹ 、信州大学工 ²) 〇田中剛史 ¹ 、小松千江子 ¹ 、小林邦子 ¹ 、須貝真理子 ¹ 、片岡正和 ² 、河野俊之 ¹	262
2P19	K*チャネル阻害ペプチド Spinoxin の立体構造解析 (三菱生命研 ¹ 、福岡女子大 ² 、Nat. Univ. of Singapore ³ 、Harv. Med. Sch. ⁴ 、Univ. of Leuven ⁵) 〇小林邦子 ¹ 、菅原由子 ² 、 S. Nirthanan ^{3, 1} 、I. Huys ⁵ 、P. Gopalakrishnakone ³ 、J. Tytgat ⁵ 、佐藤一紀 ² 、河野俊之 ¹	264
2P20	枯草菌由来細胞壁溶解酵素 CwlC の細胞壁結合ドメインの立体構造解析とペプチドグリカン認識機構の解明 (奈良先端大 ¹ 、信州大 ²) 〇加藤健一 ¹ 、三島正規 ¹ 、志田敏夫 ² 、関ロ順一 ² 、児嶋長次郎 ¹	266
【溶液応	用(蛋白質、ペプチド、核酸以外)】	
2P21	プロトン NMR 化学シフト解析による水ーエタノール混合溶液中の水の構造性に及ぼす塩、酸、フェノール類の影響 (高知大理 ¹ 、酔鯨酒造(株) ²) 能勢 晶 ² 、〇北條正司 ¹ 、上田忠治 ¹	268
2P22	¹³ C NMR による非イオン性界面活性剤の分子構造解析 (福井大工 ¹ 、日華化学 ³) 前田史郎 ¹ 、〇大西充洋 ¹ 、篠原正法 ¹ 、小林紀秋 ² 、滝澤 徹 ²	270
2P23	全芳香族共重合ポリエステルカーボネートおよびポリアミドのモノマー連鎖構造解析 (農工大工 ¹ 、帝人 ²) 〇松田裕生 ^{1, 2} 、永阪文惣 ² 、中川泰雄 ² 、朝倉哲郎 ¹	272
【液晶、】	莫、不均一系】	
2P24	パルス磁場勾配 NMR を用いた yeast 細胞内制限空間における水の自己拡散係数測定 (分子科学研) 〇大石修	274
2P25	Channel Cavityを有する高磁場配向高分子ゲルのキャラクタリゼーション及び物質拡散に関する研究 (東工大院理工 ¹ 高分子セ ²)〇山根祐治 ¹ 、松井政徳 ¹ 、兼清真人 ¹ 、小泉 聡 ¹ 、黒木重樹 ^{1,2} 、安藤 勲 ^{1,2}	276
2P26	高分子電解質膜中における水の拡散挙動解析 ((株)日産アーク ¹ 、産総研 ³) 〇佐藤秀紀 ¹ 、早水紀久子 ² 、秋葉悦男 ²	280
【計算、	バュレーション、データ処理】	
2P27	Improved automated NMR structure calculation with CYANA 2.0 (理研 GSC) OB. Lopez-Mendez、J. JunGoo, D. Pantoja-Uceda, P. Guentert	282
【医用/	in vivoNMR とイメージング】	
2P28	4.7T 人体用 MRI における ¹ H/ ³¹ P/ ¹³ C 局在化スペクトル同時測定法 (国立環境研) 〇三森文行、高屋展宏、渡邉英宏	284

2P29	NMR spectroscopy 及び NMR imaging による卵の発生過程の解明 (海洋大・食品 '、海洋大生物資源 ²) 〇酉山大介 '、吉崎悟朗 ² 、渡部徳子 '	286	
2P30	SPI 法による米の吸水における水分布の可視化 ((独)食総研、(独)生物研) 〇石田信昭、内藤茂弘、狩野広美	288	
2P31	超並列型MRマイクロスコープを用いたとト胚子三次元撮像(2) ー画像コントラスト最適化の研究ー (筑波大物工 ¹ 、(株)エム・アール・テクノロジー ²) 〇小野真也 ¹ 、松田善正 ¹ 、半田晋也 ¹ 、巨瀬勝美 ¹ 、拝師智之 ²	292	
2P32	3テスラMRI装置を用いた音楽脳機能画像の撮像と音楽赋活システムの開発 (国立循環器病セ放射線 \、(株)ビーエフ研究所 ²) ○飯田秀博 ¹ 、林 拓也 ¹ 、豊 雅子 ¹ 、栗栖 麗 ¹ 、染谷芳明 ² 、 松井美詠子 ² 、澤田 徹 ²	296	
【固体測	定法の開発】		
2P33	¹³ C 固体 NMR における XiX パルス系列を用いた Recoupling の試み (パリアンテクノロジーズジャパン ¹ 、農工大工 ²) 〇芦田 淳 ¹ 、中澤靖元 ² 、亀田恒徳 ² 、朝倉哲郎 ²	298	
2P34	固体高分解能 ¹³ C-NMR 観測による ¹ H 間距離の定量的解析及び局所構造解析への応用 (阪大蛋白研 ¹ 、都立大院理 ²) 〇高橋大樹 ¹ 、藤原敏道 ¹ 、甲斐荘正恒 ² 、阿久津秀雄 ¹	300	
【固体物	性、高分子、固体イメージング】		
2P35	固体 NMR による遺伝子相同組換えタンパク質 RecA の DNA 認識ダイナミクスの研究 (理研 GSC ¹ 、横市大院総理 ² 、理研遺伝生化学 ³) 〇畑中 稔 ⁻¹ 、本多賢吉 ⁻² 、伊藤 隆 ^{-2,3} 、柴田武彦 ⁻³ 、山崎俊夫 ⁻¹	304	
2P36	¹³ Cの T」および T」, に反映される凍結乾燥製剤の分子運動の実体は何か (国立衛研) 〇吉岡澄江、阿曽幸男、小嶋茂雄	306	
2P37	¹³ C 核磁気緩和によるポリグルタミン誘導体のセグメント運動の解析 (北大院工) 〇内野新一、平神敏文、堤 耀廣	308	
2P38	¹²⁹ Xe NMR 法を用いた高分子の分子運動性と自由体積の解明 (名工大) 〇村上隆史、吉水広明、岡本 茂、辻田義治	310	
2P39	¹ H-7,に及ぼす PVA/モンモリロナイト中の鉄イオン存在量の影響 (防大応化) 〇浅野教志、清水美穂、黒津卓三	312	
2P40	¹³ C、 ¹⁵ N 化学シフト相関固体二次元 NMR 測定による均一標識膜タンパク質 H'-ATP 合成酵素サブユニット c の信号帰属と 構造解析 (阪大蛋白研 ¹ 、CREST/JST ²)〇小林将俊 ^{1,2} 、江川文子 ¹ 、藤原敏道 ¹ 、阿久津秀雄 ^{1,2}	314	
2P41	固体二次元 MAS NMR による三酢酸セルロースの構造解析 (北大院工 \、ブルカーバイオスピン(株) ²) 〇沼田ゆかり 、甲野裕之 ² 、惠良田知樹 ¹ 、高井光男 ¹	318	
【固体化	学における NMR】		
2P42	固体二次元 MAS NMR による結晶性キチンの構造解析 (ブルカーバイオスピン(株)) 〇甲野裕之	320	
2P43	多孔性金属錯体の固体高分解能 NMRーゲスト分子の吸着挙動2 (京大院工 ¹ 、金沢大理 ²) 〇中西康哲 ¹ 、堀毛悟史 ¹ 、遠藤一央 ² 、北川 進 ¹	324	
【ハードウ	ייר איז		
2P44	高温超伝導バルク磁石を用いた NMR 信号の検出 (理研 ¹ 、イムラ材料開発研 ² 、アイシン精機 ³) 〇仲村高志 ¹ 、鵜澤 洵 ¹ 、伊藤佳孝 ² 、岡 徹夫 ³	326	
[NMRの高感度化]			
2P45	高偏極 Xe129 によるラット頭部の MR スペクトル (秋田県立脳血管研究セ) 〇若井篤志、中村和浩、K. Jeff、近藤 靖、W. David、菅野 巖	330	

目次9

【その他】

2P46 天然有機化合物の NMR データベース"CH-NMR-NP"システムの展開 (エヌエムアールデービテック 東大農) 〇早水紀久子、降旗一夫

【溶液測定法の開発】

2P47	固体 NMR のテクニックの液体試料への応用 (金沢大学理学部 ¹ 、Dept. Chem. Princeton Univ. ²) 〇水野元博 ¹ 、W S. Warren ²	332		
第三日 1 【溶液測定	第三日 11月28日(金) 【溶液測定法の開発】			
3P1	21.6T で測定した卵白リゾチウムの ¹ H- ¹ H 2次元 NOESY スペクトル (日本電子(株) ¹ 、日本電子データム ² 、物材研 ³ 、理研 GSC ¹ 、横浜市大院 ⁵ 、理研播磨 ⁶ 、東大院理 ⁷) 〇根本暢明 ¹ 、 氣田佳喜 ¹ 、末松浩人 ¹ 、朝倉克夫 ¹ 、穴井孝弘 ¹ 、栗原範明 ¹ 、竹内 茂 ² 、吉川正敏 ³ 、木吉 司 ³ 、和田 仁 ³ 、 前田秀明 ^{4,5} 、廣田 洋 ^{4,5} 、横山茂之 ^{4,6,7}	334		
3P2	DPFGSE-NOESY/TOCSY スペクトルの解析に有益なデカップリング法 (理研 PSC ¹ 、日大薬 ²) 〇鵜澤 洵 ¹ 、藤本康雄 ² 、吉田茂男 ¹	336		
3P3	シェープドパルスを用いた選択的緩和法の改良 - 水溶液中でのウリジン誘導体のコンホメーション解析 - (神戸薬大 '、阪大院工 ²)〇杉浦眞喜子 '、和田健彦 º、井上佳久 º	340		
【溶液応用	(蛋白質、ペプチド)】			
3P4	酵母 DSK2 の UBA ドメインとユビキチンとの相互作用解析 (木原生物科学研 ¹ 、横市大院総理 ² 、理研 ³ 、愛媛大院理工 ⁴ 、九大院医 ⁵) 〇大野綾子 ^{1,2} 、廣明秀一 ^{1,2} 、藤原健一朗 ² 、 J. JunGoo ^{2,3} 、天野剛志 ^{2,4} 、栃尾豪人 ² 、小林英紀 ⁵ 、白川昌宏 ²	344		
3P5	フィブロイン遺伝子転写制御タンパク質における DNA 結合ドメインの立体構造解析 (北大院理・、北大先端研 ²) 〇八巻 健・、川口恭輔 ¹ 、相沢智康 ¹ 、滝谷重治 ² 、出村 誠・、新田勝利・	346		
3P6	交差飽和法による生体膜-ペプチド間の相互作用解析 (JBIC/JBIRC ¹ 、産総研 BIRC ² 、東大院薬 ³ 、三菱生命研 ⁴ 、群大工 ⁵) 〇中村壮史 ¹ 、高橋栄夫 ² 、竹内 恒 ³ 、河野俊之 ⁴ 、 若松 馨 ³ 、嶋田一夫 ^{2,3}	348		
3P7	マウス構造プロテオミクス:Transgelin の Calponin Homologyドメインの溶液構造 (理研 GSC ¹ 、東大院理 ² 、理研播磨 ³) 〇富澤 忠 ¹ 、小柴生造 ¹ 、井上 真 ¹ 、白水美香子 ¹ 、寺田貴帆 ¹ 、矢吹 孝 ¹ 、青木 雅昭 ¹ 、松田貴意 ¹ 、關 英子 ¹ 、布川絵未 ¹ 、平川典子 ¹ 、佐藤深雪 ¹ 、安田聡子 ¹ 、廣田 洋 ¹ 、好田真由美 ¹ 、長内 隆 ¹ 、 田仲昭子 ¹ 、荒川貴博 ¹ 、P. Carninci ¹ 、河合 純 ¹ 、林崎良英 ¹ 、P. Guentert ¹ 、木川隆則 ¹ 、横山茂之 ^{1,2,3}	350		
3P8	Solution structure of the DEP domain of mouse pleckstrin (理研 GSC) 〇井上匡子、好田真由美、八田玲子、林 文晶、白水美香子、寺田貴帆、木川隆則、井上 真、矢吹 孝、 青木雅昭、関 英子、松田貴意、廣田 洋、田仲昭子、長内 隆、松尾 洋、荒川貴博、P. Carninci、河合 純、林崎良英、 横山茂之	352		
3P9	p47 ^{plax} のタンデム SH3 ドメインと p22 ^{plax} PRR の相互作用 (北大院薬 ¹ 、タンパク 3000 ² 、九大生医研 ³) 〇小椋賢治 ¹ 、湯沢 聰 ² 、鳥飼真之介 ¹ 、住本英樹 ³ 、稲垣冬彦 ^{1、3}	354		
3P10	MAP-LC3 蛋白質の立体構造解析 (富山医薬大薬 「、順天堂大医 ²) 〇河野隆英 「、水口峰之 「、谷田以誠 ² 、上野 隆 ² 、木南英紀 ² 、河野敏一 「	358		
3P11	大腸菌 Orf135 タンパク質の構造解析とその基質認識 (奈良先端大バイオ ¹ 、北大院薬 ² 、北大遺制研 ³) 〇米山桃子 ¹ 、三島正規 ¹ 、紙谷浩之 ² 、紙谷(村田)尚子 ³ 、原島秀吉 ² 、 児嶋長次郎 ¹	360		
3P12	マウス構造プロテオミクス:広範に保存された新規の ubiquitin-fold タンパク質の溶液構造 (理研 GSC ¹ 、理研播磨 ³ 、東大院理 ³) 〇趙晨華 ¹ 、小柴生造 ¹ 、井上 真 ¹ 、白水美香子 ¹ 、寺田貴帆 ¹ 、濱名宏章 ¹ 、 矢吹 孝 ¹ 、青木雅昭 ¹ 、松田黄意 ¹ 、関 英子 ¹ 、布川絵未 ¹ 、坂上紀子 ¹ 、廣安文子 ¹ 、鞆 康子 ¹ 、廣田 洋 ¹ 、好田真由美 ¹ 、 長内 隆 ¹ 、田仲昭子 ¹ 、荒川貴博 ¹ 、P. Carninci ¹ 、河合 純 ¹ 、林崎良英 ¹ 、P. Guentert ¹ 、木川隆則 ¹ 、横山茂之 ^{1,2,3}	362		

330

3P13	溶液中におけるポリユビキチン鎖の四次構造の解析 (横市大院総理「、愛媛大院理工 ² 、大阪市大院医 ³ 、愛媛大総合科学研究支援セ ⁴ 、愛媛大理 ⁵ 、都立臨床研 ⁶) 〇天野剛志 ^{1,2} 、藤原健一朗「、杤尾豪人「、岩井一宏 ³ 、森田勇人「、林 秀則 ⁵ 、廣明秀一「、田中啓二 ⁶ 、白川昌宏」	366
3P14	クロレラユビキチンの局所構造の NMR 解析 (都立大理 ¹ 、CREST/JST ² 、クロレラ工業(株) ³) 〇吉田 均 ¹ 、小神 将 ^{1、2} 、野村 薫 ¹ 、菅 向志郎 ³ 、松林恒夫 ³ 、 甲斐荘正恒 ^{1、2}	368
3P15	ヒト構造プロテオミクス: C2ドメインの構造解析 (理研 GSC ¹ 、かずさ DNA 研究所ヒト遺伝子研究部 ²) ○長島敏雄 '、林 文晶 ¹ 、白水美香子 ¹ 、寺田貴帆 ¹ 、木川隆則 ¹ 、 井上 真 ¹ 、矢吹 孝 ¹ 、青木雅昭 ¹ 、関 英子 ¹ 、松田貴意 ¹ 、廣田 洋 ¹ 、好田真由美 ¹ 、田仲昭子 ¹ 、長内 隆 ¹ 、松尾 洋 ¹ 、 小原 收 ² 、長瀬隆弘 ² 、菊野玲子 ² 、中山 学 ² 、横山茂之 ¹	370
3P16	転写因子 Sp1 の DNA 結合領域の立体構造解析 (阪大院薬 ¹ 、京大化研 ²) 〇岡 伸一郎 ¹ 、白石泰久 ² 、吉田卓也 ¹ 、大久保忠恭 ¹ 、杉浦幸雄 ³ 、小林祐次 ¹	372
3P17	NMR 法による MHC クラス I タンパク質の相互作用の研究 (産総研生物情報解析研究セ ¹ 、原研 ² 、高知医科大 ³) 〇中川将利 ¹ 、千葉かおり ² 、宇高恵子 ³ 、中西洋志 ¹	374
3P18	溶液高分解能 MAS 法によるバイセル結合ペプチドの直接観測 (東レリサーチセンター ¹ 、農工大工 ³)〇川口 謙 ^{1,2} 、木村一雄 ¹ 、朝倉哲郎 ²	376
3P19	膜環境下でのペプチドの配置決定 (群大工 '、三菱生命研 ³) 〇若松 馨 '、野口真路 '、細田和男 '、石井 毅 '、稲岡斉彦 '、高瀬聖也 '、河野俊之 ²	378
【溶液応用](蛋白質、ペプチド、核酸以外)】	
3P20	CAST/CNMR システムの応用: ¹³ C-NMR 化学シフトに基づく立体化学の決定 (理研 1、国立情報学研 ³) 〇越野広雪 ¹ 、佐藤寛子 ³	380
3P21	HMBC 法の新しい応用測定HR-J-resolved-HMBC 法について (東大農応生化 「、東農大応生化 ³) 〇降旗一夫 「、瀬戸治男 ²	382
3P22	C-HO Blue-shifting H-bond 形成の時に観測される H と C のケミカルシフトの変化とその解析 (福井大工) 〇水野和子	386
【液晶、膜	、不均一系】	
3P23	ポリメタクリル酸メチルゲルネットワーク中の線状・球状ポリスチレンの拡散機構の解明 (東工大院理工高分子センター) 〇上口憲陽、黒木重樹、安藤 勲、石津浩二	388
3P24	固体NMR法による抗菌性ペプチド Pandinin2 の脂質膜への作用機構の解明 (サントリー生有研) 〇野村 蕉、G. Corzo、岩下 孝、中嶋暉躬	392
3P25	CBOOA における液晶相の ¹³ C NMR (日大文理) 〇藤森裕基、浅地哲夫	394
3P26	自己拡散係数(Dsel)を応用したオイルワックスゲル中の水の状態分析 ((株)資生堂) 〇木村朋子、福原忠雄、横塚暁人、小松一男	396
【医用/in	vivoNMR とイメージング】	
3P27	4.7T 人体用 MRI を用いた局所励起 2D Constant Time COSY によるピーク分解能の向上 (国立環境研) ○渡邉英宏、高屋展宏、三森文行	398
3P28	常圧偏極 He-3 の開発技術とイメージングへのこころみ (阪大院医) 〇仲座良造、木村教臣、藤原英明	402
3P29	Diffusion Tensor Imaging を用いた脳変性疾患の基礎検討 ((財)先端医学薬学研究センター ¹ 、明治鍼灸大 ² 、石川県産業創出支援機構 ³ 、京都府立医大 ⁴) 〇藤川昭彦 ⁴ 、 福永雅嘉 ² 矢嶋一賀 ³ 陣 偉荡 ³ 柳瀬大高 ³ 於成一館 ¹ 西村伯大郎 ¹ 梅田雅左 ² 田中忠蔵 ² 成瀬昭 ⁻¹	406

3P30	T2★定量による脳酸素飽和度測定に関する基礎的検討 (国立循環器病セ放射線 ¹ 、GE 横河メディカルシステム ² 、(株)ビーエフ研究所 ³) ○圓見純一郎 ¹ 、佐藤博司 ² 、林 拓也 ¹ 、 寺本 昇 ¹ 、渡部浩司 ¹ 、澤田 徹 ³ 、飯田秀博 ¹	406
3P31	骨量計測用コンパクト MRI の開発 (筑波大物工 ¹ 、(株)エム・アール・テクノロジー ² 、住友特殊金属 ³ 、筑波大体育科学 ⁴) 〇冨羽貞範 ¹ 、栗本岳明 ¹ 、白猪 亨 ¹ 、小野真也 ¹ 、松田善正 ¹ 、拝師智之 ² 、宇津澤(真 ² 、巨瀬勝美 ¹ 、青木雅昭 ³ 、津崎(剛 ³ 、川崎絵美 ⁴ 、向井直樹 ⁴ 、 徳山 薫 平 ⁴	408
【固体测》	定法の開発】	
3P32	³¹ P 近傍の ¹ H の解析をするための ³¹ P- ¹ H 多重接触交差分極による ¹ H 消磁化の固体高分解能 ¹³ C-NMR (阪大蛋白研 ¹ 、(社)バイオ産業情報化コンソーシアム ² 、都立大院理 ³) 〇原田英里砂 ^{1,2} 、藤原敏道 ¹ 、甲斐荘正恒 ³ 、 阿久津秀雄 ¹	412
3P33	DARR 法による Dipolar truncation の抑制効果の検証 (京大理) 〇大橋竜太郎、水野 敬、加藤悦子、竹腰清乃理、寺尾武彦	416
【固体物	生、高分子、固体イメージング】	
3P34	¹³ C-CP/MAS NMR によるポリペプチド・多糖 ポリイオンコンプレックスの構造研究 (北大院工「、信州大繊維 ²) ○尾張洋史」、平沖敏文 ¹ 、堤 耀廣「、山本浩之 ²	418
3P35	¹⁹ F MAS NMR 法による非晶性パーフルオロポリマーの構造解析 (東工大院理工 ¹ 、農業生物資源研 ²) 〇龍野宏人 ¹ 、相見敬太郎 ¹ 、加藤悦子 ² 、安藤慎治 ¹	420
3P36	超偏極 Xe 法による石炭細孔の解析 (新日鐵(株)先端研、阪大院医) 〇齋藤公児、木村敦臣、藤原英明	422
3P37	高分子ラセミ複合体のゾルーゲル転移 (北大工) 〇平沖敏文、北原 竜、武田寛之、堤 耀廣	426
3P38	温度可変固体 ¹⁹ F MAS NMRを用いた PVDF 及び PVDF/PMMA ブレンドの結晶多形と分子運動性の解析 (東工大院理工) 〇小陽 佑、相身敬太郎、安藤慎治	428
3P39	固体NMRによる選択標識GDP型 G;l α サブユニットの測定と解析 (阪大蛋白研 ¹ 、群馬大工 ²) 〇大道弘明 ¹ 、戸所泰人 ¹ 、若松 馨 ² 、藤原敏道 ¹ 、阿久津秀雄 ¹	430
3P40	高速回転下における「H 二量子遷移法によるポリアクリル酸の水素結合研究 (産総研高分子基盤セ」、Institute Polymer Research Dresden?) 〇三好利一1、U. Scheler ²	434
【固体化学	羊における NMR 】	
3P41	'H、²H、''B および ³³ Na NMR による二十面体型ホウ素クラスター固体 Na₂[B₁₂H₁₂]・4H₂O の研究 (日大文理 ┘、筑波大化 ³) ○鈴木浩一 ¹、松村正純 ┘、浅地哲夫 ¹、石丸臣一 ²、池田龍一 ²	436
3P42	HNbWO ₆ 層状化合物にインターカレートされた n-アルキルアミンの固体 ¹³ CNMRによる構造及び分子運動解明 (神奈川大工) 〇高山俊夫、松永 優	438
3P43	²⁹ Si CP/MAS NMR による無機-有機ハイブリッドゲルの均質性の評価 (産総研物質プロセス - 、早大理工 ²) 〇小森佳彦 ⁻ 、中島 寛 ² 、菅原義之 ² 、林 繁信 ⁻	440
【NMR の	高感度化】	
3P44	Fast Multi-Dimensional NMR Spectroscopy (Varian Ltd ¹ , Cambridge Univ. ²) OE. Kupce ¹ , R. Freeman ²	442
3P45	クライオジェニックプローブによる微量化合物の構造解析 (㈱三菱化学科学技術研究セ、横浜分析セ) 〇櫻井愛子、松原康史	444

【その他】

3P46

固体 NMR を用いたスペルミジン−ATP 複合体の立体配座解析 (阪大院理) 〇相根岳志、出村哲夫、丸吉京介、松森信明、村田道雄

【会期中の日本核磁気共鳴学会の会議日程】

1)理事会 11月25日(前日)、18:00-19:00、千里ライフサイエンスセンター2001会議室(20階)
 2)総 会 11月26日(初日)、12:30-13:00、コンベンションセンターMOホール(3階)
 3)理事・評議員合同会議 11月26日(初日)、17:30-19:00、大阪大学銀杏会館大会議室(3階)
 4)新年度評議員会 11月27日(第2日)、12:50-13:30、大阪大学銀杏会館大会議室(3階)

第 Π

11月26日(水)

般講演要旨

化学シフトにおける相対論的効果の計算 (北見工業大学) 〇福井洋之、工藤慶一

Relativistic Calculation of Nuclear Magnetic Shieldings H. Fukui and K. Kudo Kitami Institute of Technology

< abstract >

1 L1

A scheme for calculating relativistic nuclear magnetic shieldings using an analytical differentiation of electronic energy is presented. In this scheme, the four-component Dirac equation is decoupled into two two-component equations; the electronic equation and positronic equation at the second-order level with respect to each of the nuclear attraction potential V and the magnetic vector potential \overrightarrow{A} . The two-component electronic Hamiltonian h_+ obtained in this scheme is easily differentiated with respect to the external magnetic flux density \overrightarrow{B}_0 and the nuclear magnetic moment $\overrightarrow{\mu}_M$.

<理論>

ベクトルポテンシャル \overrightarrow{A} と核引力ポテンシャルVのもとにある1電子系のDirac方程式は、

$$H_D\psi_D = \varepsilon\psi_D \tag{1}$$

のように書くことができる。ここで、 H_D は Dirac 方程式のハミルトニアンで、原子単位 ($\hbar = 1, e = 1, m_e = 1, 4\pi\epsilon_0 = 1, c = 137.0359895$)では、

$$H_D = c \overrightarrow{\alpha} \cdot (\overrightarrow{p} + \overrightarrow{A}) + (\beta - 1)c^2 + V \tag{2}$$

となる。ここで マ と β は Dirac のベクトル及びスカラーの 4×4 行列である。Dirac 方程 式のハミルトニアンの非対角ブロックが0 になるように変換することができれば、相対論 的エネルギーを正のエネルギーに対応する2 成分方程式の固有値問題として得ることがで きる。まず、 $\overrightarrow{A} = 0, V = 0$ のとき、ハミルトニアンが対角化されるように1 回目の DKH 変換を行う¹⁾。次に、非対角ブロックを消去するように2 回目の DKH 変換を行う。変換 後のハミルトニアンの左上2×2の対角ブロックを h_+ とする。 h_+ を外部磁場のt成分 B_{0t} と原子核 M の磁気モーメントのu 成分 μ_{Mu} で摂動展開すると、

$$h_{+} = h^{(0,0)} + B_{0t}h_{t}^{(1,0)} + \mu_{Mu}h_{u}^{(0,1)} + B_{0t}\mu_{Mu}h_{tu}^{(1,1)} + \cdots, \qquad (3)$$

$$h^{(0,0)} = -c^2 + ce_p + RVR + Q\overrightarrow{\sigma} \cdot \overrightarrow{p}V\overrightarrow{\sigma} \cdot \overrightarrow{p}Q - \frac{1}{2}c\left[\tilde{W}_1^V, \left[\tilde{W}_1^V, e_p\right]_+\right]_+, \qquad (4)$$

2

化学シフト、相対論的効果、遮蔽テンソル

ふくいひろゆき、くどうけいいち

$$h_t^{(1,0)} = cR\left[\left(\frac{1}{2}\overrightarrow{r}_0\times\overrightarrow{\sigma}\right)_t, \, \frac{\overrightarrow{\sigma}\cdot\overrightarrow{p}}{e_p+c}\right]_+ R + \frac{1}{2}c\left[\tilde{W}_1^V, \, \left[\tilde{W}_1^{A(1,0)}, \, e_p\right]_+\right] \\ -\frac{1}{2}c\left[\tilde{W}_1^{A(1,0)}, \, \left[\tilde{W}_1^V, \, e_p\right]_+\right], \, \overrightarrow{r}_0 = \overrightarrow{r} - \overrightarrow{R}_0,$$
(5)

$$h_{u}^{(0,1)} = cR\left[\left(c^{-2}r_{M}^{-3}\overrightarrow{r}_{M}\times\overrightarrow{\sigma}\right)_{u}, \frac{\overrightarrow{\sigma}\cdot\overrightarrow{p}}{e_{p}+c}\right]_{+}R + \frac{1}{2}c\left[\tilde{W}_{1}^{V}, \left[\tilde{W}_{1}^{A(0,1)}, e_{p}\right]_{+}\right] - \frac{1}{2}c\left[\tilde{W}_{1}^{A(0,1)}, \left[\tilde{W}_{1}^{V}, e_{p}\right]_{+}\right], \ \overrightarrow{r}_{M} = \overrightarrow{r}-\overrightarrow{R}_{M}$$

$$(6)$$

$$h_{tu}^{(1,1)} = \frac{1}{2} \left[\tilde{W}_1^{A(1,0)}, \left[\tilde{W}_1^{A(0,1)}, e_p \right]_+ \right]_+ + \frac{1}{2} c \left[\tilde{W}_1^{A(0,1)}, \left[\tilde{W}_1^{A(1,0)}, e_p \right]_+ \right]_+,$$
(7)

$$R = \left[\frac{e_p + c}{2e_p}\right]^{\frac{1}{2}},\tag{8}$$

$$Q = [2e_p(e_p + c)]^{-\frac{1}{2}},$$
(9)

$$e_p = (c^2 + p^2)^{\frac{1}{2}}$$
(10)

となる。ここで、 \vec{R}_0 はゲージ中心の位置、 \vec{R}_M は原子核 Mの位置である。また、 \tilde{W}_1^V , $\tilde{W}_1^{A(1,0)}, \tilde{W}_1^{A(0,1)}$ は、 p^2 を対角化するような表示を用いることによって、

$$(\tilde{W}_{1}^{V})_{pp\prime} = c^{-1}(e_{p} + e_{p\prime})^{-1}[Q_{p}(\overrightarrow{\sigma} \cdot \overrightarrow{p} V)_{pp\prime}R_{p\prime} - R_{p}(V\overrightarrow{\sigma} \cdot \overrightarrow{p})_{pp\prime}Q_{p\prime}],$$

$$(\tilde{W}_{1}^{A(1,0)})_{pp\prime} = (e_{p} + e_{p\prime})^{-1}[R_{p}(\frac{1}{2}\overrightarrow{r}_{0}\times\overrightarrow{\sigma})_{t,pp\prime}R_{p\prime}$$

$$(11)$$

$$-Q_{p}(\overrightarrow{\sigma}\cdot\overrightarrow{p}(\frac{1}{2}\overrightarrow{r}_{0}\times\overrightarrow{\sigma})_{t}\overrightarrow{\sigma}\cdot\overrightarrow{p})_{pp\prime}Q_{p\prime}],$$
(12)

$$(\tilde{W}_{1}^{A(0,1)})_{pp\prime} = (e_{p} + e_{p\prime})^{-1} [R_{p}(c^{-2}r_{M}^{-3}\overrightarrow{r}_{M}\times\overrightarrow{\sigma})_{u,pp\prime}R_{p\prime} - Q_{p}(\overrightarrow{\sigma}\cdot\overrightarrow{p}(c^{-2}r_{M}^{-3}\overrightarrow{r}_{M}\times\overrightarrow{\sigma})_{u}\overrightarrow{\sigma}\cdot\overrightarrow{p})_{pp\prime}Q_{p\prime}].$$
(13)

となる。化学シフトは磁気しゃへいテンソルの対角和の3分の1によって与えられる。原 子核 *M* の磁気しゃへいテンソルの $(t, u)(t, u \in x, y, z)$ 成分を σ_{tu}^{M} とすると、 σ_{tu}^{M} は系の 全エネルギー *E* の2 階微分として、

$$\sigma_{tu}^{M} = \left(\frac{\partial^{2} E}{\partial B_{0t} \partial \mu_{Mu}}\right)_{\overrightarrow{B}_{0}=0, \overrightarrow{\mu}_{M}=0}$$
(14)

によって与えられる。

< 文献>

1. R. Fukuda, M. Hada, and H. Nakatsuji, J. Chem. Phys. 118, 1015 (2003); 118, 1027 (2003).

3 -

Molecule	Nucleus	gauge origin	Present ^a	4-RPA ^b	NRc	Exptl. ^d
HF	F	F	σ_{\perp} 381.9	390.0	379.2	
		F	$\sigma_{ }$ 484.1	490.0	481.9	
		F	σ^{iso} 416.0	423.3	413.5	410 ± 6
	H	F	σ_{\perp} 19.22	19.77	20.51	
		F	$\sigma_{ }$ 43.39	44.08	44.08	
		F	σ^{iso} 27.28	27.87	28.36	28.5 ± 0.2
HF	·F	Η	σ_{\perp} 388.9	390.0		
		Η	σ_{\parallel} 484.1	490.0		
		Η	σ^{iso} 420.7	423.3		410 ± 6
	Η	Η	σ_{\perp} 22.73	19.77		
		Η	$\sigma_{ }$ 43.39	44.08		
		Н	σ^{iso} 29.61	27.87		$28.5{\pm}0.2$
HCl	Cl	Cl	σ_{\perp} 878.9	926.2	850.3	·
		Cl	$\sigma_{ } = 1171.2$	1207.8	1149.0	
	and and a second se	Cl	σ^{iso} 976.3	1020.1	949.9	952
	Η	\mathbf{Cl}	σ_{\perp} 23.14	23.79	23.19	
		Cl	$\sigma_{ }$ 44.93	45.42	45.56	
		Cl	σ^{iso} 30.41	31.00	30.65	31.06
HCl	Cl	Н	σ_{\perp} 890.5	926.2		
		Η	σ_{\parallel} 1171.2	1207.8		
		Ĥ	σ^{iso} 984.1	1020.1	•	952
	H	Η	σ_{\perp} 27.60	23.79		
		Η	σ_{\parallel} 44.94	45.42		
		Η	σ^{iso} 33.38	31.00		31.06

TABLE I. Nonrelativistic and relativistic calculations of nuclear magnetic shieldings (in ppm) in hydrogen halides.

Molecule	Nucleus	ゲージロ心		DK-2	Present	NR	Evntl
HBr	Br	Br	σ.	2765 4	3003 3	2308.0	DAP01.
11,01	DI	Br	0 I	2/00.4	3667 1	2030.0	
		Br	aiso	2083 8	3001.1	9641 3	9617
	н	Br	с	2000.0	0424.0 20.07	2041.0	2011
	11	B,	0 <u>1</u>	29.02 : 18 10	48 30	40.35	
		DI D.	$\frac{ }{-iso}$	40.10 25.01	26.00	49.00 91.01	34.06
		DI	0	30.91	30.08	31.01	34.90
HBr	Br	Н	σ_{\perp}	2811.0	3003.3		
· .		Η	σ_{\parallel}	3420.7	3667.1		
		H	σ^{iso}	3014.3	3224.6		2617
	Н	Н	σ_{\perp}	36.80	29.97		
	l prime i s	Η	$\sigma_{ }$	48.10	48.30		
		\mathbf{H} . \mathbf{H}	σ^{iso}	40.57	36.08	at georeen. Se	34.96
н	T	i dan seria da seria En contra da seria da	σ	5700 7	6191 3	1057 3	
	1	्रा म ्रा विकास	σ⊥	6781 7	7456 6	5504 7	
		I I	o	6197.0	6768 4	1530.8	4510
	н	T T	σ.	18.87	18 02	4009.0 20.73	4010
	11	I I	σ	40.01	40.02	20.70 59.19	
		I	$\frac{\sigma}{a^{iso}}$	47.02	47.08	31.20	13.86
		. 1	0	40.00	41.90	01.20	40.00
HI	I	Η	σ_{\perp}	5807.0	6424.3		
		H	$\sigma_{ }$	6781.7	7456.6		
		Η	σ^{iso}	6131.9	6768.4		4510
	Н	Н	σ_{\perp}	60.94	48.02		
		H	$\sigma_{ }$	47.32	47.89		
1.		Η	σ^{iso}	56.40	47.98		43.86

TABLE I. (Continued.)

^a Present results.

^b Four-component random phase approximation results.

^c Nonrelativistic results.

^d Experimental values.

- 5 --

パルス磁場勾配 NMR による液体サンプルの自己拡散 係数測定と対流効果

(産総研) 〇早水紀久子 秋葉悦男

Reduction of convection effects on the PGSE-NMR measurements for self-diffusion coefficients of liquid samples

Kikuko Hayamizu and Etsuo Akiba

National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Center 5, Tsukuba 305-8565, Japan.

A self-diffusion coefficient (*D*) of liquids with low viscosity measured by pulsed gradient spin-echo NMR method is easily spoilt by the convection effects especially at higher and lower temperatures. To prevent the convection effect, a new NMR sample tube was designed where a column was added in the middle of the inner tube of SHIGEMI symmetrical microtube. The calibrations were made for the heights of the column being 4, 3 and 2 mm by using diglyme (DG) in the temperature range between -40 and 100°C. Since the interaction of DG and lithium ion is important electrochemically, the intrinsic D's of lithium, anion and DG were measured for the DG electrolyte doped with $LiN(SO_3CF_3)_2$ (LiTFSI) and clear interactions between (DG and lithium ion) were measured at -40°C especially as the changes of the diffusion curves of ¹H, ⁷Li, and ¹⁹F NMR resonances.

はじめに

パルス磁場勾配(PFG)法は分子やイオンの拡散現象を測定するだけではなく、溶 媒シグナル除去、自動シム調整など NMR の重要な手法になっている。一方温度を変 えて PFG 法を適用すると、サンプル内の対流効果が PFG の効果と重なり合う。自己 拡散係数測定では、本来の値に対流効果が加わって見かけ上大きな値として観測され る。対流効果は粘性の小さい液体では非常に顕著に現れる。このような液体試料に対 し温度に依存する物理定数である自己拡散係数の温度変化を NMR 法から求めるのは 困難であった。

我々はリチウム電解液ならびに高分子電解質のリチウムイオン、アニオン、溶媒の 自己拡散係数を測定してイオン移動、溶媒和、イオン対形成などの知見を報告してい る。高分子電解質のモデル化合物として $CH_3O(CH_2CH_2O)_nCH_3$ (n=2-50) を取り 上げて自己拡散係数の温度変化の測定を行なった。nが大きくなると粘度が大きくな る。外径 5mm のサンプル管を用い、高さ 2mm であれば n=3 以上の化合物を溶媒 にした電解質で信頼できるデータを取得できた。しかしながら、n=2 の diglyme (DG) では納得できるようなデータは取得できなかった[1]。本報告では対流を防ぐ ためのサンプル管を用いて DG および DG 電解液において、40°C から 100°C までの 温度範囲で対流効果を削減した溶媒、リチウムイオン、アニオンの自己拡散係数の測 定に成功したので報告する。

パルス磁場勾配、 自己拡散係数、 対流効果、 温度変化、電解液

はやみず きくこ、あきば えつお

実験

サンプル管はシゲミ製、水溶液用対称ミクロ試 料管(5mm)の内管の底に棒を立てたもの(Fig. 1)で棒の長さは 2mm、3mm、4mm、5mm である。NMR 測定は 4.7T ワイドボア SCM に 日本電子製のコンソールと PFG 用プローブ (H/multi と H/F の 2 本)とアンプ、TecMag 製 の RF ユニットと NTNMR を装備して行なっ た。温度変化は日本電子製の温度コントローラ を用いた。自己拡散測定は一番単純な Hahn の echo パルス系列に PFG を挿入した系列を用い た。PFG の間隔 Δ として、30,50,100,200ms の 4 点で測定した。PFG の大きさを一定にして、 PFG の長さ δ を 0.01~1 ms の範囲で変えて拡 散プロットを行なった。

DG の neat サンプルおよび LiN(SO₂CF₃)₂ (LiTFSIと略す)をDGのOとLiの割合 20:1 の濃度で塩をドープした DG の電解液を用い た。DG は C₆H₁₄O₃ (MW=134.2) fp=·64°C、 bp=160°C、25°Cの粘度=0.989cP である。

1. DGによるサンプル管の評価

一般に均一な液体における自己拡散係数 D に対する対流効果の影響は、∆を変化した時 に D の測定値が一致すれば対流効果は小さ いと考えられる。我々の経験では 30°C に温 度設定した場合には、均一系液体ではサンプ ル高さを 5mm にしても、 $\Delta = 30$ 、50、100、 200ms では同じ D 値が求められる。しかし ながら温度を上げると∆が大きくなるにつ れて Dの測定値は大きくなり、1桁のオーダ ーの相違が生じることもある。Fig.2 に DG の D の測定値の温度変化を各種のサンプル 管を用いてプロットした。通常の2 重管で DGのサンプル高さ 5mm、 $\Delta = 30m$ と 50m で測定したデータをプロットした。温度が上 がるとともに見かけの D 値は大きくなり 60°C くらいから急激に変化し、その度合いは △=50msの方が顕著である。△を長くすれば さらに顕著な Dの増大が見られる。低温では 対流効果が顕著に観測されることはなかっ た。

- 7 ---

Figure 1. The sample tube set designed to prevent convection effects.

Figure 2. Apparent D's of DG measured in the different sample tubes for Δ being 30 and 50 ms.

サンプル館内管の棒の長さが 4mm のサンプル管では 80°C 以上において Δ の差による D観測値の差が生じた。棒の長さが 3mm と 2mm のサンプル管では Δ を変えても D 観測値に相違は無かった。Fig.2 の窓の中に 2mm のサンプル管を用いて-40°C~ 100°C の温度範囲で Δ =50, 30ms で測定した Dをプロットしてある。活性化エネルギーは高温領域で 13.3±0.1 kJ/mol、低温領域で 18.6±0.2 kJ/mol である。低温領域で サンプル高さ 5mm、棒無しで測定した値は良く一致している。なお T₁の測定を 5mm と 2mm のサンプル管で行なった。高温領域で両者は一致し、低温領域では 2mm の サンプル管から僅かに長い T₁ 値が得られた。

2. DG 電解液

一般に塩を溶解して電解液を調 製すると neat の液と比べれば電 解液の粘度は大きくなることが 知られている。D に関する Stokes-Einstein の式から粘度は D に反比例すると仮定できる。 30° C における DG の Dは neat サンプルでは $1.06 \times 10^{9} m^{2} s^{-1}$ で あるが電解液では $2.1 \times 10^{-10} m^{2} s^{-1}$ で約 1/5 であり、電解液の粘度が 大きいことがわかる。棒の長さ 3mm のサンプル管を用いて電解 液を測定した。

Figure 3. The temperature dependence of the self-diffusion coefficients of DG, Lithium and TFSI.

アニオンの Dの測定は ¹⁹FNMR、リチウムイオンの Dは⁷LiNMR で測定した。Dの温度依存性を Fig. 3 にプロットした。拡散プロットは 80°C から・30°C までは直線 として解析できて、その勾配から Dを求めた。全温度領域において DG (MW=134) が最も速く拡散し、次が TFSI (MW=282)、最も小さい Li の拡散が一番遅い。これは Li イオンの溶媒和、即ち Li の拡散半径は溶媒和した状態で推算できることを示して いる。Dのアレニウスプロットでリチウム拡散は低温で直線からずれるので直線部分 だけで活性化エネルギーを求めると、全構成成分に対して 19.3±0.2 (DG)、20.8±0.1 (TFSI)、21.0±0.2kJ/mol (Li) であり、僅かながら DG<TFSI<Li の順になる。 電解液において溶媒の D でイオンの Dをプロットすると、広範囲の電解液で直線 関係が得られるので, イオンの拡散は溶媒の拡散によって駆動される。今回の精密な Dの測定から活性化エネルギーが DG で最も小さいということは重要である。

-40°C における各成分の拡散プロットを Fig.4 に示す。7LiNMR の拡散プロットは 凸で、1H と 19FNMR のプロットは凹型である。系が均一系で自由空間を粒子が拡散 している場合には拡散プロットは直線になる。しかしながら、系が不均一系になり、 拡散粒子が NMR の時間尺度より長いミクロ構造の中にあると、拡散プロットは鋭敏 に直線から外れる。上に凸の拡散プロットは粒子が制限拡散の効果を受ける場合であ り、凹型の拡散プロットは多成分系の拡散を仮定すればよい。事実 DG-Li 系の固体 の X線回折[2]、あるいは理論計算では Li と DG が強く相互作用した DG-Li-TFSI の 構造が報告されている[3]。液体の状態の拡散測定において・40°C で非直線の拡散曲線 が観測されたことは、液体状態で構造を持っていること、NMRの時間尺度でもその 効果が観測できること明確に示している。

Li は DG の酸素 3 個の酸素原子と相互作 用して拡散は制限される。溶媒の DG は Li との相互作用の有無によって DG と TFSI の Dが異なり、相互の間の交換が低 温で遅くなり、多成分系の拡散プロットを 示している。DG-Li 相互作用の外側で相互 作用する TFSI も多成分系になっていると 考えられる。

種々の理由で拡散プロットにおいてエ コーシグナルが十分に減衰しないまま、勾 配から Dを求めることがあるが、これは非 常に危険で本来の拡散係数とは大きく異 なる値を求めてしまう恐れがある。本研究 では同じサンプルの異なった拡散粒子に おいて、顕著な相違が観測され、均一系の 自由拡散からミクロ構造を形成する系へ の変化が観測された。

我々は Stokes・Einstein の式に基づいて イオンの拡散半径の実験的な目安として $R_{ion}=D_{DC}/D_{ion}$ を提案してきた [4]。Fig.5 に R_{ion} の温度依存性を示した。これは DG の拡散半径を基準にしたリチウムイオン とアニオンの拡散半径と考えられる。 TFSI は DG と比べると分子が大きいので 大きな値をもつのは当然であるが、Li はア ニオンより大きな拡散半径を持ち、およそ 1.5 個の溶媒と溶媒和している。低温にな ると R_{Li} は更に大きくなり、Li の拡散半径 は観測時間 (Δ = 30~50ms)の長さでは更 に多くに DG が取り囲んでと TFSI とが相 互作用していることがわかる。

結論

-40~100°C の広い温度範囲で対流効果が 無視できる自己拡散係数が測定できるこ とを示した。

文献

[1] K. Hayamizu, et al, J. Chem. Phys. 117, 5929 (2002).

- [2] G.J.Kesrley, et al, Solid State Ionics 147,237(2002).
- [3] C. P. Rhodes, et al, Macromolecules 34, 2660(2001).
- [4] K. Hayamizu, et al, J. Phys. Chem. B 103, 519 (1999).

Figure 4. The diffusion plots for DG, TFSI and Li (top to bottom) measured at -40°C.

Figure 5. The temperature dependent R_{Li} and R_{TFSI} .

微量サンプル・表面サンプル用高感度固体 NMR プローブの製作と材料系サンプルへの応用 (ナイメーヘン大・物理化学/固体 NMR)

> 〇山内一夫、Hans Janssen、Jan van Bentum、Arno P.M. Kentgens kyam@solidmr.kun.nl

Development of Microcoil Probeheads for Solid State NMR and Applications

(University of Nijmegen, Department of Physical Chemistry / Solid State NMR) OKazuo Yamauchi, Hans Janssen, Jan van Bentum, Arno P.M. Kentgens

Solid-state NMR probeheads using solenoid microcoils (200 µm < i.d. < 300 µm) are developed for investigations of mass-limited samples. A surface microcoil (1350µm coil area diameter) is used to explore its efficiency for surface analyses. Their performance in terms of sensitivity and rf-characteristics is studied for a series of nuclei in model compounds in view of the feasibility of specific applications. The results show that the sensitivity of solenoid microcoil probehead is high enough to detect ~10¹⁴ spins/ $\sqrt{}$ Hz (Signal/Noise of 1 in 1 scan). Spectra of samples with very broad lines, or lines distributed over a very large spectral region, typical for quadrupolar nuclei, can be obtained without distortions as it is possible to generate rf-fields well in excess of a MHz. Spectral regions of several MHz can be easily excited as is demonstrated for ²⁷Al NMR spectra of single crystals and powders of minerals, and for ¹³⁹La in La₂O₃ its degradation compounds. The surface microcoil allows surface selective observation of the sample giving depth profiles in the µm regime.

緒言

他の分析機器と比較した場合 NMR の最大の弱点はその感度の低さにありその結果サンプル は比較的大きなものしか扱えず測定できないケースが多くある。例えば表面化学を含むナノスケールで 制御される材料開発、微量に存在する生体物質、また大きな単結晶ができにくい固体サンプル等、近年 多くの注目を浴び NMR での解析が期待されている分野への情報提供が遅れている。このような系に対 して適応するためには微量サンプルでも感度の高い NMR 測定技術の開発が必要となってくる。今回こ のようなものに対応できるプローブの製作を行い、特に固体 NMR の検出限界の向上を試みいくつかの サンプルの測定を行った。また微小コイルである特徴を生かし非常に幅が広いスペクトルの測定も試み た。

検出限界、S/N、微量サンプル、表面、広帯域プローブ やまうちかずお、はんすやんせん、やんふぁんべんとむ、あるのけんとじぇん

<u>プローブヘッドデザイン</u>

NMR の信号強度は例えば Hoult と Richards[1]により詳細に考察されており理論的に得られる信号強度およびノイズ強度について求める方法が以下のように示されている。

$$\frac{S}{N} = \frac{\left(\frac{B_1}{i}\right) V_S N \gamma \hbar^2 I(I+1) \frac{\omega^2_0}{k_B T 3\sqrt{2}}}{F \sqrt{4k_B T R_{noise} \Delta f}}$$
(1)

 B_{1}/I は単位電流あたりに発生する磁場、 V_{s} はサンプル量、Nは単位サンプル量あたりのスピン数、 γ は核磁気回転比、Iはスピン数 ω_{0} はラーもア周波数、Tは温度、 $h \ge k_{B}$ はそれぞれプランク定数とボルツマン定数。ノイズ成分は分光器のノイズファクター(F), コイルの抵抗値(R_{noise})、観測幅(Δf)であらわされる。このうち B_{1}/I は Biot-Savart の法則によりソレノイド型コイルの場合は

$$\frac{B_{\rm I}}{l} = \mu_0 n \left(\frac{\frac{x}{l} + \frac{1}{2}}{\sqrt{4r^2 + (2x+l)^2}} - \frac{\frac{x}{l} - \frac{1}{2}}{\sqrt{4r^2 + (2x-l)^2}} \right)$$
(2)

ここでx はコイル中心からの距離、µ₀は真空 中の磁気透過率、n はコイルの巻き数 r と l はそれぞれコイル径と長さになっている。つ まりサンプル量が制限された場合には、コイ ルを小さくし、さらにソレノイドコイルの場合は 巻き数を多くすることによって感度は上昇す ることが分かっている[2,3]。今回この方法を 用いて微量サンプル用のプローブへッドを製 作した。発生させる B₁ の均一度が高いため に固体 NMR ではよく用いられるソレノイドコ イルを用い Fig. 1 に示すようなコイルとコンデ

Fig. 1 Illustration of parallel resonance circuit with sample coil and capacitor (left) and a detailed view of the coil construction (right).

ンサを並列に配しノイズを最小におさえる回路を設計した。50µm の銅線を使いコイルの径は 300~400µm(サンプルスペースとしては 200~300µm)、長さ 1mm、巻き数は 12~15、 Q 値はそれぞれ 約 10 程度で実験核種にあわせてプロトン用、X 核用、多核用とプローブを製作した。

	¹ H probe	Narrowba	nd X-nuclei	Broadband		
	Ø 400 μm	Ø 40	00 μm	Ø 300 μm		
Nucleus	'H @ 9.4 T	³¹ P @ 9.4 T	²⁷ AI @ 14.1 T	²⁷ Al @ 14.1 T	'Н @ 14.1 Т	
Frequency	400 MHz	161.9 MHz	156.3 MHz	156.3 MHz	600 MHz	
rf-field	4.7 MHz	310 kHz	1.9 MHz	3 MHz	300 kHz	
power	270 W	4 W	380 W	850 W	5 W	
Experimental Sensitivity	4.8 10 ¹³	4.0.10 ¹⁴	1.1.10 ¹⁴	2.1.10 ¹⁴	4.6 10 ¹⁴	
Theoretical Sensitivity	3.7.10 ¹³	2.8·10 ¹⁴	8.0·10 ¹³	7.0.10 ¹³	2.2·10 ¹³	

Table 1

Rf-field strength achieved at different power levels and experimental and calculated sensitivity for the different probeheads using various model compounds.

-11 -

プローブの性能は感度と発生するB1をチェ ックした。例えばプロトン用プローブでは 55.4µgのPoly(dimethyl -siloxane)の1回 スキャンでの S/N は 135.6 であった(スペク トル幅 130kHz)。つまり 1 回スキャンで S/N=1 のスペクトルを得るために必要な核 の数は 4.8x10¹³ spins/√Hz である。これは 通常の固体 NMR のプローブに比べて約 30 倍高性能である。またシミュレーションソ フトウエア"FEMM" [4]によりコイルをもと に計算された値と比べても減損は少なく効 率よい回路が出来た事が確認できた。固 体 NMR を行う上で重要なB1の均一性と強 度は nutation の実験によって確認した。プ ロトン用プローブでは数ワットで通常の固 体測定に必要なB1を得ることが出来た。逆 に通常の NMR に使われる出力を用いると

4MHz 以上の B₁が得られた(Fig.2)。 製作した 3 種のプローブについてその性能をまとめたものを Table 1 に示す。X 核用、多核用のプローブについてもプロトン用のものと同様な傾向の見られるプローブがで きたことがわかる

アプリ<u>ケーション</u>

微量サンプルの測定例としてサファイア(α -Al₂O₃)の単結晶サンプル(30.4µg)と粉末サンプル の²⁷Al スペクトルを測定した結果を Fig.3 に示す。四極子核である²⁷Al はサテライト遷移も含めるとスペ クトル観測域を大きく取る必要がありここでは 2MHz とった。通常の固体 NMR で行う程度のスキャン数 で良好なスペクトルが観測された。また観測されたスペクトルと見ると単結晶ではサテライト遷移の強度 も理論的値と非常に近い値、また粉末では計算されたスペクトルとほぼ一致するものが観測されてこの プローブが微量サンプル観測用だけでなく非常に広幅スペクトルにも適していることが分かった。講演で は同様に鉱物の kyanite の微小単結晶サンプルについての測定、数十メガヘルツ以上の非常に大きい 核四極子結合定数を持つ¹³⁹La 核の測定、リン酸アルミニウムコーティングの表面解析結果等を示す予 定である。

まとめ

今回、いくつかのプローブを製作し固体 NMR の検出限界を向上させる事に成功した。これに より観測できるようになったサンプルが増えると考えられる。今回は1チャンネルのプローブにとどまった が2チャンネルプローブ更には高分解能固体 NMR プローブの製作も視野に入れるべきである。またこ の技術は他の感度向上技術(高磁場・DNP・polarized Xe・クライオプローブなど)と組み合わせることに よりさらに強力になると考えられる。

NMR 測定法の観点からすると非常に強い B1 は非常に広い領域の観測だけでなく禁遷移を用いた測定法(多量子遷移・two-photon absorption, overtone NMR)等への応用が期待される。

<u>謝辞</u>

This work is part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie (FOM, financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)) and Philips Research.

参考文献

[1] D. I. Hoult, R. E. Richards, J. Magn. Reson. 24 (1976) 71-85.

[2] T. L. Peck, R. L. Magin, P. C. Lauterbur, J. Magn. Reson. B 108 (1995) 114-124.

- [3] A. G. Webb, Prog. Nucl. Magn. Reson. Spec. 31 (1997) 1-42.
- [4] D. Meeker, Finite Element Method Magnetics, http://femm.berlios.de/, (2003).
- [5] T. Vosegaard, H. J. Jakobsen, J. Magn. Reson. 128 (1997) 135-137.

--- 13 ---

²H 粉末スペクトルにおける¹H→²H CP (京大院理) ○水野敬、竹腰清乃理、寺尾武彦

 ${}^{1}\text{H} \rightarrow {}^{2}\text{H}$ CP in Deuteron Powder Spectrum \bigcirc <u>Takashi Mizuno</u>, K.Takegoshi and Takehiko Terao Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

We propose a novel cross-polarization (CP) scheme to broadbandly enhance 2 H polarization in static solids. During CP, the large quadrupolar interaction is removed by applying Lee-Goldburg (LG) irradiation to ²H, which also acts as the spin-locking field for efficient polarization transfer. Based on the average Hamiltonian theory, we show that the truncated quadrupolar interaction brings the orientationally dependent energy mismatching into the Hartmann-Hahn condition. Hence, ¹H-²H CP with on-resonance irradiation to ²H (on-resonance CP) is affected by the zeroth order quadrupolar interaction, leading the observed band-selective enhancement of the ²H powder lineshape. We developed a spin-thermodynamic theory to describe polarization transfer under the influence of the quadrupolar interaction, and showed that ¹H-²H CP with LG irradiation (LG-CP) effectively reduces the zeroth-order quadrupolar interaction so that one can obtain a broadbandly polarized ²H powder lineshape. Even under LG irradiation, however, we found that the orientationally dependent enhancement mainly ascribable to the first-order quadrupolar interaction still remains. We showed that the present theory can successively reproduce the LG-CP lineshapes under various experimental conditions. We then developed a multi-stage CP scheme, in which four to six different 1 H rf-intensities are applied successively during the CP time, to achieve a uniformly enhanced ²H powder lineshape. The ¹H rf-intensities are determined by the simulation based on the presently developed theory.

1. はじめに

1 L4

²H は四極子相互作用を持ち、その粉末線形は分子の配向に依存するため、分子構造や運動 性のプローブとして利用されている。しかしながら²H の熱平衡磁化は低感度のため観測しに くいという欠点がある。レアスピンの感度向上には、磁気回転比の大きいアバンダントスピン との CP(cross polarization :交差分極)を利用するのが一般的であるが、²H では、四極子相互作 用による配向依存性が反映され、~100kHz 程度の一般的な強度の RF 磁場では粉末線形全体を 一様に分極する事ができない。これまでにも²H 粉末スペクトルの一様な感度向上を目的とし た CP 法はいくつか開発されているが、それらは一般性に乏しかった。

2. 理論

¹H-²H CP を念頭に置きつつ、 $I_N S(I=1/2, S=1)$ スピン系におけるスピンロック CP の熱力 学過程を検討した。二重回転系における四極子相互作用を、平均ハミルトニアン理論に基いて 0次 ($\overline{\omega_Q}^{(0)}$)および1次 ($\overline{\omega_Q}^{(1)}$)の平均ハミルトニアンで近似した。さらに二重回転系の双極子 相互作用に対して、平均化された四極子相互作用による二次平均化を行うと、プロパゲータが 得られてハートマンハーン条件が導かれる。このハートマンハーン条件は、¹HのRF磁場強度 ω₁₁と²Hの有効磁場強度 ω_{es} に対して次式で与えられる。

$$\omega_{1I} = \omega_{eS} \pm \overline{\omega_O}^{(0)} + \overline{\omega_O}^{(1)}$$

この CP の熱力学過程を解析するために Levitt ら¹ が解析した" RF のずれ"を伴う CP の方法 を適用する。すなわち、平均化された四極子相互作用はゼーマンオーダーに対する"内因的なず れ"として取り扱えて、²H の分極線形を ²H への2 種類の照射条件について導出した。²H にオ ンレゾナンス照射する CP(on-resonance CP) では、四極子相互作用の分子配向に対する依存性 が強く反映され、²H は狭帯域にしか分極し得ない。一方、²H に Lee-Goldburg 条件で RF 磁場 を照射する CP(LG-CP) では、トランケートされた四極子相互作用による"ずれ"が ¹H-¹H ロー カルフィールドによって有効に吸収され、結果的に広帯域に ²H を分極する事が出来る。

実験・結果・考察

実験は、自作の静置型¹H-²H二重共鳴 NMR プローブを用い、Apollo スペクトロメータで行った。ラーモア周波数は¹H が 300.45MHz、²H が 46.12MHz である。on-resonance CP と LG-CP の実験を行い、その双方に対して分極線形が理論式と一致した。また LG-CP の線形が様々な実験条件に応じて著しく変化することを定性的に確認した。我々はさらに粉末線形全体を一様に感度向上させるため、マルチステージ LG-CP 法を考案した。この方法は、LG-CP において $\omega_{1I} \epsilon \omega_{eS}$ よりも大きくした場合に、その差に応じたオフセット帯域の分極を強める事を利用する。 ω_{eS} は一定に保ったまま $\omega_{1I} \epsilon 4 \sim 6$ 段にわたって段階的に照射して、その総和の分極線形が重水素の粉末パターン全体にわたって一様となるようにする。各段階の ω_{1I} と照射時間の組み合わせは、(1)¹H-¹H ローカルフィールドの大きさ、(2)¹H と²H の存在比、の二つをパラメータとしたシンプレックス法アルゴリズムにより最適化される。実際に6段のマルチステージ LG-CP 法によって、一様な感度向上が行われた²H スペクトルを Figure 1 に掲載する。

Figure 1 ²H powder pattern of NCTTP-d. (a) Solid echo spectrum: 4096 FIDs were accumulated with a repetition time of 60 s. Total acquisition time is ~ 2.8 days. (b) Six-stage LG-CP spectrum: 4096 FIDs were accumulated with the optimal five-stage irradiation combination is given as ($\omega_{11}^i/2\pi$ /kHz, duration time ratio /%) = (138.40, 25.73), (132.27, 17.63), (126.74, 16.57), (121.48, 16.43), (116.00, 24.04), which gives σ =1.15%. $\omega_{eS}/2\pi$ = 116 kHz, the total contact time of 10 ms and a repetition time of 8 s were given.

¹ Levitt et al., *J. Chem. Phys.*, **84**, 4243 (1986) Keywords: 重水素、交差分極、四極子相互作用、Lee-Goldburg、マルチステージ法 みずの たかし、たけごし きよのり、てらお たけひこ

偏極キセノンによる液体分子の核スピン偏極 (姫路工大院理)〇今井宏彦、石川潔、高木芳弘

Spin polarization of liquid molecules with optically polarized xenon Graduate School of Science, Himeji Institute of Technology Hirohiko Imai, Kiyoshi Ishikawa, and Yoshihiro Takagi

We report the polarization transfer to proton of ethanol from xenon polarized by spinexchange optical pumping and the dissolution of polarized xenon into ethanol. The free-induction signals of ¹²⁹Xe and ¹H are simultaneously detected at low magnetic field. The signal enhancement of ¹H is so large that we can obtain the temperature dependence of cross-relaxation between ¹H and ¹²⁹Xe. By the time-resolved magnetic resonance images of polarized ¹²⁹Xe and polarization-enhanced.⁴H, the dynamics and relaxation will be studied for the nuclear spins interacting with each other in solution.

レーザー光ポンピングにより核スピン偏極した希ガス原子を利用すれば、NMR 計測 に必要な総原子数を減らすこと(いわゆる高感度化)ができる。 偏極希ガスの偏極率は磁 場に依存しないので、低磁場であっても大きな磁気共鳴信号を検出できる。 低周波であ れば振動磁場が金属に吸収されないので、金属表面に吸着した原子を観測できる、などの 利点もある。

我々は、他の分子に偏極を移す目的で、偏極 Xe を連続的に発生させる装置をつくり、 低磁場 NMR を行っている [1]。他分子への偏極移行について既に報告されている実験で は、偏極率が 20 % 程度の¹²⁹ Xe からシクロペンタンやトルエンなどのプロトン (¹H) に 偏極を移している。これらの分子では¹H のスピン緩和時間 T_1 が長いので、偏極移行に より効率よく偏極率を増大させることができる。しかし緩和時間の長い特殊な分子だけ でなく多種多様な分子に偏極を移すため、偏極移行の機構を詳細に調べ、それぞれの分子 に最適な条件を見つける必要がある。低磁場であるほど熱平衡状態の偏極率が小さいの で、¹H への偏極移行の観測が容易になる。我々の使用する¹²⁹ Xe の偏極率は5% にとど まっているが、5.4 mT の低磁場において増大率が数十倍の条件で実験した。 今回は、偏 極 Xe のエタノールへの溶解と偏極移行について報告する。

図1に実験配置を示す。 金属 Rb を封入したセルを 373 K に暖め、Rb 原子の蒸気圧を 上げる。ガラスセルの両側から円偏光にした半導体レーザー光 (15 W, 2.3 W @ 795 nm) を 照射し、Rb 原子の電子スピンを偏極する。 そこに、Xe, N₂, ⁴He を混合したガス (混合比: 9%, 9%, 82%、圧力: 280 kPa)を1気圧換算で150 cm³/min の流量で流す。 Xe 原子の核

核スピン偏極移行、高偏極分子液体、光偏極キセノン、低磁場 NMR、光ポンピング いまい ひろひこ、 いしかわ きよし、 たかぎ よしひろ

-16-

1 L5

スピンは、Rb-Xe スピン交換衝突によ り偏極される。 混合ガス中の¹²⁹Xe FID信号強度から求めた偏極率は、約 5 % である。 液体窒素温度で N₂, ⁴He 原子を分離し、純度を高めた固体とし て偏極 Xe を蓄積する。 蓄積する間、 永久磁石で 0.54 T の磁場を印加し、 ¹²⁹Xe の核スピン緩和を抑える [2]。蓄 積時間 30 分で約 450 cm³ (1気圧、窒 温)の偏極 Xe をため、再度気体にして エタノール (99.5 %) のある観測領域に 移す。 観測領域に送る偏極 Xe ガスの 温度は約 250 K、圧力は 3-5 気圧であ る。 観測部には、励起コイル、¹²⁹Xe

Figure 1: Experimental setup of the flow-type xenon polarization and the polarization transfer to liquid molecules. After the accumulation of solid Xe, the pure xenon gas is introduced to a sample cell.

と¹H それぞれの検出コイルの3 種類のコイルを巻き、5.4 mT の磁場において¹²⁹Xe と ¹H の FID 信号を同時に観測する。 この磁場での¹²⁹Xe、¹H の共鳴周波数はそれぞれ 64 kHz、230 kHz である。¹²⁹Xe のパルス面積は $\pi/47$ (3.8°)、¹H のパルス面積は $\pi/10$ (18°) である。 2秒おきに 2回平均した FID 信号を5秒おきに記録する。磁場の均一度は、約 1 cm³ の観測体積で 8 ppm である。 観測領域の温度調整は、液体窒素の冷気を利用した。

エタノールに偏極キセノンが溶けると、¹²⁹Xe と ¹Hの双極子-双極子相互作用により ¹Hに偏極が移る。 緩和時間が $T_{1H} \ll T_{1Xe}$ をみたす場合、¹²⁹Xe と ¹Hの核スピンが平衡 に達した際の ¹Hの信号増大率は、

$$\frac{P_{\rm H} - P_{\rm H0}}{P_{\rm H0}} = -\frac{1}{2} \frac{\rho_{\rm Xe}^{\rm XeH}}{\rho_{\rm H}} \frac{N_{\rm Xe}}{N_{\rm H}} \frac{\gamma_{\rm Xe}}{\gamma_{\rm H}} \frac{P_{\rm Xe} - P_{\rm Xe0}}{P_{\rm Xe0}}$$
(1)

で表わされる [3]。 ここで、 ρ_{Xe}^{XeH} は¹H による ¹²⁹Xe のスピン緩和率、 $\rho_{H} = 1/T_{1H}$ 、 γ_{i} は 磁気回転比、 N_{i} は数密度である。 エタノール中の Xe の密度を高くすれば ¹H の信号増 大率を高くできるので、多くの実験では、液体どうしで混ぜ合わせ偏極を移している [4]。 我々は、偏極を移す際に重要になると思われる溶解という現象に注目した。

図2(a)は、ガスの流れ出るガラス管をエタノールに浸し、エタノール中に偏極 Xe を 流した時の、298 K における¹²⁹ Xe と¹H の FID 信号強度の時間変化である。蓄積した固 体 Xe を暖めると少しずつ圧力が上がり、Xe の流量が増える。 Xe の最大流量は、約 100 cm³/min に保った。偏極 Xe の溶解と共に¹H の信号は熱平衡状態での強度から大きくな り、信号増大の飽和値に達している。約 250 秒を過ぎると、偏極 Xe の流量の減少と核スピ ン緩和により、¹²⁹ Xe と¹H それぞれの信号は減衰している。式(1)に示される信号の増大

率は、¹H の熱平衡状態での FID 信 号強度と、偏極移行により増大した FID 信号強度の最大値から求められ る。 図2(a)の観測を温度を変えて 行い、図2(b) に示すような¹Hの 信号増大率の温度依存性を得た。Xe の融点と沸点は、それぞれ 161.1 K, 164.9 K であるが、実験の圧力では 180 K 付近の温度では Xe は液体で あり、密度 N_{xe} が高くなっている。 そのため¹Hの信号増大率も大きく なっている。同時に観測した¹²⁹Xe の FID 信号強度の最大値から、低 温ほど Xe 原子がよく溶けているこ とを示している。図2(c)は、磁場 5.4 mT において観測した純粋なエ タノールのプロトンの T_1 と、 T/η の 温度依存性である。 ここで、ηはエ

Figure 2: (a) Time development of FID amplitude of the polarized ¹²⁹Xe dissolved in ethanol and the polarization transferred ¹H detected at 298 K. (b) Temperature dependence of the signal enhancement of ¹H and the saturated amplitude of polarized ¹²⁹Xe. (c) Temperature dependence of the value T/η and the relaxation time $T_{1\rm H}$ obtained at 5.4 mT. (d) The ratio of $\rho_{\rm Xe}^{\rm XeH}$ and $\rho_{\rm H}$ is calculated from data in (b), and fit by the solid line, 0.0435T - 4.79.

タノールの粘性率、T は温度である。磁場が低いので $T_1 \ge T/\eta$ は比例関係にあり、粘性 率が大きな低温でも、液体中の核スピンとして扱える。 図2(d) は、図2(b) から計算し た、式(1)における緩和率の項 (ρ_{Xe}^{XeH}/ρ_{H})の温度依存性である。このような温度依存性を 示す理由については現在検討中である。

次に、エタノール表面に偏極 Xe を吹きつけ、偏極 Xe のエタノールへの溶解過程と、 溶解による¹H への偏極移行を観測した。 Xe 原子は化学シフトが大きく、スペクトルは 気体 Xe とエタノールに溶けた Xe の二つに大きく分かれる。 位置分解能をもたせるため に、鉛直方向に 0.1 mT/m の勾配磁場を印加した。 もともとエタノールにより高周波側 に化学シフトしているので、鉛直下方ほど磁場を大きくすれば、気体のスペクトルと重な らない。 図3 は、偏極 Xe を最大流量約 30 cm³/min でエタノール表面に吹きつけた時の、 ¹²⁹Xe(左) と¹H(右) の時間分解一次元 MR イメージである。 時間の経過と共に、気体 Xe、 溶質 Xe のスペクトルが大きくなる。¹H についても、偏極 Xe の増加と共に偏極移行により 熱平衡状態での偏極率から増大し、信号は大きくなる。図3 (a) の温度 306 K における偏 極原子の分布図では、すみやかにエタノール全体に偏極 Xe が広がるようすが示されてい る。 それに対し、図3 (b) の 260K ではエタノール表面付近にのみ、偏極 Xe の分布がみら れる。 これは、低温になるほどエタノールの粘性率が高くなり Xe 原子の運動が遅くなり、

- 18 --

しかも、スピン緩和時間 が短くなるためである。 図3 (c) の 230 K で は、エタノール表面付近 に偏極 Xe がとどまった 後、Xeの溶けたエタノー ルが底へと沈んでいる。 図3(d)の180Kの温度 では、Xeは 220 kPa で液 化する。鋭いピークが液 体 Xe のスペクトルであ る。 液体 Xe の共鳴はエ タノールに溶けた Xe よ りも高周波側にシフトす るので、エタノール中の 溶質 Xe と液体 Xe の時間 変化をを区別して観測で きる。まず、エタノール

Figure 3: Time-resolved MR imaging of the polarized ¹²⁹Xe and polarization-enhanced ¹H, taken by flowing Xe gas on liquid ethanol at the temperature of (a) 306 K, (b) 260 K, (c) 230 K, and (d) 180 K. The distribution of enhanced $P_{\rm H}$ is developed by spin-transfer from the dissolved ¹²⁹Xe. $F_{\rm Xe} = F - 63,600$ Hz and $F_{\rm H} = F - 229,900$ Hz, where F is the resonance frequency. The numbers are the time in second after Xe gas appears.

表面にXeが液化した後、エタノールに溶けながら底へと沈んでいる。この温度ではスペクトル強度も強く、Xeの密度が高いことがわかる。 同時に観測した¹Hのスペクトルは 偏極Xeの密度が高い部分が特に大きくなり、¹²⁹Xeから¹Hへ偏極が移っていることを示 している。

今後は、磁場の均一度をあげ、エタノールの官能基ごとのプロトンへの偏極移行について観測する。また、溶液中に高密度な偏極キセノンを長く保存する目的で、重水素化した溶媒中での偏極キセノンについても調べる予定である。

References

- [1] K. Ishikawa, H. Imai, and Y. Takagi, Rev. Laser Engineering (Japan), 31, 337 (2003).
- [2] N. N. Kuzma, B. Patton, K. Raman, and W. Happer, Phys. Rev. Lett. 88, 147602 (2002).
- [3] A. Abragam, Principles of Nuclear Magnetism (Oxford Univ. Press, New York, 1961).
- [4] S. Appelt, F. W. Haesing, S. Baer-Lang, N. J. Shah, and B. Blümich, Chem. Phys. Lett. 348, 263 (2001).

自動化された超偏極希ガス生成装置の実用化研究開発

(産業技術総合研究所¹、東横化学(株)研究開発室²) ○服部峰之¹、平賀 隆¹、斎藤もよこ¹、中井敏晴¹、本間一弘¹、 田中 亮²、大竹紀夫²、村山守男²

Development of Continuous-flow Apparatus for Hyperpolarized ¹²⁹Xe National Institute of Advanced Industrial Science and Technology¹ R&D, Toyoko Kagaku, Co. Ltd.²

<u>Mineyuki Hattori</u>¹, Takashi Hiraga¹, Moyoko Saito¹, Toshiharu Nakai¹, Kazuhiro Homma¹, Ryo Tanaka², Norio Ohtake², and Morio Murayama²

An automated batch type apparatus for Xe hyperpolarization, including ultra pure gas application system and using high-power diode laser arrays was developed. The stray field of the horizontal superconducting magnet (2T) was used for the optical pumping processes. We achieved 1~4% polarization of ¹²⁹Xe for Xe(98%) and N₂(2%) gas mixture and performed magnetic resonance imaging experiments. Furthermore, MRI images of hyperpolarized Xe gas extracted in a syringe were acquired. The time resolution of acquisition was enhanced from about 60s for the FLASH sequence to about 500ms for the 4-shots segmented EPI sequence.

希ガス(⁹He, ¹²⁸Xe)を、円偏光により電子スピン系を励起したルビジウムと共存すると、同体積の水と比べ ても100倍以上強い磁気共鳴信号を与える「超偏極希ガス」が得られる。これまで、国内の研究機関では、バッ チ式と通称されるパイレックスガラス容器を用いた方法が超偏極キセノンガスの製造に用いられていたが、研究 者による手作り装置で行っていたため、操作が煩雑である、動作安定性が低い、ルビジウムの寿命が短いなどの 問題点があった。そこで、産総研の中小企業支援型の予算制度を活用し、特に医療用のMRI 装置向けに、偏極率 が高く、しかも単位時間あたりの製造量が多い、高効率に超偏極キセノンガスを製造できる装置の製品化を目指 した研究を行ってきた[1-5]。

今回、これらの研究成果に、東横化学の「高純度ガス供給技術」、「半導体製造装置レベルのクリーン化技術」、 「高精度圧力制御技術」などを導入することによって、高偏極率の超偏極キセノンガスをバッチ式で連続供給す ることを可能とした実用機を開発した(写真1)。本装置は、原料となるキセノン/窒素混合ガス及びパージ用窒 素ガスのシリンダー収納部、圧力制御部、偏極用セル部、及び、システム制御部により構成される。偏極用セル 部は、ゆ60mm×100mmの円筒状のルビジウム封入パイレックスセル(写真2)で、原料となるキセノン/窒素混 合ガスの入口及び超偏極ガス出口となるバルブ2個を装着してあり、内壁面には、ルビジウムを真空蒸着させて いる。今回、ルビジウムが長期使用により劣化した際に、偏極用セル部分を交換用部品として供給する方法を確 立した。システム制御部には、対話式のタッチパネルが装備され、各操作を誤りなく行うよう考慮されている。 また、シリンダー交換やセル交換後の大気成分のパージアウトは自動運転により行われる。MRI装置を利用して 評価実験を行った結果、14日間の長期運転試験において、30ml注射筒約100本に偏極率5%以上の超偏極キセノ ンガスを連続して採取することに成功し、間歇的ではあるが、NMR/MRI測定を効率的に行うに十分な偏極率と製 造量での供給を可能とした。

今後は、「連続フロー型高効率偏極エンジン」[2,3,5]を本装置に融合することで、偏極率及び単位時間当りの 製造量を増大させ、さらなる自動化を進め、臨床検査技師や NMR/MRI 装置のオペレーターでも簡単に操作が行 える最終的な「自動化された連続フロー型超偏極希ガス発生装置」として完成させる予定である。また、本実用 機によって、触媒など多孔質体の微少な空洞を持つ物質中での空孔サイズ分布やガス動態の解析、高精度肺機能 診断を瞬時に行うことが可能な医療機器や、高精度で迅速な脳内血流の画像化による脳梗塞予防診断技術の実用 化を目指して、国内外の医療技術研究機関との共同研究に発展することを期待している。

超偏極、実用化、¹²⁹Xe、生成装置、高効率化

はっとりみねゆき、ひらがたかし、さいとうもよこ、なかいとしはる、ほんまかずひろ、たながりょう、おおたけのりお、むらやまもりお

写真2:ルビジウム封入パイレックスセル

注射筒に取り出した超偏極キセノンガスの MRI 画像

左:写真1 今回開発した実用機 『自動化された超偏極キセノンガス製造装置』

評価実験を行った 2T-MRI 装置 【産総研つくば東事業所に於いて】

【参考文献】

[1] ダイオードレーザーアレイを用いた希ガス偏極装置の設計・試作,服部峰之、平賀隆、守谷哲郎,第 36 回 NMR 討論会, P9,1997/10/01.

[2] 偏極希ガスの製造装置を有する磁気共鳴イメージング装置並びにその装置を用いる磁気共鳴イメージング 測定方法,服部峰之,他、特開平 11-309126.

[3] Continuous-flow apparatus for hyperpolarization of ¹²⁹Xe: Optimized structure of cell for efficient spin exchange at a high concentration of optically pumped rubidium., 服部峰之、平賀隆、守谷哲郎, European Radiology, 9B, p.14, 1999/06.

[4] Relaxation behavior of Laser-polarized ¹²⁹Xe Gas: Size dependency and wall effect of the T₁ relaxation time in glass and gelatin bulbs, 藤原英明、木村敦臣、柳川康洋、神谷貴史、服部峰之、平賀隆, Journal of Magnetic Resonance, 150-1, pp.156-160, 2001/06.

[5] 連続フロー型超偏極 ¹²⁹Xe ガス発生装置の開発,服部峰之、平賀隆、大竹紀夫、村山守男,第 30 回日本磁 気共鳴医学会大会, 302-33A, p.250, 東京、2002/09/14.

四極子核の固体NMRにおける高感度化

(新日本製鐵(株)先端技術研究所¹、日鐵テクノリサーチ(株)²) 金橋康二¹¹、 〇齋藤公児¹¹、畠山盛明²¹

Strategies of High Sensitivity for half Integer Nuclei of Solid State NMR Koji Kanehashi¹⁾, O Koji Saito¹⁾, and Moriaki Hatakeyama²⁾

1):Nippon Steel Corporation, Advanced Technology Research Laboratories, 2):NSTR Strategies of high sensitivity for half integer nuclei of Solid State NMR is very important and necessary for industrial application because usually there is less than a few percent of concentration for measuring nuclei of real materials. We have demonstrated strategies of high sensitivity for half integer nuclei of solid state NMR. In the case of N (17 O Nuclear), introduction of enriched 17 O, of which either a part of enriched or full enriched 17 O of materials, is very effective. At the same time, using much Higher fields produce much higher sensitivity and resolution for half integer nuclei of solid state NMR. Its effects show more than our expected. Finally, in the case of R (Resonance), recent fast amplitude-modulated radio-frequency techniques is adopted. When all three methods are applied to real materials, we can get very important information for their chemical structures.

1. はじめに

1 L7

材料科学の分野では、無機材料は重要な材料系であり、触媒やガラス等は機能性 材料の中核であり、また天然資源である土壌や鉱物等も貴重な材料である。このよ うな材料系の構造解析には、従来はX線回折や電子顕微鏡等が利用されてきたが、 最近固体 NMR 法の発展に伴い、実用無機系材料への固体 NMR 法の応用が盛んに なってきた。NMR 法の特徴は非破壊計測であることは勿論、X 線回折が長周期構造 を持つ材料系の解析に有効であるのに対して、周期構造がないアモルファス系材料 や短周期構造材料の解析に有効である点である。更に特筆すべき特徴は、NMR 法 が原理的に原子周辺のミクロ領域の局所構造に関する情報を与える点である。アル ミノ珪酸塩の場合、Si と Al がメインの原子である。NMR では両方の核も測定対象 となることから、Si 周りと Al 周りの化学構造情報を詳細に得ることが可能である。 対して、X 線回折の場合、Si と Al 原子の X 線散乱の断面積はほぼ等しいことから、Si と AI の化学構造情報を X 線から直接得ることはできない。よって、Si や AI を多く 含むアルミノ珪酸塩やゼオライト等の触媒の化学構造解析には、固体 NMR 法が非 常に有効である。しかし多くの無機材料が保有する Al や O 等は I>1/2 の四極子核で あり、その線幅は MAS を実施しても、一般的には完全に先鋭化されない。そこで、 それらを消去するために後述する手法が必要となっており、これが無機材料への固 体 NMR の適用拡大を阻害する一要因であった。1995 年に Frydman ら "から発表さ れたMQMAS法は特別なプローブ等が必要ないため、非常に魅力のある手法で、我々は この方法を利用して無機材料²⁹に適用してきた。しかしMQMAS法は感度が悪いので、 NMRの高感度化は実用材料に展開していくためには必須な条件となる。それは、 実用材料の場合、対象核種の存在量が数%未満であることが多いためである。そこ で特に四極子核での実用無機材料における高感度化の検討を行ったので、報告する。

高磁場、四極子核、高感度、同位体ラベル、MQMAS

かねはしこうじ、〇さいとうこうじ 、はたけやまもりあき

2.実験と結果

(1) Nuclear について:同位体ラベル

四極子核で且つ実用酸化物材料に一番有効で重要な核種は酸素である。それは、 酸素を中心に結合が構成されており、酸素を測定できれば、その結合状態や角度等、 多くの構造情報を得ることが可能である。しかし酸素の天然存在比は 0.037 %なの で、"O 同位体ラベルが必須となる。酸化物系材料への "O 同位体ラベルには、2つ の考え方がある。それは酸化物系材料の創出には焼成法が多く用いられるので、対 象となる酸化物毎に ¹⁷0 同位体ラベルを行うユニフォームラベルと特定の酸化物に のみ "O 同位体ラベルを実施する選択的ラベルであり、あたかも蛋白質研究の手法 を類似している。例えば、カルシウム系アルミノガラス材料を考えた場合、酸素の 持ち込みは CaO と SiO2 と Al2O3 の3種類がある。¹⁷O ラベルした原料 (Ca(OH)2, Al²O₃, Si^O2) は以下の手順にて合成した。Ca(OH)2 はグローブボックス中にて KOH を H₂O に溶解させ、この水溶液を氷浴下で CaCl₂ と反応させて得られた沈殿物を蒸 留水で洗浄、乾燥して得られた。Al[,]O₃は AlO(OH)を H[,]O 共存下、密閉容器内で 105 ℃で7日間反応させて Al[•]O([•]OH)を得た後、大気中 1200 ℃で1 時間焼成して目的物 を得た。Si O2 は Ar 雰囲気下、無水 diethyl ether に溶解させた SiCl4 溶液を氷浴しな がら H₂O を少量ずつ滴下し、沈殿物を蒸留水で洗浄後、乾燥して得られた。これら の合成原料が試薬と同等の構造を有していることを XRD にて確認した。"O ラベル した CAS ガラス試料は、フルラベル(*C*A*S)、選択ラベル(*CAS. C*AS. CA*S) を用い、51.1 Ca(OH)2-9.5 Al2O3-39.4 SiO2の組成となるように秤量し、1000~1400 ℃で 30 分保持した後、銅板上で急冷することによって得た。Fig.1 にユニフォーム ラベルしたカルシウム系アルミノガラス材料の MQMAS の結果を示す。酸素化学情 報で非常に重要なノンブリッジ酸素とブリッジ酸素を区別できるとともに、Al-O-Si と Si-O-Si の化学構造サイトを明確に区別できる。またユニフォームラベルと選択 ラベルは、これらの帰属やその反応メカニズムの解明に貴重な情報を与えると期待 される。明らかに¹⁷0等では必須な手法である(詳細はポスター 1P38 を参照)。NMR スペクトル測定には、JEOL ECA-700 (¹⁷O; 94.9 MHz, ²⁷Al; 182.4 MHz)を使用した。 ¹⁷O MAS 及び MQMAS の測定には、4mm¢ JEOL 製 ²⁷Al 及び ¹⁷O シングルチューナブ ルプローブを用い、試料回転速度は20 kHzとした。"O NMR スペクトルの化学シ フト基準は H₂Oを 0 ppm とした。

— 23 —

(2)Magnetic について:磁場効果

より高感度にMQMAS法等の四極子核の高分解能 NMR を測定するには、①高安定度 な磁石での高磁場の利用(四極子の相互作用が静磁場の 2 乗に反比例するため静磁 場が高い方が見かけ上四極子相互作用を低減できるため)②高 rf(多量子への励起 の際にパルス照射強度が高い方が感度の上昇が大きいため)③高速での試料回転(高 磁場になれば、サイドバンドの数も増加するため、必然として回転速度は高い方が 良いため)の3点(固体無機材料系で固体 NMR を実現・成功させる3高条件)が 重要であり、この条件を満たす装置も高感度化に果たす役割は大きい。固体無機材 料を念頭に置いた場合、以下の3点が高磁場化のメリットと考える。

①分解能向上;2 次の等方シフト(n_{iso}(2))及びピークの広がり(D(2))を表す式 n_{iso}(2)= -nQ₂/30nL[I(I+1)^{-3/4}](1+h²³) D(2)=25/144*nQ₂/nL[I(I+1)^{-3/4}]

ー化学シフトスケールでは、 n_{i∞}(2), D(2)ともに共鳴周波数の2 乗に反比例 ②感度向上;NMR シグナル強度と磁場強度との関係

> S (NMR 信号強度) $\infty \gamma$ 4*H (磁場強度) 2*N (核スピン総数) ーシグナル強度は磁場強度の 3/2 乗に比例

③実用測定対象の増加;低周波数核の測定が容易となる

16.4T では、具体的にどの程度感度向上が見られるのであろうか? 我々は 7T の装 置とほぼ同一測定条件(現実にはプローブの rf 効率とか、試料量等の影響がある) で、いくつかの四極子相互作用の大きさが異なる試料に関して、検討を行った。7T と 16.4T では、磁場の大きさが 2.3 倍なので、S/N に対する効果が 3/2 乗であるから、 最低でも約3.5倍の感度向上が期待できるはずである。比較の結果をTable1に示す。 驚くべきことに、四極子結合定数が大きい場合(四極子相互作用が大きい)には、 その S/N 向上代が飛躍的に大きくなっていることがわかる。特にリン酸アルミでの 酸素核では 10 倍以上の感度向上が見られた。これは、磁場向上による通常の感度向 上効果と、四極子相互作用が磁場向上によって低減され線幅が先鋭化された効果と の複合相乗効果と考えられる。この結果は、従来四極子相互作用が大きくて、低磁 場では測定対象ではなかった核でも、高磁場では測定可能になるとともに、その存 在量が少ない場合でも、高磁場ならば十分に測定可能になることを示している。ま た懸念される Ti の増大によって繰り返し時間が長くなる点であるが、Table 1に示 したように、確かに高磁場では T₁ が増大はしているが、その傾向は一様ではなく、 四極子核の Ti は一般的に短いことを考えれば、明らかに高磁場の利用効果は大きい。
 Table 1
 Effect of high field for various Cq samples

sample name	e nucleus	Cq(MHz)	effect1	effect2	$T_1(7T)$ sec	Ti(16.4T) sec
Alum	²⁷ AI	0	4.2	1.2	0.4	0.4
Slag	²⁷ Al	3.8	6.5	1.8	0.8	1.9
AIPO ₄	¹⁷ O	11.1	10.8	3.1	0.06	1.2
effect1 :	S/N(16.4T) /S	5/N(7T)				

effect2 : $(S/N(16.4T) / S/N(7T))/(16.4/7)^{3/2}$

(3)Resonance について:新たなテクニックによる高感度化

四極子核の高分解能化に有効な MQMAS は多量子励起とコヒーレンス選択を行う ため総じて感度が悪い。そこで、それを克服すべき手法が最近発表されている⁶⁷⁰。 その中で一番実用的と思われる FAM2 法による感度向上効果をいくつかの試料につ いて検討した。その結果を Table 2 に示す。効果は核種や材料系によって、異なる が総じて3QMASの方が効果が高いようである。(詳細はポスター 1P38 を参照)

sample	Cq (MHz)	effect at 3QMAS	effect at 5QMAS
Slag (¹⁷ O)	4.0		1.8
Slag ⁽²⁷ Al)	5.0	2.9	1.3
Mortar(²⁷ Al)	3.0	3.3	1.0

Table 1 Effect of FAM 2 method for various Cq samples

3. まとめ

固体無機材料での四極子核の高感度を、①ラベル②磁場③高感度テクニックの3 点を既に示した。ラベル化できなくても、磁場向上による通常の感度向上効果と、 四極子相互作用が磁場向上によって低減され線幅が先鋭化された効果との複合相乗 効果があるので、四極子核が低濃度試料でも測定対象となり得る。例えば実際に、 非常に存在濃度の少ない例として、Fig.3 に 16.4T でのスラグの解析例 ¹¹を示すが、 存在濃度わずか 1%程度のスラグ中の Al でも、高磁場ならば四極子相互作用が低減 し相対感度が向上するので、測定原理的に感度が低下するので低磁場では実施が難 しい 5QMAS が実現可能となった。また高感度化テクニックで測定時間も短縮でき た。低磁場ではもちろん、16.4T の 3QMAS でもあまり明確な化学構造情報を与えて いなかっただけに、5QMAS 実験が実施できた意義は大きい。その結果、従来曖昧 であった化学種特定が飛躍的に実施でき、新たな展開へとつながりつつある。

Fig.3 ALPO of 3QMAS spectra at 7T,16.4T and 5QMAS spectra at 16.4T 以上の述べたように、四極子核の構造解析には、MQMASが必須となっている。しか し多量子遷移を利用するこの手法は感度が低い欠点がある。そのためにも四極子核 の高感度化は、まず1)できるだけ高磁場を利用し、次に2)FAM等の高感度化のた めの手法を利用することが必須である。また酸素のような天然存在比が低い核種は、 3)同位体ラベルを工夫して実施することが重要である。これらを総合すれば酸化 物系材料の構造と機能の関係が明らかになると期待される。今後開発が予定されて いる 920MHz の装置では従来は適用不可能であった材料への展開が期待される。 参考文献

1) L.Frydman, J.S.Harwood, J.AmChem.Soc., 117, (1995), 5367.

2) K.Kanehashi, K.Saito and S.Sugisawa, Chem.Lett., 6, (2000), 588.

3) K.Kanehashi and K.Saito, J.Mol.Struct.602-603, (2002), 105.

4) K.Kanehashi and K.Saito, Tetsu-to-Hagane, 87, (2002) 103

5) K.Saito, K.Kanehashi, Y.Saito and J.Godward, App.Magn.Reson., 22, (2002), 257

6)P.K.Madhu,L.Frydman and S.Vega, Chem.Phys.Lett., 307,(1999),41

7) A.Goldbourt and S.Vega, J.Magn.Reson., 154, (2002), 280

1 L8

パイ共役系高分子の準秩序構造のダイナミクス

(東工大院生命理工)〇浅川直紀, 守誠一朗, 大平学, 松原清彦, Myagmarsuren Gomboo, (東工大資源研)山本隆一, (東工大院生命理工)井上義夫

Quasi-ordered Structure of π -conjugated Polymers

<u>Naoki Asakawa</u>, *Seiichiro Mori, Manabu Ohira, Kiyohiko Matsubara, Myagmarsuren Gomboo, Takakazu Yamamoto, and Yoshio Inoue, Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, JAPAN, email:nasakawa@bio.titech.ac.jp, Phone: 045-924-5796, FAX:045-924-5827

We have explored diffusion-like motion of modulation waves in solid polymers by various nuclear magnetic resonance(NMR) techniques including longitudinal and transverse relaxation time measurements, ²H quadrupolar two-dimensional exchange method. It is found that there coexist crystalline and quasi-cristalline phases in poly(4-methylthiazole-2,5-diyl) with head-to-head regio-regularity, resulting in anormal dispersion of modulation waves of methyl group displacements associated with backbone twist in the quasi-ordered phase.

1. 緒言

高分子結晶や液晶などの高分子凝縮系材料の構造物性相関を議論する場合,結晶・非晶の二元論的な考察だけでなく,凝縮系が形成する素励起状態や,素励起状態から基底状態への緩和過程を考えなければならないことがしばしばある.例えば,π共役系高分子の発光過程における励起子(エキシトン)の発生および消滅や結晶性高分子材料の準秩序構造などである.これらの素励起状態は材料の物性を微視的な立場から明らかにしようとする場合無視することはできないだろう.

本研究では、分子構造に関する素励起と 考えられる" Conformon"について述べたい [1].結晶性高分子の中には準秩序構造と呼 ばれる,非晶ほどの乱雑さは無いが結晶より も構造が乱れた中間構造が存在することが 知られている.特にπ共役系高分子の準秩 序構造は結晶中のπ電子の広がりと関わっ てくるため、その存在と静的および動的構 造を明らかにすることは電子材料や光学材 料の物性機能相関を探る上では重要となる. しかし、結晶中の分子ダイナミクスはその重 要性にも拘らず、方法論が非常に限られるた め、あまり良く分かっていないというのが現 状である. 核磁気緩和測定は非破壊実験・標 識プローブ不要などの実験の簡便さゆえに 従来から分子ダイナミクスの情報を取得す るためにしばしば用いられてきている. そ こで我々は幾つかの π 共役系高分子に対し て核磁気緩和測定を行ない、π 共役系高分子 中の主鎖のねじれに関する構造変調波の拡 散現象や異常分散性などを明らかにしたの で報告する、その際に、拡散現象(あるいは 並進運動)を核磁気緩和測定でとらえる方法 の開発も行ったので [2]、その詳細について も述べたい.

^{*}バイ共役系高分子, 縦緩和, 横緩和, 相転移, 二次元 交換 NMR あさかわなおき, もりせいいちろう, おお ひらまなぶ, まつばらきよひこ, ミャグマルスレン= ゴンボ, やまもとたかかず, いのうえよしお

 結合様式制御型 π 共役系高分子:ポリ (4-メチルチアゾール-2,5-ジイル)の特異性

近年、ゼロ価の Ni 触媒を用いた脱ハロゲ ン化重縮合により側鎖の結合様式を高度に 制御した π 共役系高分子が合成され、 ランダ ム体とは異なる物性を有していることが明 らかになってきている[3]. 我々は, Head-tohead(HH) 型のポリ (4-メチルチアゾール-2,5-ジイル)[P4MeTz](M_w~3200) に着目 した[3]. この物質は、ランダム体との物性の 違いが顕著であり、かつ、類似のポリ(4-アル キルチアゾール-2,5-ジイル)[P4RTz] やポリ (3-アルキルチオフェン-2,5-ジイル)[P3RTh] とは異なり、face-to-face 型の π スタッキン グを結晶中で形成していることが X 線回折 からわかっている [3]. さらに, πスタッキン グ層と、二次元的に側鎖のメチル基が高密度 に配置した層の二層が交互に積層した特徴 的な結晶構造を有している. 核磁気共鳴の 観点からみると、末端を除くとメチル基のみ に水素原子が存在するため、有機化合物であ りながら特異なスピン系のネットワークが 形成されている.

2.1. スピン格子緩和時間の周波数および温 度依存性

Fig.1 に HH-P4MeTz の水素核の T_1 の 周波数依存性を示す. 観測周波数に対して-0.5 乗性が観測された $(T_1^{-1} \sim \omega^{-0.5})$. これ は古典的な NMR 緩和の理論である BPP 理 論から予測される挙動 $(T_1^{-1} \sim \omega^{-2})$ と大き く異なる.

この差異は、BPP 理論では局所磁場の揺 らぎを一次の指数関数 (ローレンツ型関数) であると仮定していることに起因している. 今回の測定で得られた周波数依存性を説明 するためには、揺らぎに関する別の関数を考 えなければならない.現在までに報告され ている様々な物質に対する T₁の周波数依存 性のなかで-0.5 乗性を示す例が幾つかある. それらの理論的背景は大別すると二つに分 けられる.第一の理論は構造不整相での空

Figure 1. HH-P4MeTz の¹H スピン格子緩 和時間の周波数 (磁場強度) 依存性

間依存の秩序パラメータの位相部分, いわゆ るフェーゾンのダイナミクスに対して古典 的減衰調和振動子型の動的感受率を仮定す るとスピン格子緩和速度の $\omega^{-1/2}$ 性が導か れる [4]. しかし同時に, 温度に対しては緩 和速度は比例する関係が導かれる. Fig.2 に 示すように, HH-P4MeTz の実験では温度上 昇に伴い緩和速度の増大は認められなかっ たので, 第一の理論の可能性は否定された.

第二の理論は一次元酔歩モデルに基づく 動的感受率の計算に基づいている[5].その 理論の詳細は省略するが,一次元の環境揺ら ぎを仮定すると-0.5 乗の周波数依存性が得 られる.帰結として次のような式を得る.

 $T_1^{-1} = M_2 (2W\omega)^{-1/2} \ (\omega < W) \tag{1}$

ここで、W は拡散速度である. Fig.1 の実験 結果に対してフィッティングを行なった結 果、W=15±10GHz の値を得た. この値は 既に我々が行なった二次元交換 NMR から 得られた 10^{2} Hz 程度の運動と比較して 8 桁 も大きい. 多くの場合,実験方法が異なれば それに敏感な運動モードも変わり得るので, 異なる方法で得られた相関時間が大きく異 なることはあり得る. しかし, T_{1} の値を支

- 27 ---

配している一次元的な環境揺らぎが二次元 交換NMRでとらえている主鎖周りの遅い ねじれ運動と無関係と考えるのは無理があ るように思える.現時点では決着はついて いないが,我々は構造変調波の異常分散性に よって説明できるのではないかと考えてい る.そのために構造変調波の波としての性 質(伝搬または拡散)を核磁気共鳴でとらえ ることができないだろうかと考えた.そこ でスピン-スピン(横)緩和時間測定を行なっ てみた.

Figure 2. HH-P4MeTz のプロトン緩和時 間測定. 1)400MHzでのスピン格子緩和時間 測定 (飽和回復法), 2) 双極子場 (約 15kHz) でのスピン格子緩和測定 (Jeener-Broekaert 法), 3,4)20kHz でのラジオ波回転磁場での スピン格子緩和時間 (スピンロック法)

2.2. 横緩和時間による拡散測定

NMR を用いて拡散を測定する場合,磁場 勾配を発生させ,その条件下でスピンエコー 実験を行なう、パルス状に磁場勾配を発生 させる方法は PFG 法 [6] として広く使われ ている. 固相での遅い拡散現象をとらえる ためには PFG 法による磁場勾配強度では不 足する場合が多いために、超伝導磁石周縁部 の静的な強力な磁場勾配を用いるか [7] 反 ヘルムホルツコイルが発生する静的な勾配 を利用する方法が提案されている[8].しか し、試料内部に磁場勾配が存在するような系 に対してはいずれの方法も威力を発揮でき ないことが指摘されている [9,2]. この問題 は、実際に系に印加されている磁場勾配の大 きさが内部の影響で不明となることに起因 している、近年我々は結晶中に存在する内 部の局所磁場勾配を利用することにより、通 常の均一磁場磁石を用いた NMR スピンエ コー実験(横緩和時間測定)により、拡散現象 をとらえることができることを示してきた [2]. その方法は横緩和時間測定に用いられ る Carr-Purcell Meiboom-Gill(CPMG)法 のエコー時間をパラメータとして横緩和時 間を測定するものである. CPMG 法は一般 には拡散の効果を抑制することができると 言われているが、実際にはエコー時間(τ)を 除々に長く設定することにより除々に拡散 の効果をT2 値に取り込んでいくことが可能 となる.

HH-P4MeTz の場合,高分子鎖は分子間相 互作用のために鎖そのものの拡散は考えに くい.現時点で我々は構造変調波の拡散に 伴う磁場勾配波の拡散をT₂でとらえている のではないかと考えている.

3. 結論

-28-

以上のように我々は核磁気緩和測定とい う伝統的な手法で π 共役系高分子の準秩序 構造の分子ダイナミクスを調べた.物性・電 子構造と分子ダイナミクスとの相関は必ず しも明らかにはなっていないが,固体高分 子における構造変調波の拡散を磁気共鳴に よって実験的に求めるというアプローチは まだ少なく実験や理論にもまだ問題が残さ

Figure 3. HH-P4MeTz の¹H 横緩和時間測 定と、フーリエスペクトル法による一次元 Bloch-Torrey 方程式の数値シミュレーショ ン結果

れている. 今後, 物質拡散の問題と共に重要 になってくるのではないかと思う.

REFERENCES

- 1. E.R.Andrew, *Phys.Letts.*, **34A**, 30(1971).
- N.Asakawa, T.Kajikawa, K.Sato, M.Sakurai, Y.Inoue, T.Yamamoto, J.Mole.Struct., 602-603, 455(2002).
- T.Yamamoto, H.Suganuma, T.Maruyama, T.Inoue, Y.Muramatsu, M.Arai, D.Komarudin, N.Ooba, S.Tomaru, S.Sasaki, and K.Kubota, *Chem. Mater.*,9,1217(1997).
- S.Žumer and R.Blinc, J.Phys., C14, 465(1981); R.E.deSouza, M.Engelsberg, and D.J.Pusiol, Phys.Rev.Lett., 66, 1505(1991).
- M.Nechtschein, F.Devreux,
 F.Genoud, M.Guglielmi, and
 K.Holczer, *Phys.Rev.*, B27, 61(1983).
- J.E.Tanner and E.O.Stejskal, J.Chem.Phys., 49(1968).
- 7. R.Kimmich, W.Unrath, G.Schnur,

and E.Rommel, J.Magn.Reson., 91, 136(1991).

- I.Chang, F.Fujara, B.Geil, G.Hinze, H.Sillescu, A.Tölle, J.Non-Cryst.Solids, 172-174, 674(1994).
- D.C.Ailion, Solid State Ionics, 125, 251(1999).
- 10. S.Axelrod and P.N.Sen, J.Chem.Phys., 114, 6878(2001).

1 L9

有機 EL 素子における電荷輸送性材料の構造とダイナミックス

京大化研¹・科技団さきがけ 21² 〇梶 弘典^{1,2}・塚本直樹¹・山田知典¹・堀井文敬¹

Structures and Dynamics of Carrier Transport Materials in Organic EL Devices

<u>Hironori Kaji</u>^{1,2}, Naoki Tsukamoto¹, Tomonori Yamada¹, and Fumitaka Horii¹ ¹Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, JAPAN and ²Structural Ordering and Physical Properties, PRESTO, JST

Local structures and dynamics of 4,4'-bis(phenyl-*m*-tolylamino)biphenyl (TPD), which is used as a hole transport material of organic EL devices, have been studied by solid-state NMR spectroscopy. We synthesize ¹⁵N-labeled TPD to investigate the molecular packing in the amorphous state. Preliminary two-dimensional double-quantum (2D DOQSY) spectrum is obtained and the molecular packing will be investigated in near future. At present, it is found that the CSA width is narrow and that the intermolecular ¹⁵N-¹⁵N distance is distributed around 4.2 Å. The 2D ¹³C CSA exchange experiments of amorphous TPD tell us that the aromatic rings undergo π -flip motion even at room temperature with the mixing time of 2 s. Local structures of tris(8-hydroxyquinoline) aluminum (Alq₃), which act as an light-emitting and an electron transport material, are also investigated by ¹³C and ²⁷Al solid-state NMR. A relation between the local structures and the light-emitting properties is discussed.

1. 緒言

有機 EL 素子は、いくつかのブレークスルーを経て実用段階に入りつつある。この有機 EL 用材 料の様々な階層における構造は EL 特性に大きく影響すると考えられるが、素子が非晶状態で用 いられるため、その詳細は明確にされていない。一方、我々は様々な固体 NMR 法を用いて、回 折法では明確にならなかった乱れた構造をもつ高分子の局所構造¹およびダイナミックス²の精密 解析を行ってきた。これらの固体 NMR 法では、構造秩序の有無にかかわらず精密解析が可能で あるという特徴をもち、非晶材料の解析には極めて適している。本研究では、正孔輸送剤である 4,4'-bis(phenyl-*m*-tolylamino)biphenyl (TPD, 図 1) および電子輸送剤である tris(8-hydroxyquinoline) aluminum (Alq₃, 図 4)の構造およびダイナミクスに関する基礎的知見を得るため、固体 NMR 測定

キーワード: 有機 EL、非晶構造、固体 NMR、電荷輸送材料、局所構造

かじ ひろのり、つかもと なおき、やまだ とものり、ほりい ふみたか

2. 実験

TPD は、溶融状態から 0℃に急冷した後、減圧乾燥することにより非晶試料を得た。また、二 次元二量子(2D DOQSY)測定により TPD の分子間パッキングを明らかにすることを目的として、 ¹⁵N ラベルした TPD(¹⁵N-TPD)を合成し、同様に非晶試料を得た。Alq₃ に関しては、適切な熱処理 を施すことによりα-, γ-, δ-, および非晶 Alq₃試料を得た。ただし、δ-Alq₃に関しては純度の高いも のが得られず、γ-Alg, が 20%ほど含まれている。固体 NMR 測定には Chemagnetics CMX-400分光 計、溶液 NMR 測定には JEOL AL-400 分光計を用いた。¹³C, ¹⁵N, ²⁷Al (CP)/MAS 測定における MAS 回転速度は6kHzである。

3. 結果と考察

3.1. 非晶 TPD の分子間パッキング

得られた¹⁵N-TPD 試料の¹⁵N 化学シフト異方 性(CSA)測定を行った結果、非晶¹⁵N-TPDのCSA 幅は非常に狭く、 G11 - G33 = ~18 ppm であること が明らかとなった(図1)。この結果は、分子軌道 (MO)計算(Gaussian98, DFT B3LYP/6-31G(d))の 結果(o11 - o33 = ~ 14 ppm)とほぼ一致し、TPD の 窒素がピラミッド型構造ではなく平面構造をと っていることが示唆された。また、カチオン状 態における TPD の MO 計算において、¹⁵N 等方 化学シフトが 50 ppm 高磁場シフトするととも に、CSA は幅広くなる(o₁₁ - o₃₃ = ~ 83 ppm)と計 算された。この結

Fig. 1. Experimental and DFT-calculated CSA spectra of amorphous ¹⁵N-TPD. Thick line: experimental, thin line: DFT-calculated in the neutral state, thin broken line: DFT-calculated in the cationic state. Thin line well reproduces the experimental spectrum.

結果から、化学シ 孔輸送の素過程を

フト(異方性)は、正 Fig. 2. Experimental sheared ¹⁵N 2D DOQSY spectrum of amorphous ¹⁵N-TPD (τ_{DQ} = 15 ms). 15 contour lines are plotted between 15 and 100 % of the maximum intensity. The 2D DOQSY pulse sequence used for this measurement is shown at the left.

観察する上で重要な情報をもたらして くれるものと期待される。

また、図 2 に、¹⁵N-TPD の ¹⁵N 2D DOQSY スペクトルを示す。まだ予備実 験の段階ではあるが、2D DOQSY 測定 が可能であることが示された。CSA 幅 が狭いため、精密解析は困難であると 予想されるが、¹⁵N 二量子シグナル強度 の励起時間依存より、最近接分子間 ¹⁵N-¹⁵N 距離は4.2 Åを中心に分布して いることが明らかになった。今後、CSA 幅の広い¹³C をラベルした TPD 試料を 用いることにより、精密解析を行って いく予定である。

Fig. 3. Experimental 2D C CSA exchange spectra of amorphous 15 N-TPD (mixing time is 2 s). The temperatures are indicated in each figure. 30 contour lines are plotted between 3 and 60 % of the maximum intensity.

<u>3.2. 非晶 TPD のダイナミックス</u>

非晶 TPD のダイナミックスを 2D¹³C

CSA交換スペクトルの測定により検討した(図3)。測定温度30-50°C、混合時間2秒の条件下で σ_{11} , σ_{22} の交換シグナルが明瞭に観察されたことから、 T_g (64°C)以下でも芳香族環が π -flip 運動を行っ ていることが明らかとなった。また、65°C では混合時間 0.1 秒で π -flip 運動が、混合時間 2 秒で は σ_{33} に対しても交換シグナルが観察され、分子自身が運動しはじめることが示された。ただし、 これらの測定においては、すべての炭素種に対する共鳴線が重なり合っているため、どの部位が 運動しているのかは明確ではない。CP/MAS ¹³C 測定においても芳香族 C-H 炭素の ¹³C 共鳴線は分 離できず重なり合っていたため、さらに詳細な検討には重水素化試料が必要であろう。

このようなダイナミックスは、EL素子の寿命と関連していると考えられる。また、TPD が実際 に正孔輸送層として用いられる場合、非晶状態にあるために HOMO エネルギーレベルには分布が 生じる。そのため、正孔がトラップされやすくなると考えられる。Tg 以下での局所的なダイナミ ックスによりエネルギーレベルに変化が起こり、トラップされた正孔がデトラップされれば、正 孔輸送能を向上できると予想される。このような観点に基づき、今後、より速いダイナミックス を捕らえることによりこれらの相関について検討を行う予定である。

3.3. Alg3 多形の NMR 解析

図4に、溶液スペクトルおよび、α-, γ-, δ-, 非晶 Alq₃の CP/MAS¹³C スペクトルを示す。溶液ス ペクトルでは、各共鳴線が 3 本にわかれていることから、3 つの配位子が異なった環境にある meridional 体であることが 明確である。α-Alq₃では、 すべての炭素種に対し幅 広い共鳴線が観測される が、C2およびC3共鳴線は さらに幅広くなっている。 広角 X 線回折測定より、 α-Alq₃は meridional 体であ ることがわかっており、そ れによる共鳴線の分裂が 一つの原因であると考え られるが、溶液状態での分

裂幅に比べてさらに幅広

Fig. 4. CP/MAS ^{13}C NMR spectra of (a) α -, (b) γ -, (c) δ -, and (d) amorphous Alq_3. The solution ^{13}C NMR spectrum is also shown at the top.

いことから、分子間(あるいは分子内)の配位子パッキングも大きく影響していると考えられる。また、図 4(a), (d)より、非晶-Alq3 はα-Alq3 と類似の局所構造を有していることわかる。γ-Alq3、δ-Alq3 においては、シャープな共鳴線が観測されている。これらのスペクトルでは、C2、C3 炭素に対し 共鳴線が1本のみ観測されることから、3つの配位子が等価な環境にある facial 体であることが示 唆された。なお、ダイナミックスにより共鳴線が1本になっている可能性も否定できないため、 今後、ダイナミックスについても検討を行う予定である。これらの試料の発光波長(励起波長: 365 nm)は、α-Alq3と非晶 Alq3 が、また、γ-Alq3 とδ-Alq3 が類似していることから、図4のスペクトル の違いから示唆される局所的な構造と発光特性との相関が推察される。²⁷Al NMR 測定においても 同様のスペクトルの類似性が観測された。

4. 文献

(1) (a) Masuda, K.; Kaji, H.; Horii F. Polymer Journal 2001, 33, 190. (b) Masuda, K. et al. Solid State NMR 2003, 23, 198. (c) Kaji, H.; Schmidt-Rohr, K. Macromolecules 2000, 33, 5169. (d) Kaji, H.; Schmidt-Rohr, K. Macromolecules 2001, 34, 7368. (e) Kaji, H.; Schmidt-Rohr, K. Macromolecules 2001, 34, 7382. (f) Kaji, H.; Schmidt-Rohr, K. Macromolecules 2002, 35, 7993. (g) Kaji, H. Polym. Prepr. Jpn. 2003, 52, 58.

(2) (a) Kaji, H.; Tai, T.; Horii, F. Macromolecules 2001, 34, 6318. (b) Kaji, H.; Fuke, K.; Horii, F. Macromolecules 2003, 36, 4414. (c) Kuwabara, K.; Kaji, H.; Horii, F. Macromolecules 2000, 33, 4453. (d) Kaji, H.; Miura, N.; Schmidt-Rohr, K. Macromolecules 2003, 36, 6100.

— 33 —

1 L10

固体高分解能¹³C NMR によるポリビニルアルコール/ポリアクリル酸

ブレンド試料の高次構造解析

奈良女子大学大学院 〇吉澤 綾子・松生 勝・黒子 弘道

Higher order structure analysis of poly(vinyl alcohol)/poly(acriylic-acid)

blends as studied by high resolution solid state ¹³C NMR.

Graduate School of Human Culture,Nara Woman's University Ayako Yoshizawa, Masaru Matsuo, Hiromichi Kurosu

¹³C CP/MAS NMR spectra of poly(vinyl alcohol)/poly(acriylic-acid) (PVA/PAA) blends show that the PAA carboxyl carbon has four deconvoluted peaks. The behaviour of the peak intensity and half-width of the four deconvoluted PAA carboxyl carbon peaks are supported this assignment. Furthermore, some measurements of the relaxation time have been carried out. Each of the $T_{1\rho}^{H}$ and T_{1}^{H} values of the PAA and PVA carbons for drawn sample are almost same. This result shows that the drawn blend sample is homogenous on a scale of 10-20 Å. On the other hand, for undrawn blend sample, although the T_{1}^{H} shows the same values for PAA and PVA carbons, the $T_{1\rho}^{H}$ has different values. This shows that this blend sample is homogenous on a scale of several hundred Å, but heterogenous on a scale of 10-20 Å.

【緒言】

これまでの多くの研究では PAA カルボキシルカーボンについて、分子間水素結合を含 む3本のピークに分けられると考えられていたが、本研究室での研究から PAA C=0 基の 化学シフトから PVA/PAA ブレンド試料のより詳細な高次構造の知見を得る可能性が指摘 された。本研究では、PAA の C=0 基に注目し、固体NMRによってその高次構造を明ら かにすることを目的とする。

【実験】

ブレンド比 PVA/PAA=3/1、1/1、1/3、0/1(モル比)のフィルムを作成し、未延伸サン プルのほかに、中間延伸サンプル、最大延伸サンプルについて NMR 測定 (CP/MAS 法、 T₁[,]^H測定法、T₁^{,^e}測定法、PST/MAS 測定法)、DSC 測定、広角 X 線回折測定を行 った。

— 34 —

ブレンド、PVA/PAA、延伸、構造

よしざわ あやこ、まつお まさる、くろす ひろみち

【結果と考察】

固体 NMR の CP/MAS 測定で得られたスペクトルを PAA の C=0 基について線形解析を行った。本研究では、作成したサンプルを延伸し、試料を一軸方向に引き伸ばした時の高次 構造の変化に注目した。ピークフィッティングの結果、PAA のカルボキシルカーボンに は4つのピークの存在が見出され、それぞれのピークの帰属をその半値幅や強度比の変 化について PVA とのブレンド比が異なるサンプルを未延伸試料、延伸試料について比較 することにより検討した。

これらの解析結果から、ブレンドによる構造の乱れなどの影響が生じているかどうか、 延伸による分子鎖の引き揃いなどの影響を受けているかどうかなどの情報を得ることが できた。また、ブレンド、延伸による強度比の変化が水素結合形態とどう関わり合って いるかを考察した。その結果、水素結合形態の違いによって以下のような4つのピーク に帰属できると考えられる。この帰属に関して測定結果は矛盾なく説明できたことから、 PVA/PAA ブレンド試料の高次構造を詳細に明らかにすることができた。この結果は、NMR 測定で得られたスペクトルの強度比、半値幅の変化を比較することにより、PAA に限ら ず他の高分子についても水素結合形態を含む分子の高次構造を明らかにできると考えら れる。

また、緩和時間測定を行い、T₁,^H 測定の結果からはブレンド比によって サンプルの相溶性が異なることがわか った。さらに延伸による相溶状態の変 化も現れ、PVA/PAA=1/3 ブレンド試料 については未延伸の状態では非相溶で あったものが、延伸することによって 相溶することがわかった。ブレンド比 の違いや延伸による相溶状態の変化と 水素結合の関連性を検討するために、 T₁^c測定を行った。 詳細は講演で述べ る。

Table 1	$T_{1\rho}^{H}$ values (ms) for PVA/PAA blends					
PVA/PAA	延伸比(λ)	CHOH(PVA)	C=O(PAA)			
1/0	1	7.4	-			
	8	8.3	· ·			
0/1	1		5.5			
3/1 *1	1	6.0	5.6			
	6	7.0	5.2			
1/1*1	1	6.3	5.9			
	30	6.6	6.3			
1/3	1	8.0	6.9			
· · ·	30	8.4	8.4			

*1 Q.Chen,H.Kurosu,L.Ma,M.Matsuo Polymer;43,1203-1206(2002)

— 35 —

二次元¹H スピン拡散 NMR によるジフェニルヘキサトリエン 誘導体の分子配列 (産総研)〇林 繁信、園田与理子

Two-dimensional ¹H spin-diffusion NMR study of molecular arrangements in diphenylhexatrienes (Nat'l Inst. of Adv. Ind. Sci. and Tech. (AIST)) Shigenobu Hayashi and Yoriko Sonoda

Molecular arrangements in p,p'-disubstituted *trans,trans,trans.trans*-1,6-diphenyl-1,3,5-hexatrienes (DPHs) have been studied by two-dimensional ¹H spin-diffusion NMR. The mixing time dependence of the cross peak intensity has been analyzed, and the time constants representing proton spin diffusion rates have been estimated. Methoxy derivative (1) demonstrates a presence of intermolecular spin diffusion between triene protons and methoxy protons, and thus it is revealed that a methoxy group is located close to a hexatriene chain of an adjacent molecule. On the other hand, there are no evidences of intermolecular spin diffusion for formyl derivative (2).

【序】スピン拡散は固体 NMR における重要な現象であり、 核間距離に関する有用な情報を与えてくれる。二次元¹H ス ピン拡散 NMR は、ポリマーブレンドなどにおいて分子レベ ルで均一に混ざっているのかそれともドメインが形成され ているのかを調べるためによく用いられており、1~500 nm

の範囲のドメインサイズを推測することが出来る。一方、¹H

1 R=OCH₃ 2 R=CHO

Scheme 1. Diphenylhexatrienes

double-quantum MAS NMR を用いると 0.3 nm 以内の核間距離を調べることができる。

有機固体化合物では、良い単結晶が得られないために結晶構造を決めることができない場合が ときどきある。このような場合、分子の配列を知るために上記の NMR 測定技術が役に立つ。

trans,trans,trans-1,6-Diphenyl-1,3,5-hexatriene (DPH) およびその誘導体(DPHs)は溶液状態で特異的な蛍光挙動を示すことが知られている。我々は、DPH およびその誘導体の固体状態における光吸収、蛍光挙動を調べて報告した[1]。DPHs は Scheme 1 に示すように棒状の形をした分子であり、 蛍光挙動は、分子配列や分子間の相互作用に大きく影響を受ける。現在までに良い単結晶が得られておらず、X線回折で結晶構造解析ができていない。このため、二次元¹H スピン拡散 NMR を用いて分子配列を調べることにした。

本研究では、二次元¹Hスピン拡散 NMR を用いてジフェニルへキサトリエン誘導体1と2の固 相における分子の配列状態を調べた結果を報告する。交差ピーク強度の混合時間依存性を解析し て、プロトンのスピン拡散速度を表す時定数を見積もり、1と2が固相において全く異なった分 子配列をしているという結果を得た。

【実験】Scheme 1 に示した 2 種類の DPHs の粉末試料について測定を行った。¹H NMR スペクトルの測定は、Bruker ASX200 (200.13 MHz)を用い室温で行った。一次元 CRAMPS、二次元¹H スピン拡散 NMR とも、quadrature detection mode の BR-24 パルス系列を使用して測定した。90°パルス幅は 1.4 µs、BR-24 パルスの 1 サイクルは 144 µs、試料の回転数は 1.6 kHz に設定した。

二次元¹H スピン拡散 NMR、ジフェニルヘキサトリエン、スピン拡散、分子配列 はやし しげのぶ、そのだ よりこ

- 36 -

【結果および考察】Fig.1に1と2の¹H CRAMPS スペ クトルを示した。1は、TMS 基準で5.8、4.4、3.1 ppm に 強度比 6:1:3 のシグナルが観測された。さらに、5.1 ppm にショルダーピークが観測された。溶液 NMR の結果と 強度比から、5.8 ppm のシグナルはベンゼン環プロトン、 5.1 と 4.4 ppm はトリエンプロトン、3.1 ppm はメトキシ 基のプロトンに帰属された。2 では、9.3、6.7、5.8 ppm にシグナルが観測された。9.3 ppm はホルミル基のプロ トン、6.7 ppm はベンゼン環プロトン、5.8 ppm はトリエ ンプロトンとベンゼン環プロトンの一部に帰属された。

Fig. 2 に 1 の二次元¹H スピン拡散 NMR スペクトルを 示した。混合時間(_{*t*m})が 20 µs では対角ピークのみが観測 され、混合時間の増加とともにすべての非対角ピークの 成長が観測された。特に、トリエンプロトン (4.4 ppm) とメトキシ基のプロトン(3.1 ppm)間において分子内距 離が長いにもかかわらず非対角ピークが観測された。こ のことは、トリエンプロトンとメトキシ基のプロトンと の間で分子間スピン拡散が起きていることを示し、メト キシ基が隣接分子のヘキサトリエン鎖に近い位置にあ ると考えられる。

一方、2のスペクトルでは、9.3 と 6.7 ppm の強い非対角ピークが観測された が、9.3 と 5.8 ppm の非対角ピークは非 常に弱かった。すなわち、ホルミル置 換体では、分子間スピン拡散を示す結 果は得られなかった。このことは、ホ ルミル基が隣接分子のヘキサトリエン 鎖に近い位置にないことを示している。

上記の結果を定量的に示すために、 本研究では交差ピーク強度の混合時間 依存性を解析してプロトンのスピン拡 散速度を表す時定数を見積もった(当 日に発表する)。その結果は、上記の 分子配列を結論づけた。このように、 二次元¹H スピン拡散 NMR を用いて有 機固体における分子の配列状態に関す る知見が得られた。

【文献】[1] Y. Sonoda, Y. Kawanishi, T. Ikeda, M. Goto, S. Hayashi, Y. Yoshida, N. Tanigaki, K. Yase, J. Phys. Chem. B 107 (2003) 3376.

Fig. 2. 2D ¹H spin-diffusion NMR spectra of 1. The mixing times were (A) 20, (B) 50, (C) 100 and (D) 200 μs.

f1

1 L12

¹⁷O NMR によるポリジエチルシロキサンの固体及び液晶構造解析
 (東工大院理工¹・高分子センター²・防衛大³・東京家政大⁴・アイオワ州立大⁵)
 ○ 木村英昭¹・金坂 将¹・黒木重樹^{1,2}・安藤勲^{1,2}・浅野敦志³・藤重昇永⁴・
 ○ Jerzy Wiench⁵・Marek Pruski⁵

¹⁷O NMR Study of Structure of Poly(diethylsiloxane) in the Crystalline and Liquid Crystalline Phases

Hideaki KIMURA, Sho KANESAKA, Shigeki KUROKI, Isao ANDO, Atsushi ASANO, Shouei FUJISHIGE, Jerzy WIENCH and Marek PRUSKI

(Department of Chemistry and Materials Science, Tokyo Institute of Technology)

¹⁷O-Enriched poly(diethylsiloxane) (PDES) with molecular weight of 2.40x10⁵ has been prepared by cationic ring-opening polymerization of ¹⁷O-enriched hexaethylcyclotrisiloxane and is characterized by ¹⁷O solid-state NMR spectroscopy. It is shown from the DSC that the ¹⁷O-enriched PDES takes the same crystal and liquid crystal structures as ¹⁷O-unlabelled PDES. ¹⁷O Static solid-state NMR spectra of the ¹⁷O-enriched PDES in various states have been observed. The structural behavior is discussed on the basis of these obtained spectra.

[緒言] 高分子量のポリ(ジエチルシロキサン)(PDES)は、硬いメソゲンを持たないにもかかわら ず、主鎖型液晶性を示す有機・無機ハイブリッドポリマーである。これまで PDES の液晶機能発現の メカニズムについて、DSC、偏光顕微鏡、X 線散乱、ラマン、¹H パルス NMR、固体 ¹³C 及び ²⁹Si NMR により調べられてきた。しかし、液晶や結晶状態においてのコンホメーションやダイナミックスにつ いては明らかにされておらず、液晶機能発現メカニズムの解明にはいたっていない。

本研究では、¹⁷O ラベル PDES を合成し、PDES の液晶及び結晶状態におけるコンホメーションや ダイナミックスの詳細を¹⁷O NMRにより解明し、シロキサン系ポリマーの構造解析における¹⁷O NMR の可能性を示すことを目的とした。

[実験] ¹⁷O ラベル PDES は、当研究室で調製した。DSC・ヒストグラムから、この ¹⁷O ラベル PDES は、¹⁷O ラベルをしていない PDES¹と同様に、温度によって 4 つの結晶多形 (α、β形の低温結 晶及び高温結晶)と、メソ相、等方相を形成することが明らかになった。ウベローデ粘度計による 25℃ トルエン溶液での粘度測定により、この ¹⁷O ラベル PDES の重量平均分子量は 2.40x10⁵ と決定した。

¹⁷O NMR 測定は、Bruker Avance DSX-300 分光計、Chemagnetics Infinity 400 及び Bruker DMX-500 分光計で、それぞれ共鳴周波数 40.7, 54.7, 67.8 MHz で行った。¹⁷O 化学シフトは、水を外部基準(δ =0 ppm)とした。温度可変測定では、サンプルの熱履歴をリセットするために、NMR サンプル管内で 80℃で 20 分間保った後、所定の温度に下げて設定した。NMR サンプル管内での温度は、硝酸鉛を化学シフト温度計として用いて補正した。

キーワード:液晶、シリコーン、¹⁷O NMR、¹⁷O ラベルポリマー きむらひであき、かねさかしょう、くろきしげき、あんどういさお、あさのあつし、 ふじしげしょうえい、イェージー・ヴィンヌフ、マリック・プルスキ

— 38 —

[結果と考察]

図1に¹⁷O ラベル PDES の 59.6 MHz ²⁹Si 静止 NMR スペクトル((a) 0 °C [β型高温結晶状態], (b) 25 °C [メソ 相],(c) 40 °C [等方相]及び(d) 80 °C)を示す。β形の結晶構 造はα形より安定であり、ゆっくりと温度を下げればβ形 のみの結晶が得られる。スペクトル 1(a)は、単一ののパウ ダーパターンを示す。このことは PDES の結晶状態では、 全てのケイ素原子が等価であることを示している。それに 対し、スペクトル 1(b)は、比較的シャープなシグナルと軸 対象のパウダーパターンの混合したスペクトルになって いる。このことから PDES のメソ相は、液晶相と等方相 の混合状態になっており、スペクトル強度比から、液晶相 /等方相の割合は約 4/1 であると見積もられる。また、液 晶相の異方性化学シフトの符号が結晶相のそれとは逆に なっているのは、見た目に大きな変化である。

シロキサンモデル分子の MO 計算から、²⁹Si 化学シフトテンソルの主軸方向は、低磁場からσ11, σ22, σ33 とすれば、σ11 は O·Si·O がなす面内の主鎖方向、σ22 は O·Si·O がなす面と垂直の方向、σ38 は O·Si·O がなす面内の分子鎖と垂直の方向であることがわかった。このことから、スペクトル 1(a)と 1(b)のス ペクトルの違いは、液晶相では PDES が分子鎖を軸とした回転運動をしている結果であると説明でき る。このことは、PDES 分子鎖は rod-like な形態であることを示唆している。

図 2 に ¹⁷O ラベル PDES の 67.8 MHz ¹⁷O 静止 NMR ス ペクトル((a) -20 °C [β型高温結晶状態], (b) 25 °C [メソ相], (c) 40 °C [等方相]及び(d) 80 °C]を示す。本研究で調製した ¹⁷O ラベル PDES は ¹⁷O NMR スペクトルを得るのに十分 に ¹⁷O ラベルされていることがわかる。結晶状態のスペク トル 2(a)では、典型的な ¹⁷O 核の四極子パウダーパターン を示し、スペクトルのシミュレーションから、核四極子結 合定数(Cq)は 4.8 MHz と見積もられる。一方、液晶状態の スペクトル 3(b)では、左右非対称なブロードなシグナルに 変化している。これは、液晶相の回転運動により、核四極 子結合定数(Cq)が減少したと考えることで説明できる。¹⁷O NMR サテライトシグナルの解析から、液晶相での ¹⁷O 核 の Cq は、1.7 MHz と見積もられ、β2結晶状態の Cq の 1/3

ほどに減少した。この結果は、29Si NMR の結果に対応すると同時に、結晶と液晶のダイナミックス の差を数字で示した点でより具体的である。また、17O 核の MO 計算と実測のスペクトルを比較する ことでさらに多くの有用な情報が得られると予想され、17O NMR 法がポリシロキサンのコンホメーシ ョンやダイナミックスの知見を得る有力な方法になりうることが期待される。

1) Godovsky, Yu.K.; Papkov, V.S. Adv. Polym. Sci. 1989, 88, 129-179.

第二日

11月27日(木)

特別セッション 「NMR の高感度化」

講演要旨

特別セッション「NMR の高感度化」

-緒言-京大院理 寺尾武彦

Special Session: Sensitivity Enhancement in NMR — Introductory Talk—

Kyoto University, Graduate School of Science, Takehiko Terao

Various polarization enhancement approaches and some novel detection methods to improve NMR sensitivity are briefly discussed.

NMR はきわめて有用な分光法であるが、すべての分光法の中で感度がもっとも低く、そのことが応用研究に限界をもたらしている. 低感度の元凶は NMR が遷移周 波数のもっとも低い分光法である点にある. 低周波数のため、Boltzmann excess は きわめて小さく、その結果、微小な核分極しか得られない. また、低周波は検出効 率を低下させ、熱雑音を大きくする. したがって、低感度を改善するには核分極の 増大を図るか、検出法の改良や新たな検出法の開発が必要となる.

熱平衡分極を増大させるもっとも一般的な方法は高磁場を用いることであるが、 マグネットの開発は限界に近づきつつある.¹³Cや¹⁵N など弱共鳴核の分極増大に は¹H の 平 衡 分 極 を 利 用 し た NOE, INEPT, CP, NOP(nuclear Overhauser polarization) などが開発されている。これらの方法と異なり、きわめて大きい非平 衡分極を準備する方法がいくつか開発されている。大きな電子分極を核に移す DNP(dynamic nuclear polarization),光ポンピングを用いた¹²⁹X などの高偏極を 与 え る OPNMR(optically pumped NMR),パラ水素の付加反応による PASADENA(parahydrogen and synthesis allow dramatically enhanced nuclear alignment) または PHIP(parahydrogen induced polarization) などである。これら の方法は応用範囲が限られているものの 4~5 桁の分極増大も可能である。

検出感度の改善としては装置の開発・改良によるものとパルス法の工夫によるものとがある。前者は酸化物超電導体をコイルに用いた高感度プローブや微量分析のためのマイクロコイルなど、後者は各種の間接測定法や多次元 NMR 法の低次元化などを含む。一方、これまでの感度の低い電磁的検出法を捨てて、異なる原理による高感度検出法を開発する試みも行われている。SQUID や光による検出法や力学的な検出法(force detection)などである。これらの方法の更なる発展あるいは全く新たな原理による検出法の開発は今後大いに期待され、夢の一分子 NMR も出現する可能性も大いに考えられる。

てらおたけひこ

- 43 ---

Studies on dynamic nuclear polarization using photo-excited triplet electron spins

Kazuyuki Takeda*

Graduate School of Engineering Science, Osaka University, Japan

An approach is introduced to attain high nuclear spin polarization in host/guest molecular crystal by means of dynamic nuclear polarization using electron spins in the photo-excited triplet state. Based on the insight into the fundamental processes behind the buildup behaviour of nuclear spin polarization, experimental strategies are discussed for realizing the efficient buildup. The applicability of this technique is also discussed for various purposes, including chemical/biochemical NMR analyses and NMR quantum computing.

1. DNP and triplet-DNP

When paramagnetic electron spins interact with surrounding nuclear spins, they can exchange their spin states. In other words, the spin polarization can be transferred from one spin system to the other. In some cases, you can artificially induce or accelerate the polarization transfer by manipulating the spin Hamiltonian. This is an example of dynamic nuclear polarization, for brevity DNP, which indicates the phenomena or techniques in which spin polarization is transferred from electron to nuclear spins[1]. Among several candidates for the paramagnetic electronic states for the DNP experiments, I would like to focus on the electron spins in the photo-excited triplet state, because the photo-excited triplet electron spins have the following attractive features for the purpose of NMR sensitivity enhancement.

- Photo-excited triplet electron spins can have huge non-equilibrium polarization.
- They decay to the ground state in a finite lifetime, so that the NMR signals would not be disturbed by the electron paramagnetism after the polarization transfer.

Fig. 1 shows simplified electronic energy levels of a molecule that is photo-excitable to the triplet state. By irradiating light, the molecules in the ground state are excited to the singlet state. Then a part of them is transferred to the lowest triplet state, where in some cases the spin-orbit coupling populates the triplet sublevels very selectively, regardless of temperature and mag-

FIG. 1: Electronic energy levels of a molecule photoexcitable to the triplet state.

netic field strength. Thus, high electron-spin polarization can be prepared simply by applying light even at relatively high temperatures and in low magnetic fields, and can be transferred to nuclear spins by means of DNP before it decays to the ground state. I henceforth denote the DNP experiments that use the triplet electron spins by the word "triplet-DNP" experiments.

2. Triplet-DNP by Integrated Cross Polarization (ICP)

In a recent work on triplet-DNP, ¹H polarization was built up to 0.69 in a single crystal sample of pentacenedoped naphthalene (Fig. 2) at 105 K and in the magnetic field of ca. 0.3 T by exploiting the high polarization of the electron spins in the photo-excited triplet state of pentacene[2]. This result corresponds to $\sim 2 \times 10^5$ -fold enhancement of ¹H polarization. It is also notable that the attained polarization of 0.69 is nearly equal to the electron spin polarization of the triplet state of pentacene, meaning that the ¹H polarization was built up to the ultimate and the maximum possible value. This striking result is partly ascribed to the fact that a very efficient DNP technique, namely the Integrated Cross Polarization (ICP) technique[20], has

Key words: Dynamic Nuclear Polarization (DNP), photo-excited triplet electron spins, triplet-DNP, Integrated Cross Polarization (ICP), NMR quantum computing

- 44 ---

たけだかずゆき

^{*}E-mail: takeda@qc.ee.es.osaka-u.ac.jp

FIG. 2: (a) A crystal unit cell of naphthalene $(C_{10}H_8)$. (b) The unit cell of naphthalene, in which two naphthalene molecules are substituted by a pentacene $(C_{22}H_{14})$ molecule. A typical pentacene concentration is $\sim 10^{-4}$ mol/mol.

become available[3, 4].

In the ICP experiment, an external magnetic field is adiabatically swept over the ESR line broadened by hyperfine couplings between the surrounding ¹H spins, during which microwave irradiation is applied, so that the individual electron spin packets are locked along their effective fields in the rotating frame. An appropriate intensity of the locking field realizes the Hartmann-Hahn matching between the individual electron spin packets in the rotating frame and the ¹H spins in the laboratory frame one after another on the way to fieldsweeping. By repeating the ICP operation, ¹H polarization can be pumped up and stored in the Zeeman reservoir.

We have explored the fundamental processes behind the buildup behaviour of ¹H polarization by ICP, and confirmed that two distinct processes contribute to the ¹H polarization buildup; (i) the direct polarization transfer from the triplet electrons to the protons occurs mainly inside the individual pentacene molecules, and then (ii) the ¹H polarization is transported away by spin diffusion to the surrounding naphthalene molecules. By successive contributions of these *intra*molecular and *inter*molecular polarization transfers, ¹H polarization is built up over the whole sample volume.

Accordingly, it is important to find the optimal experimental conditions for both the *intra*molecular and the *inter*molecular polarization transfers. The optimization of the former process requires the examination of the initial buildup rate of 1 H polarization for

various values of field sweep width, field sweep time, and microwave intensity, while the optimization of the latter needs the consideration of the transport length of ¹H polarization by spin diffusion, the concentration of the guest molecules, and the repetition rate of the ICP operation.

It is also important to photo-excite the guest molecules to the triplet state efficiently. Takeda et al. have proposed a theory to calculate the penetration depth of light, the triplet excitation depth to which the guest molecules can be transferred to the triplet state, and the fraction of the guest molecules in the triplet state, and have verified the theory by zero-field ESR measurements[5]. Based on the theory, the triplet excitation depth and the triplet fraction can be simulated for a given guest concentration, intersystem crossing rate, natural lifetime, laser beam intensity, and laser pulse width. Therefore, if the intersystem crossing rate and natural lifetime are known, simulations can provide necessary specification for the laser beam intensity and laser pulse width for maximizing both the triplet excitation depth and the triplet fraction for various concentrations of the guest molecule.

Fig. 3(a) shows a ¹H spectrum obtained at room temperature in a single scan after repeating the ICP sequence for 30 s at a rate of 50 times/sec, and the spectrum in Fig. 3(b) was recorded with a single scan at thermal equilibrium. These spectra clearly demonstrate that the NMR sensitivity is profoundly enhanced by triplet-DNP.

3. Application of triplet-DNP

The high nuclear-spin polarization obtained in the present study can be useful in some fields.

(a) A polarized target for particle beam scattering

Experimental investigations of the internal structure of nucleons require nuclear-spin polarized target material, at which accelerated particle beam is irradiated. In particle beam experiments, the capability of polarizing ¹H spins at as a "high" temperature as 105 K[21] makes naphthalene a radiation-resistant target material, because the radiation damage due to the particle beam is self-recovered in naphthalene above 77 K[7]. In this respect, ¹H-polarized naphthalene is advantageous over the conventional targets prepared at very low temperatures, in which depolarization inevitably occurs due to

-45-

FIG. 3: Single scan ¹H spectra of a single crystal sample of 0.018 mol% pentacene-doped naphthalene. (a) Enhanced by applying the ICP sequences for 30 s at a rate of 50 Hz. (b) Obtained under thermal equilibrium, where the sample had been kept in the magnet for 12 hours before acquisition. The time is sufficiently long for the ¹H spins to establish equilibrium at room temperature ($T_1 \sim 40$ min)[6].

the spin-lattice relaxation accelerated by the irrecoverable radiation damage[8].

(b) Chemical/biochemical NMR

Takeda et al. have reported on the successful application of the triplet-DNP experiment in a polycrystalline sample, opening a way to polarize nuclear spins in those systems whose single crystal cannot be prepared. Towards the application to various systems of chemical/biological interest, we consider the following two approaches. The first one is to apply to such interesting systems that can themselves be transferred to the triplet states. For instance, amino acids such as tryptophan, tyrosine, and phenylalanine are photo-excitable to the triplet state[9–11]. Since they can also exhibit the triplet state in peptides[9, 12, 13], they may be used to enhance the sensitivity in proteins.

The other way is to transfer the large nuclear polarization created in, say, pentacene-doped naphthalene, to an initially unpolarized interesting system. For example, in a system in which molecules are adsorbed on or synthesized with a solid surface, nuclear spin polarization can be exchanged between the molecule and the surface through cross polarization[14] or spin-induced nuclear Overhauser effect (SPINOE)[15]. Thus, the signal of the molecule on the surface would become observable by contacting it with the ¹H-polarized single crystal. Another possible example is to perform DNP experiments in a microscopic mixture of pentacene-doped naphthalene and interesting molecules, in which spin diffusion transports the enhanced ¹H polarization in naphthalene to the molecules of interest. Such a mixture would be prepared by melt quenching or solution freezing.

Spin-polarized liquid solution is also possible by rapidly dissolving ¹H-polarized naphthalene into solution, in which the transient Overhauser effect[1, 16] cause the polarization transfer between the protons of the naphthalene molecules and the nuclear spins of the solute molecules.

(c) NMR quantum computing

Despite its superior ability to perform artificial unitary transformations, NMR quantum computing[17, 18] suffers from tiny nuclear spin polarization under thermal equilibrium. So far, all experimental demonstrations of NMR quantum computing have employed the so-called *pseudo-pure states* as an ad hoc solution, at the cost of losing the efficiency gain over the "classical" (that is, conventionally used) computers. However, in order to make further progress in this field, it is essential to avoid the usage of the pseudo-pure states by realizing NMR quantum computing with very high nuclear spin polarization[22], so that the quantum bits (called the *qubits*) can be *physically* initialized.

Unfortunately, the nuclear spin system in which we have attained high nuclear spin polarization does not fulfill one of essential requirements: the qubits must be definable which can individually be accessed. That is, in order for the spin system to be utilizable in quantum computing, homogeneous broadening of the resonance line (such as the broadening of the spectrum in Fig. 3(a)) must be avoided by eliminating the intermolecular dipolar interactions. Thus, nuclear spins have to be polarized in a specially prepared material in which the relevant molecules are well separated from one another. This consideration has led us to an idea to implant the triplet guest molecules in perfectly deuterated host crystal, and to use these triplet molecules as an ensemble quantum computer under ${}^{2}H$

double-quantum decoupling[19]. As an inevitable consequence of the elimination of the intermolecular dipolar interactions, the polarization transfer by spin diffusion would be lost. However, the lack of spin diffusion would be an advantage here, because the spins on the triplet molecule can directly be polarized, and the polarization would not be wasted by irrelevant spins.

4. Summary

Significant enhancement of nuclear spin polarization is possible in solid-state host/guest systems by triplet-DNP. In the triplet-DNP experiment, the direct polarization transfer from the triplet electron spins to protons takes place inside the individual triplet molecules, while the dominant surrounding protons of the host molecules can indirectly be polarized due to spin diffusion. This insight into the underlying processes behind the buildup behaviour has thrown light on the experimental strategy for the efficient buildup, and on the applicability of the triplet-DNP experiment for various purposes of interest.

Acknowledgment

The studies on triplet-DNP described here have been carried out at the Department of Chemistry in Kyoto University, to which I formerly belong, under the direction of Prof. T. Terao and Assoc. Prof. K. Takegoshi. This work has been supported by the CREST project of Japan Science and Technology Corporation.

- A. Abragam, Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).
- [2] K. Takeda, PhD thesis (2003).
- [3] A. Henstra, T.-S. Lin, J. Schmidt, and W. Wenckebach, Chem. Phys. Lett. 165, 6 (1990).
- [4] M. Iinuma, Y. Takahashi, I. Shaké, M. Oda, A. Masaike, T. Yabuzaki, and H. Shimizu, Phys. Rev. Lett 84, 171 (2000).
- [5] K. Takeda, K. Takegoshi, and T. Terao, J. Chem. Phys. 117, 4940 (2002).
- [6] J. von Schütz and H. Wolf, Z. Naturforsch 27a, 42 (1972).
- [7] M. linuma, PhD thesis (1997).
- [8] D. Crabb, C. Higley, A. Krisch, R. Raymond, J. Stewart, and G. Court, Phys. Rev. Lett. 64, 2627 (1990).
- [9] A. Ozarowski, A. Misra, S. Ghosh, and A. Maki, J. Phys. Chem. B106, 5099 (2002).
- [10] A. Ozarowski, J. Wu, and A. Maki, Chem. Phys. Lett. 286, 433 (1998).
- [11] J. Zuclich, J. Chem. Phys. 52, 3586 (1970).
- [12] A. Ozarowski, J. Wu, S. Davis, C.-Y. Wong, M. Eftink, and A. Maki, Biochem. 37, 8954 (1998).

- [13] T. Shiga, H. Mason, and C. Simo, Biochem. 5, 1877 (1966).
- [14] H. Long, H. Gaede, J. Shore, L. Reven, C. Bowers, J. Kritzenberger, T. Pietrass, A. Pines, P. Tang, and J. Reimer, J. Am. Chem. Soc. 115, 8491 (1993).
- [15] J. Smith, K. Knagge, L. Smith, E. MacNamara, and D. Raftery, J. Magn. Reson. 159, 111 (2002).
- [16] I. Solomon, Phys. Rev. 99, 559 (1955).
- [17] N. Gershenfeld and I. Chuang, Science 275, 350 (1997).
- [18] J. Jones, Prog. NMR Spectrosc. 38, 325 (2001).
- [19] K. Takegoshi, K. Takeda, and T. Terao, Chem. Phys. Lett. 260, 331 (1996).
- [20] This technique was originally called the Integrated Solid Effect (ISE).
- [21] Since it is conventional to perform such scattering experiments at cryogenic temperatures, even liquid nitrogen may be regarded as "very hot" in the particle physics community.
- [22] Nuclear spin polarization does not necessarily have to be 1, although the polarization of the order of unity is required.

高磁場 NMR マグネットの現状と将来

物質・材料研究機構 強磁場研究センター 吉川正敏

High Field NMR Magnet : Past, Present, and Future M.Yoshikawa Tsukuba Magnet Laboratory, NIMS

Since the discovery of nuclear magnetic resonance (NMR) in 1945, NMR spectrometers have been making remarkable progress as the most powerful tool for structural biology. As the sensitivity and resolution are improved with the external magnetic field, high field NMR magnets have been developing continuously all over the world. Though the highest field of NMR magnets is 21.6T (920MHz), this is almost an upper limit by using present superconducting materials. In this presentation, the development issues of a higher field superconducting NMR magnet are reviewed. The future vision towards 1GHz NMR is also referred.

1. はじめに

2 SSL2

NMR は生体高分子等の複雑な有機化合物の構造を決定する有力な手段として用いられている。ヒトゲノムが完全解明された現在では、ポストゲノム研究におけるタンパク質の構造・機能解明が喫緊の課題であり、この分野において NMR は欠かすことのできないツールになりつつある。長い間、大きな分子量のタンパク質の構造解析は難しいと考えられ

てきたが、昨年ノーベル賞を受賞した Wüthrich 博 士らによる新たなパルスシーケンス(TROSY 法) の開発により、解析可能な分子量を大幅に増加させ ることが可能となった。NMR では磁場の増加と共 に感度と分解能の飛躍的な向上が期待でき、更に TROSY 法では 1GHz 付近の高磁場で最も強い効果 が得られるため、NMR マグネットの高磁場化、特 に 1GHz を目指した研究開発は、日本のみならず米 国やドイツでも精力的に進められている。

これまで、高磁場化は着実に進んできており、現 在稼動している世界最高磁場の NMR 装置では 21.6T (920MHz) にまで達した。(Fig.1) しかしな がら、現在実用化されている超伝導線材を用いる限 り、発生磁場はほぼ上限に達しつつある。23.5T (1GHz)の磁場を発生する超伝導マグネットを実 現するには、新規超伝導線材の実用化という技術的 なブレークスルーが必要となる。本講演では、NMR

Fig.1 A photo of the 920MHz NMR magnet.

キーワード:高磁場 NMR、高磁場マグネット、超伝導マグネット、超伝導線材

よしかわまさとし

マグネットの高磁場化に対する課題について紹介し、1GHz NMR マグネットの可能性に ついて述べる。

2. 超伝導マグネットの高磁場化における課題

超伝導とは、ある温度以下で電気抵抗がゼロになる現象である。銅線やアルミ線など の通常の導体では、有限の電気抵抗を持っているため、電流を通電するとジュール発熱が 生じる。従って、定められた冷却条件での許容電流値が決められているが、超伝導線材は 電気抵抗がゼロであるため、無損失で大電流を流すことが可能である。そのため、超伝導 線材を用いたマグネットでは高磁場を発生させることが可能となる。

しかしながら、超伝導線材でも抵抗ゼロの状態で無限に電流を流せるわけではなく、 抵抗ゼロの状態で流すことができる電流値に は上限(臨界電流)がある。超伝導状態を示 す物質は非常に多く数百種類にも及ぶが、現 在、超伝導線材として実用に供されているの は、NbTiとNb₃Snのみである。Fig.2 に示す ように、これらの材料の 4.2K での臨界電流 特性は磁場の増加とともに減少し、しかも、 線材の種類で異なっている。400MHz (9.4T) 以下の NMR マグネットは機械的特性に優れ 安価な NbTi 線材のみで製作することが可能 であるが、500MHz (11.75T)以上になると Nb₃Sn 線材を併用する必要がある。Nb₃Sn 線 材は金属間化合物であるため非常に脆く、取

扱に注意を要する。しかも、単価が NbTi 線材と比較して数倍高価であることに加えて、 Nb₃Sn 層を生成するための拡散熱処理工程が必要となるため、Nb₃Sn 線材を用いたマグネ ットは非常に高価になる。更に、Fig.2 から分かるように、Nb₃Sn 線材の臨界電流でさえ 20T 以上の磁場ではマグネットとして実用的な最低限の値を確保できていない。超伝導線材の 臨界電流特性は温度に依存し、温度を下げることにより臨界電流値は向上する。そのため、 マグネットの運転温度を 4.2K から 2K 程度に下げることにより、20T を超える超伝導マ グネットが実現している。しかしながら、このようにマグネットの運転温度を下げても、 実用化されている NbTi, Nb₃Sn 線材を用いる限り、22T を超える超伝導マグネットは実現 していない。更なる高磁場の実現に向けて、Nb₃Sn 線材の特性改善や Nb₃Al 線材, Bi 系 酸化物線材等の新たな超伝導材料の実用化に向けた研究開発が行われており、研究用の高 磁場マグネットでは 23T を超える磁場発生を実現している。

高磁場化を実現するためには、電磁応力というもう1つの大きな課題がある。大きな 電磁応力は励磁中の超伝導線材に対する擾乱となって、クエンチを引き起こす要因となる。 そのため、設計・製造面において、擾乱を抑制しクエンチを避ける技術が求められる。更 に、Nb₃Sn 線材では、電磁応力による歪みが超伝導特性を劣化させるため、高強度の超伝 導線材が必要となる。一方、マグネットの大型化に伴い蓄積エネルギーも相乗的に大きく なるため、万一クエンチした場合にマグネットを適切に保護するための技術も重要となる。

3. NMR マグネット特有の課題

NMR 超伝導マグネットには、単なる磁場発生のみではなく、発生磁場の空間的な均一 性と時間的な安定性に関して極めて厳しい性能が要求される。観測される NMR スペクト ルでは 1Hz 以下の分解能が問題となるため、超伝導マグネットによる磁場の均一性は、 サンプルが置かれる直径 10mm、長さ 20mm の領域内で 0.1ppm 以下であることが要求さ れる。また、長時間の繰り返し積算測定を行うため、時間的な磁場変動は 0.01ppm/h 以下 であることが要求される。これらは、いずれも一般的な物性測定用として用いられる高磁 場発生用超伝導マグネットと比較して、3~5桁以上厳しい値である。

磁場均一性を実現するためには、最適なコイル構成・配置の設計が重要である。超伝 導コイルは巻線密度を一定に保つようソレノイド形状を採用し、巻線の乱れに起因する磁 場の不均一を避けるための精密な巻線技術により製造される。しかも、使用する超伝導線 材には厳しい寸法精度が要求される。更に、製造上避けがたい僅かな磁場の不均一性を補 正するコイル(シムコイル)を用いることにより、要求される磁場均一度を達成している。

磁場安定性を実現するためには、永久電流モードによる運転が必須である。理想的な 超伝導閉回路では電気抵抗が零であるため、文字どおり電流は永久に減衰しないが、実際 には超伝導線の接続部部分および超伝導線自身には微小な抵抗が存在するため、電流は僅 かに減衰する。超伝導線は製造上の線材長さに限界があるため、マグネットを製造するに は、1ケ所当たり概ね 0.01n Ω以下という極めて小さな抵抗で超伝導線同士を接続する特 殊な技術が必要となる。しかも、この接続は製造過程でその特性を確認することが困難で あるため、極めて高い信頼性が求められる作業である。また、超伝導線材の臨界電流は、 Fig.3 に示すように単位長さ当たりの微小な基準電圧(通常は 0.1 µ V/cm)が発生した時 の電流値として定義されている。つまり、臨界電流を通電した状態では既に抵抗が発生し ていることになる。超伝導線材に発生する微小電圧は近似的に電流値の n 乗に比例するこ

とが知られている。従って、NMR 超伝導マ グネットで要求される磁場安定度を達成する ためには、実用的な超伝導線材(n値が 20~ 30)を用いた場合、運転電流を臨界電流の 50 ~60%に抑える必要がある。このため、一般 的な物性測定用として用いられる超伝導マグ ネットよりも高磁場を発生するのは困難であ り、発生磁場が同じであればマグネットサイ ズは大きくなる傾向にある。

Fig. 3 I-V characteristics of superconductors.

更に、NMR 超伝導マグネットは長期間連続して運転されるため、液体ヘリウム等の冷 媒消費量の低減とシステム全体としての長期連続運転における信頼性の確保が重要となる。 特に、高磁場化に伴いマグネットが大型化するため、冷媒消費量は増加する傾向にあるが、 いかに抑えることができるかが重要な課題となる。また、マグネットを 2K 程度に冷却す るためには、液体ヘリウムを減圧するための排気ポンプ等が必要となるが、これら動力機 器を安定して連続運転することも重要となる。

4.1GHzに向けて

前述したように NMR マグネットの高磁場化を実現するためには、多くの課題が存在する。とりわけ、高磁場化に伴いマグネットサイズが大型化することによる課題が深刻であ

る。マグネットサイズを小型化するためには、巻線密度を高める事が可能な矩形断面形状の線材(平角線材)を採用する方が有利である事は明らかであるが、平角線材では加工時に内部の超伝導フィラメントが不均一に変形するため、超伝導特性が劣化するのが一般的であった。しかし、加工条件を最適化することにより、超伝導特性を維持しつつ平角形状に加工することに成功した。その結果、750MHz で Nb₃Sn コイルに平角線材を採用することができ、800MHz では、超伝導シムコイルを除く全てのコイルに平角線材を採用できるようになった。

このように小型化の工夫を施しても、750MHz では 600MHz と比較して、磁場は 25% 増加したに過ぎないが、蓄積エネルギーは約 5 倍となった。920MHz に至っては 30 倍以 上にもなり、高磁場化に伴いマグネットサイズすなわち蓄積エネルギーは急激に増加して いる。従って、クエンチ保護回路の設計は極めて重要となる。特に、NMR マグネットは 永久電流モードで運転しているため、クライオスタット内部でパッシブに保護する技術が 必要となり、一般的な超伝導マグネットよりも保護回路の設計は困難となる。更に、高磁 場機種ほど実機サイズのモデルコイルテストを実施することは非現実的となるため、コン ピュータによるシミュレーションが有効となる。高精度なシミュレーション技術を確立し たことによって、750MHz 以上の高磁場 NMR マグネットを実現することができた。

更に、マグネットサイズの大型化に伴い電磁応力も増加し、特に Nb₃Sn 線材では歪みによる超伝導特性の劣化が深刻な問題となる。Ta を内部補強材として組み込むことにより、4.2K での 0.2%耐力を従来材の 1.5 倍以上にまで向上させた高耐力 Nb₃Sn 線材の開発に成功したことにより、920MHz の実現に至った。

こうした継続的な研究開発の結果、NMR 超伝導マグネットは要求される性能が極めて 厳しいにも関わらず、Fig.4 に示すように着 実に高磁場化が進んできた。しかしながら、 研究用の高磁場発生超伝導マグネットの最高 発生磁場が頭打ちにある現状を考えると、 NMR マグネットによる発生磁場もほぼ上限 に達したと思われる。これは、前述したよう に超伝導マグネットの発生磁場が超伝導線材 の特性によって制約を受けているためである。

研究用の超伝導マグネットでは、Bi 系酸 化物超伝導線材や Nb₃Al 線材なども使われ 始めており、現時点での超伝導マグネットに よる最高発生磁場が 23.4T である事を考える と、磁場発生という点においては 1GHz 相当

magnets and of research magnets with a bore of ≥ 22 mm.

を実現できるレベルに達しつつある。しかしながら、これらの材料には、n 値の向上、長 尺化、超伝導接続など様々な課題が残されており、NMR マグネットに適用するにはしば らく時間を要すると思われる。1GHz NMR を実現するためには、これらの課題解決に向 けた研究開発に取組む必要があり、特に酸化物超伝導線材でこれらの課題を解決すれば、 超伝導材料の高磁場特性による発生磁場の制約は大きく緩和されるため、1GHz 超 NMR の実現も大いに期待できる。

人体用高磁場 MRI の挑戦

(国立環境研) 三森文行

Challenge of high field MRI

(National Institute for Environmental Studies) F.Mitsumori

High sensitivity is essential for the high performance MRI such as high resolution imaging, fMRI and localized spectroscopy. I describe here some images and spectra obtained at a 4.7T wholebody MRI system. The high sensitivity at high field allowed us to obtain high spatial resolution images in a reasonable duration. The improved sensitivity along with the widened chemical shift dispersion at high field is a powerful aid to challenge the multinuclear MRS. We developed a method of TRIple Nuclei Interleave in Triple channel spectroscopY (TRINITY), which enabled us to measure ¹H, ¹³C and ³¹P NMR spectra from the same localized area at one measurement. I would also discuss about rf coils at high field further to improve the sensitivity.

【はじめに】

MRIの分野においても、通常の空間分解能を超えた高精細画像の測定や、脳機能マ ッピング、スペクトロスコピー (MRS)を用いた代謝解析等のいわゆる"高機能イメー ジング"に挑むためには、検出感度を上げることが必要となる。高感度化の王道が高 磁場であることは NMR の歴史が実証している。しかし、高磁場化は、生体の T₁緩和 時間の延長や、dielectric 効果による B₁の不均一、rf コイルの非効率化などの問題を も生ずる。本講演では、上述の問題点を回避しながら、4.7T 人体用 MRI でどのよう な画像を得ることができるのか、多核種 MRS はどこまで可能となったか、私たちの 取り組みを紹介する。さらに、高磁場での高感度測定を支える rf コイルの問題点とさ らなる高感度化のための試みについて論じたい。

【高磁場 MRI で得られる画像】

高磁場化によって得られる MR 画像の感度向上は、NMR の場合と同じく、ほぼ磁場に比例するという結果が得られている[1]。われわれが 4.7T で測定したグラディエントエコー画像でもこの点が確認された。この高感度を利して私たちは空間分解能が 1x1x1mm の全頭の3次元画像をルーチン的に測定できるようになった(図1)。

Fig.1. Orthogonal images from 3D MDEFT dataset obtained in the human brain. Spatial resolution: 1mm, a: sagittal, b: coronal, c: transverse images.

Keywords: 高感度, 高磁場 MRI, 多核種 NMR, 高精細画像

みつもり ふみゆき

一方、脳皮質や白質のT₁緩和時間は1.5Tでの値に比べて約40%の延長が認められ、 これは単位時間当たりの検出感度増を逓減しかねない。高磁場ではT₂*コントラスト が増大するため、8T では低磁場で見られない頭の微細静脈が観測されるようになっ た[2]。この点は同じコントラストを利用する脳機能マッピングにもきわめて有利であ る。

【高磁場スペクトロスコピー】

検出感度の制約のためイメージングの分野では NMR の真骨頂ともいうべきスペクトル情報の利用はきわめて限定されてきた。特に、他核種の利用は検出感度の障壁が大きい。スペクトル測定においては、高磁場は高感度とともに、スペクトル分解能も向上するため、2重の意味で恩恵をもたらす。私たちは、4.7T の MRI 分光計に3 チャンネルの送信系と、4 チャンネルの受信系を装備し、同一測定時間内に、脳の同 一領域から3 核種のスペクトルを測定する TRINITY 法 (TRIple Nuclei Interleave in Triple channel spectroscopy)の構築を進めている(図2)[3]。

Fig.2. An illustration of a concept of the TRINITY (TRIple Nuclei Interleave in Triple channel spectroscopy) method

この方法では、高磁場で延長した relaxation delay の間に他核種の interleave 測定を行うため、代謝物の T_I の延長を克服し高感度の利点を生かすのに有効である。これまで、ヒト脳の選択領域から 10 分間で 1 H、 31 P 両核のスペクトルが同時測定できることを示した(図3) [4]。

Fig. 3. ¹H (upper) and ³¹P (lower) NMR spectra obtained in an interleave manner from the same 3x3x3 cm voxel in the human brain (upper left). 128 transients were accumulated (10.7 min). Localization was performed for ¹H by a STEAM method with TR/TE/TM of 5000/4/33ms, and for ³¹P by an ISIS method.

さらに、今年はこれに¹H 検出¹³C スペクトルを加え、TRINITY 法の基盤を確立した (図4)。また高磁場の高感度を利して、代謝物の重なり合った共鳴線の分離を改善 するために領域選択したコンスタントタイム COSY 法の開発を進めている。

Fig. 4. TRINITY spectra (a: ¹H, b: ¹³C indirectly detected by ¹H, c: ³¹P) obtained in an interleave manner from 2x2x2 cm voxel in a phantom containing 50mM 2-¹³C acetate, 50mM glutamate, 100mM ATP and 100mM MgCl₂) solution. 32 and 64 transients were accumulated in ¹H and ³¹P, respectively with TR of 5sec. TE/TM for the STEAM were 7.7/35 ms.

【高磁場 MRI における困難さ】

高磁場 MRI における高検出感度の実現は実は平坦な道のりではない。広い均一磁 場領域を有する巨大超伝導磁石の開発の困難さは言うまでもないが、高磁場に見合っ た大きな磁場勾配を高速で安定的に駆動する磁場勾配発生システムも高磁場 MRI の 性能を左右する要因である。さらに、高い共鳴周波数での効率的な信号検出コイルの 開発は感度向上を支える基盤であるといっても過言ではない。これは、MRI で用いら れる大口径 rf コイルでは radiation loss によるエネルギー損失が大きくなり、ややもす れば高磁場による検出感度の向上を打ち消しかねないためである。このため、これま で 1.5T の臨床用 MRI で主として用いられてきた birdcage 型の検出器は 3T 程度まで が限界と考えられている。これに代わって高磁場では表面コイル検出器、小さな共鳴 エレメントを組み合わせる TEM (Transverse ElectroMagnetic coil) 型コイルや[5]、 phased array coil が重要になろう。

【さらなる感度向上に向けて】

前述の高磁場の困難さは逆に言えば、これらの点を改善することでさらなる感度向上が望めるということも意味する。ここでは、rf コイルの問題について私たちが進めつつある試みを紹介したい。TEM 型コイルについては頭部用¹H コイルに加えて、 1 H/ 13 C/ 31 P 3核種同調コイルや、世界で最も高磁場の体幹部用コイルの開発を進めている。一方、小さな表面コイル検出器や、phased array コイルを用いれば、大きなボリュームコイルを用いる場合に比べて2~3倍の検出感度の向上が得られる。現在、TRINITY 測定には、 31 P/ 13 C の2重同調表面コイルを頭部用 1 H TEM 型コイルと組み合わせて用いている。表面コイル検出器を送受信両用に用いると B₁磁場の不均一の問題が生じる。この問題に対しては、ピンダイオード等を用いて互いのカップリングを除いた個別の送信、受信コイルを用いたり、B₁磁場の不均一に耐性の高い断熱 rf パルスを用いることが有効である。

【謝 辞】ここで報告した内容は国立環境研究所において、渡邉英宏博士、高屋展宏 氏らと進めている研究の結果である。また、高磁場におけるパルスシークエンスやrf コイルで協力をいただいた Minnesota 大学、M.Garwood, R.Gruetter, I.Tkac, T.Vaughanh 博士らに感謝する。

【文献】

- 1. J.T.Vaughan, M.Garwood, C.M.Collins, W.Liu, L.DelaBarre, G.Adriany, P.Andersen, H.Merkle, R.Goebel, M.B.Smith, K.Ugurbil, Mag.Reson.Med., 46, 24-30 (2001).
- P.-M.L.Robitaille, A.Kangarlu, A.M.Abduljalil, J.Comp.Ass.Tomography, 23, 845-849 (1999).
- 3. 三森文行, 分光研究, 51, 297-309 (2002).
- 4. F.Mitsumori, N.Takaya, Proc.11th Soc.Magn.Reson.Med., 2003, 1138 (2003).
- 5. J.T.Vaughan, H.P.Hetherington, J.O.Otu, J.W.Pan, G.M.Pohost, Magn.Reson.Med.32, 206-218 (1994)

Fast MR Imaging in Clinical Applications

Marc Van Cauteren, PhD Director MR Clinical Science Asia Pacific Philips Medical Systems

One of the most successful transfers of fundamental scientific knowledge to a very practical application has been seen in the use of NMR based imaging for diagnostic clinical purposes. The core idea, first proposed by Paul Lauterbur as recently as 1973, was based on the then young idea of 2D-NMR from Jean Jeener and Richard Ernst. Very quickly more efficient ways of sampling the necessary data were proposed by different laboratories and by the beginning of the eighties we saw the first human images.

Ever since then, one wish all radiologists (and patients) have had in common is that they want MR imaging to become ever faster, and this of course, with a minimised loss in signal-to-noise and spatial/temporal resolution.

Basically there are two strategies for doing this: either simply sample the data faster by using better gradient and RF technology; or by reducing the amount of data needed for artefact free reconstruction of the images. The former has been going on in the latter part of the eighties and during the nineties. This technical development is now hitting a boundary since even more powerful hardware than the one used now would be harmful to the human body. Indeed, both the RF deposition and the peripheral nerve stimulation due to the switching gradients becomes a real problem.

The latter strategy was used only in a very basic way until at the end of the nineties when the parallel imaging strategies became available. In this presentation I will concentrate on this family of techniques
allowing a drastic reduction of the amount of data that need to be acquired. The main reason why MRI research has concentrated on this recently is exactly because the physiological harmful effects described above do not pose any problem whatsoever while we can still acquire data much faster than we could ever do before.

Historically, the first data reduction acquisition strategies where based on the properties of k-space itself. Indeed, since k-space is the dual space of the real image, connected through Fourier transform, there are a few mathematical properties of k-space that we can exploit. For instance, k-space is Hermitian symmetric as it is the FT of a real function (the pixel intensities of the final image). Therefore, one can calculate through conjugation one half of k-space from the other half. Hence, acquiring just half of the data should be sufficient. In real life however, due to inherent hardware limitations, phase corrections are needed and we need to sample more than half of k-space to use this technique. Another old strategy is to disregard the outer edge of kspace, since the SNR of these data is inherently low. Similar to spectroscopy zero filling is then applied. This technique is efficient in that SNR stays high, but at the cost of real spatial resolution.

Another family of strategies uses the fact that the major contrast information is concentrated in the middle of k-space (analogous to the situation in i.e. Fourier optics). Thus, in a dynamic imaging series, it would suffice to sample only the centre of k-space with a high temporal resolution to catch the signal change due to whatever process is going on (in clinical applications this would mostly be injection of contrast agents) and then later glue these data together with separately obtained data from the outer edges of k-space to get also high spatial resolution [1].

- 57 ---

A spectacular innovation came to fruition at the end of the nineties, when parallel imaging became practical on clinical systems [2,3]. This technique uses the inhomogeneity of the RF profile of surface coils as an additional means of spatial encoding. If one measures a pixel with, say, two coils then the pixel intensity in the images obtained by these two coils will be different depending on the distance from the receiving coil to the position of the pixel. This information allows us to reduce the number of standard phase encoding steps. Speed-up factors are determined very much by appropriate coil design and the number of coils used. However, recent developments in post-processing allow us now to get an acceleration factor higher than the number of coils.

Finally I would like to conclude the presentation with a technique that incorporates elements of all the previously mentioned techniques. Indeed, we will in this technique exploit correlations both in space (or in k-space) and in time (or frequency) to obtain a reduction in the data needed, specifically in the case of dynamic imaging [4].

The technique is based on the well-known observation that changes over time in pixel-intensity are normally smooth and that they can be described by a well-behaved frequency spectrum. Also, in many cases the image contains pixels that do not vary over time at all. Thus, it is not necessary to acquire updated information every time and we can concentrate the acquisition to those pixels where there is a pixel intensity change.

In this way this technique works very similar to the way our brain works; and e.g. to the way movies are reduced in size when digitised with certain codecs.

- 58 -

We will discuss the mechanisms of these data reduction techniques more in detail during the presentation and show plenty of examples of clinical images that benefited directly from these data sampling reduction strategies.

REFERENCES

- van Vaals JJ, Brummer ME, Dixon WT, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar JL, den Boer JA. "Keyhole" method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 1993; 3: 671-675.
- 2. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591-603.
 - 3. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
 - 4. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE dynamic MRI with high frame rate exploiting spatiotemporal correlations. MRM in press.

REVIEWS (in Japanese)

- Van Cauteren M. bFFE と bTFE: 超高速リアルタイム撮像と高 SN 比を両立させた撮像シーケンス. INNERVISION, 16(9), 44-48 (2001)
- Van Cauteren M. Parallel Imaging の原理. 日獨医報, 47(1), 6-11 (2002)
- Van Cauteren M. 超高速ダイナミック撮像の新しい潮流: k-t BLAST and k-t SENSE. INNERVISION, 18(9), 89-94 (2003)

- 59 -

NMR of hyperpolarized noble gases and other nuclei

Scott D. Swanson

Department of Radiology The University of Michigan Ann Arbor, MI 48109-0553, USA

第二 日

11月27日(木)

般講演要旨

2 L 1

常磁性金属効果を用いた新規距離制限法の開発

(奈良先端大バイオサイエンス研究科¹、三菱化学生命科学研究所²) 〇野村誠¹、小林俊達¹、河野俊之²、三島正規¹、児嶋長次郎¹

Cu²⁺-IDA complex: a new paramagnetic NMR agent localized to a histidine residue on a protein surface

Makoto Nomura¹, Toshitatsu Kobayashi¹, Toshiyuki Kohno², Masaki Mishima¹, and Chojiro Kojima¹

¹Laboratory of Biophysics, Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan ²Mitsubishi Kagaku Institute of Life Sciences (MITILS), Machida, Tokyo 194-8511, Japan

The paramagnetic metal chelate complex, Cu^{2+} -iminodiacetic acid (IDA), was mixed with ubiquitin, a small globular protein. Quantitative analyses of ¹H and ¹⁵N chemical shift changes and line broadenings induced by the paramagnetic effects indicated that Cu^{2+} -IDA was specifically localized to a histidine residue on the protein surface, specifically His68 of ubiquitin. The distances between the backbone amide proton and the relaxation center Cu^{2+} were evaluated from the proton transverse relaxation rate enhanced by the paramagnetic effect. These correlated well with the distances calculated from the crystal structure up to 20 Å. Without any modifications of the target protein, use of Cu^{2+} -IDA can easily provide long distance structural information in various systems, and can be used for functional studies.

序論

近年、NMR による構造生物学において、より分子量の大きな複数のドメインを持 つタンパク質の立体構造決定、あるいは決定の迅速化のために遠距離情報を得る方 法論が必要とされている。金属タンパク質では、常磁性金属効果を用いた遠距離情 報の取得に成功している。しかし、一般のタンパク質に対する拡張においては、常 磁性金属の局在化が困難であり、特殊なタンパク質の改変を必要としている。我々 は、金属キレーター複合体を用いることによる簡便な方法論の構築を目標として Gd-EDTA および Mn-NTA による系を評価してきたが、十分な局在性を得ることは困 難であった(野村ら、第 41 回 NMR 討論会要旨)。今回、ヒスチジン選択性を持つ Cu²⁺-iminodiacetic acid (IDA)を用いることにより、ヒスチジンを表面に持つタンパク 質において常磁性金属を局在させることに成功した。

実験材料および方法

モデルタンパク質として¹⁵N ラベル体 ubiquitin を用いた。ubiquitin は表面に唯一の タンパク質、立体構造、常磁性金属、ヒスチジン、遠距離情報

のむらまこと、こばやしとしたつ、こうのとしゆき、みしままさき、 こじまちょうじろう ヒスチジン残基である His68 を持つ。1 mM ¹⁵N ラベル体 ubiquitin に対して 0.4 mM Cu²⁺-IDA を導入し、¹H-¹⁵N HSQC 実験を行った。解析ソフトウェア NMRDraw および Sparky を用いてピークをインテグレーションし、線幅および化学シフトを定量した。また Cu²⁺-IDA の横緩和時間への影響を調べるために、¹H-¹⁵N HSQC ベースのスピンエコー実験を行った。Cu²⁺-IDA-ubiquitin および ubiquitin 単体の比較から得られた Cu²⁺-IDA による化学シフト変化および緩和時間変化を数値計算ソフトウェア Mathematica の非線形フィッティング機能を用いて理論式に対してフィッティングした。横緩和時間に対するフィッティングパラメーターの最適化により Cu²⁺-IDA の局在位置を決定した。また実験データより求めた Cu²⁺-IDA から主鎖のアミドプロトンまでの距離および化学シフト変化と ubiquitin の結晶構造より求めた距離および化学シフト変化の相関関係を求めた。すべての NMR 実験は Bruker DRX 800 NMR 装置を用いて行われ、3 回の独立な実験から平均値および標準偏差値を求めこれを使用した。

ヒスチジンに対する局在

Cu²⁺-IDA による線幅変化および化学シフト変化を ubiquitin の立体構造に対してマ ップした。線幅変化は His68 付近で極大であり周辺部で等方的に減衰した (Figure 1, left)。このパターンは His68 付近を中心とした局在を強く示唆している。化学シフト 変化においても His68 付近で極大であった。しかし、化学シフト変化は線幅の変化 と異なり、His68 を中心として異方的であった(Figure 1, right)。このパターンの差は 線幅変化については理論上の常磁性金属による横緩和効果が等方的であること、化 学シフト変化については、理論上の偽コンタクトシフト効果が異方的であることと 整合性がある。

Figure 1. Line broadenings (left) and peak shifts (right) induced by the Cu^{2+} -IDA complex mapped on the ubiquitin structure. With increasing broadenings and shifts, the gradation changes white to black.

緩和効果

常磁性金属による横緩和の促進効果は金属中心から距離の 6 乗に反比例して減衰 する。横緩和時間の変化を理論式にフィッティングすることにより求められた Cu²⁺-IDA の座標は His68 の近傍に収束した (Figure 2, left)。His68 の imidazole の N⁸および N⁶から Cu²⁺-IDA までの距離はそれぞれ 5.6Å および 4.6Å であった。Cu²⁺-IDA の座標 は 0.2 mM および 0.8 mM Cu²⁺-IDA を導入したサンプルを用いても求められた。これ らの濃度においても His68 近傍に収束し、0.4 mM のサンプルと非常に近接した座標 であった(RMSD = 1.3 Å)。

Cu²⁺-IDA から主鎖のアミドプロトンまでの距離を横緩和時間と結びつける理論式 を用いて実験的に求め、結晶構造より求めた距離との相関関係を求めた (Figure 3)。 相関係数は 0.70 であった。G75 は一般化オーダーパラメーターが 0.17 であり、相関 関係からのずれはフレキシビリティに由来すると考えられる。

Figure 2. The ribbon structure of ubiquitin with Cu^{2+} (left), and the coordination of IDA and histidine N^{δ} to Cu^{2+} (right). Side chain of His68 is drawn as a ball-stick model. Cu^{2+} is shown as the sphere.

Figure 3. Correlation plot between calculated and experimental distances from Cu^{2+} to each backbone amide proton of ubiquitin. The calculated distances are from the crystal structure. The experimental distances were obtained from the paramagnetic enhancement of the proton transverse relaxation rates.

シフ<u>ト効果</u>

常磁性金属効果による偽コンタクトシフトは、金属中心から距離の3乗に反比例 して減衰し、また磁場ベクトルと金属-観測核間ベクトルの成す角度に依存した変調 を受ける。化学シフト変化を理論式に対してフィッティングし、パラメータを最適 化した。実験による化学シフト変化と結晶構造より理論式を用いて求められた化学 シフト変化の相関関係を求めた (Figure 4)。相関係数は 0.55 であり、さらなるモデル の改良が必要と考えられる。

Calculated paramagnetic shifts (ppb)

Figure 4. Correlation plot between calculated and experimental paramagnetic shifts of ubiquitin induced by the Cu^{2+} -IDA complex. The paramagnetic shifts were calculated using the pseudo-contact shift term from the crystal structure of ubiquitin, and the Cu^{2+} position was optimized by the paramagnetic relaxation data. The experimental values represent the shift differences between cases in the presence and absence of the Cu^{2+} -IDA complex.

他の IDA キレート可能な金属の局在性

ヒスチジンに対する局在性を評価するために IDA によるキレート可能な金属である Co^{2+} , Ni^{2+} および Fe^{3+} についても実験を行った。 $^{1}H_{-}^{15}N$ HSQC スペクトルにおいて、 ^{1}H 軸では有意な線幅の増加およびシフトは観測されなかった。しかし、 ^{15}N 軸において His68 近傍のピークでシフトが観察された。この結果は一般に 2 価金属 IDA 複合体においてヒスチジンへの局在性が存在することを示唆する。

距離制限法としての性能

以上の実験により、タンパク質に特殊な改変の不要な Cu²⁺-IDA システムを用いて、 横緩和時間測定により有効範囲約 20 Å、誤差約 3.7 Å の遠距離情報を得た。化学シ フト変化からも情報が得られる可能性が示された。距離制限法としての性能評価の ため、NOE 距離制限情報と本研究による遠距離情報を用いた立体構造決定について も議論する予定である。

2 L2

静水圧3000気圧下の蛋白質の構造とダイナミクス

:ユビキチンのもう1つのフォールド構造の解明

(1 理研·播磨、2 東大·院理、3 近大生物理工) O北原亮¹、横山茂之^{1,2}、赤坂一之^{1,3}

The first solution structure of a protein under high pressure :Structure and dynamics of the alternative form of ubiquitin

Ryo Kitahara¹, Shigeyuki Yokoyama^{1,2}, and Kazuyuki Akasaka^{1,3}

¹Cellular Signaling Laboratory, RIKEN Harima Institute at Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan

²Department of Biophysics ans Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

³Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Uchita-cho, Wakayama 649-6493, Japan

Conformational fluctuation is a key for understanding protein function, but we know little about the actual *structural or shape changes* associated with the fluctuation. Here we present a general method for elucidating the shape change of a protein molecule in solution associated with a conformational fluctuation in atomic coordinates. We utilize multi-dimensional NMR spectroscopy and determine average coordinates at different pressures, which are to give "NMR snap shots" of a fluctuating protein structure because of the intimate relationship between conformation and volume of a protein. The first target protein chosen is ubiquitin (pH 4.6 at 20 °C), whose average coordinates were determined at 30 bar and at 3 kbar using NOE distance and torsion angle constraints. The structure at 3 kbar revealed that the helix swings out by ~3 Å outwardly with a simultaneous orientational change of the C-terminal segment carrying the reactive-site residue 76, forming an "open" platform suitable for enzyme recognition. Spin relaxation analyses at two pressures indicate that the conformational fluctuation takes place in the 10 microsecond time range.

溶液中の蛋白質は大きく構造を変化させることによりその機能を生み出す。しかしある種の運動に伴う立体構造の変化或いは分子形状の変化を原子レベルで捉えることは難しい。NMR は溶液中で蛋白質の構造を原子レベルで解析可能な手段であるが、その構造変化が速い場合(>>10³ s⁻¹)測定時間(ms-s)の間にスペクトルは平均化され構造に関する情報も平均化されてしまう。一方スピン緩和の解析からps-msまでの広い時間領域にわたる"構造揺らぎ"の情報を得ることも可能であるが、構造或いは分子形状の変化の情報は得られない。我々の目的は圧力を用いて蛋白質の"揺らいでいる姿"をスナップショットのように捉えることである。圧力はもともと存在する蛋白質の多様構造間の平衡を、分子体積を軸に、加圧により部分モル体積の小さな構造の方へシフトさせることによって、天然状態から逸脱した構造を安定化させる。これにより常圧下では分光学的検出限界外にある"揺らいだ構造"も、

キーワード:圧力、準安定構造、ユビキチン

きたはらりょう、よこやましげゆき、あかさかかずゆき

-66-

加圧下で安定に捕捉され検出可能になる。

我々はこれまでに細胞内でポリユビキチンを形成し蛋白質分解の信号となるユビキチンについて、 その構造の全体像を明らかにした。すなわち広い圧力範囲で全残基レベルでの高圧 NMR 実験(-21℃~ 35℃、30 bar ~3.7 kbar)を行うことによって、ユビキチンは N₁, N₂, I, U の少なくとも4つの構造 間の平衡状態にあることを明らかにした^{1,2}。今回 30 bar (N₁:85%)と3 kbar (N₂:77%)の加圧下でのプロ トンープロトン NOE 情報に基づくユビキチンの構造解析を行うことに成功した。

構造

二次元¹H/¹H NOESY、HNCA、三次元¹⁵N-edited HNHA を pH4.6, 20℃で 1 bar から 3 kbar まで測定した。 距離制限は NOE から二面角 (ø、𝒴) 制限は J カップリング定数と C^αシフト値から得た。30bar と 3 kbar の圧力下で、約 1000 個の距離制限と約 80 個の二面角制限から CYANA を用いて構造計算を行った。

3 kbar では活性部位 Gly76 を含む C 末端残基 70-76 が Val70 の位置から大きく配向を変えており、 これらは Val70 と Arg42 間に形成される 2 つの水素結合が切れた事と Val70 ϕ 角の変化に起因する。ま た β シート部位に対する α ヘリックスの配向が外側に 3Å 以上変化しており、これはその前後の部位つ まり 22-24 番、38-41 番残基の主鎖二面角の変化によって説明できる。

30 bar と 3 kbar で分子表面と分子内キャビティーの様子を比較すると、加圧下では C 末端と α ヘリックスの配向の変化に伴い、C 末端側で分子表面が開いた状態になっており、分子内キャビティーの一部が溶媒に露出する結果となった。露出により消失したキャビティーの体積(約 25mL/mol)は、N₁から N₂構造への転移に伴う部分モル体積の変化(-24mL/mol)²と同程度であった。

ダイナミクス

30 bar と 3 kbar における ¹⁵N-*R*₁, *R*₂ NOE 測定に基づいて、Modelfree 解析からユビキチンのダイ ナミクスを調べた。加圧により ps~ns の速い運動(*S²*, *t*₂)に顕著な変化は無いが、 α ヘリックスと C 末端部位で *R*₂の化学交換による寄与 *Rex* が認められた。Val70 N⁴, H^Nの加圧によるシグモイド状の化学 シフト変化から見積もられた 3 kbar における N₁ (~23%), N₂ (~77%)の存在比率²、化学シフト差*δω*と Modelfree 解析より見積もられた *Rex* から、N₁ と N₂間の化学交換速度が 0.38×10⁵ (=*k*_N) と 1.27×10⁵ (=*k*_N) と見積もられ、ユビキチンは数十 μ s の時間スケールで2つのフォールド構造内を行き来していること が明らかになった。

構造変化と機能との関係

30 bar と 3 kbar の構造解析から明らかにされた α ヘリックスと C 末端部位で生じるµs の時間スケー ルの構造変化は、残余双極子カップリングを用いた Modelfree 解析 ⁴でも示唆されており、3 kbar の 構造がまさしく揺らいだ構造のスナップショットといえる。それらの構造変化を示す部位はユビキチ ン関連酵素群(E1-E3) との相互作用部位³と一致しており、3 kbar で安定に存在する構造すなわち N₂ 構造が酵素の認識に関係していることを強く示唆する。

Kitahara and Akasaka PNAS 100, 3167-3172 (2003). 2. Kitahara et al. Biochemistry 40, 13556-13563 (2001). 3. Miura et al. JMB 290, 213-228 (1999). 4. Meiler, J. et al. JACS 125, 8072-8073 (2003).

第二日

11月27日(木)

特別講演要旨

The Development of Solution NMR as a Key Method in Structural Biology

Kurt Wüthrich

Institut für Molekularbiologie und Biophysik, ETH Zürich, CH-8093 Zürich, Switzerland and Departments of Molecular Biology and Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA

Following some initial NMR experiments with proteins during the decade 1957 to 1967, exploration of the use of solution NMR techniques for studies of proteins has been pursued at an ever increasing pace during the past 35 years. Over the decades, the potentialities of NMR experiments in solution for investigations of structure and function of proteins have greatly changed. This is due to advances in NMR instrumentation, computer science, and the techniques of molecular biology and biochemistry used for sample preparation. In this lecture, some key developments in solution NMR techniques used for studies of biological macromolecules will be reviewed.

References

Wüthrich, K. (2003) Angew. Chem. Int. Ed. 42, 3340–3363 NMR Studies of Structure and Function of Biological Macromolecules (Nobel Lecture) Wüthrich, K. (2003) Angew. Chem. 115, 3462–3486 NMR-Untersuchungen von Struktur und Funktion biologischer Makromoleküle (Nobel-Vortrag)

Wüthrich, K. (2003) J. Biomol. NMR, 27, 13-39

NMR Studies of Structure and Function of Biological Macromolecules (Nobel Lecture)

第三日

11月28日(金)

般講演要旨

NMR を利用したユビキチンリガーゼの分子認識の解析 (名市大・院薬、CREST/JST) 〇加藤晃一

NMR analyses of molecular recognition by ubiquitin ligases Graduate School of Pharmaceutical Sciences, Nagoya City University & CREST/JST OKoichi Kato

Ubiquitin ligases, which catalyse protein ubiquitylation, play principal roles in proteasome-mediated protein degradation of the improperly folded or incompletely assembled proteins in cells. Defects of these enzymes are associated with intractable diseases such as neurodegenerative diseases. Here we report NMR studies of structures and interactions of ubiquitin ligases. We determined three-dimensional structure of the ubiquitin-like domain of parkin ubiquitin ligase, which is a product of the causative gene of autosomal-recessive juvenile parkinsonism. We also determined the sugar-binding mode of Fbs1, which is the substrate-recognition component of the SCF^{Fbx2} ubiquitin-ligase complex and binds specifically to *N*-linked oligosaccharides attached to its target proteins.

リボソームにおいて生合成されたタンパク質は、小胞体(ER)内で種々の分子シャペロンと相互作用して正しい三次元構造へと折りたたまれる。しかしながら、新生タンパク質の中には、余剰のサブユニットや折りたたみ異常(ミスフォールド)タンパク質となってしまうものも存在する。細胞内にはこうした"不良品"タンパク質をERから細胞質へ逆行輸送したのちにプロテアソームによる分解へと導く機構が存在する。ユビキチンリガーゼは、プロテアソームによる分解標的となるタンパク質に分解マーカーであるユビキチン(Ub)鎖を連結するはたらきを有する多種多様な酵素(複合体)群の総称である。

ユビキチンリガーゼの機能不全は細胞内における異常タンパク質の蓄積を引き起こし、重篤な 疾患を引き起こす場合がある。例えば、常染色体劣勢遺伝性若年性パーキンソン症候群の原因遺 伝子産物である parkin はユビキチンリガーゼとして機能しているが、遺伝子変異によってその機 能が損なわれた場合には、基質タンパク質の異常な蓄積により神経変性疾患に至ると考えられて いる。

我々は、高磁場 NMR 装置と残余磁気双極子相互作用を活用することによって parkin の N 末端部 に位置するユビキチン様ドメイン(Ubl)の立体構造を 0.1 mM という希薄な溶液を用いて決定す ることに成功し、このドメインにおいて報告されている変異がプロテアソームとの相互作用を損 なうことによって効率的なタンパク質分解を破綻させて疾患を引き起こすという仮説を提唱して いる[1]。

NMR、ユビキチンリガーゼ、糖鎖、分子認識、クライオプローブ

かとう こういち

3 L1

最近、標的タンパク質が発現している糖鎖を認識するユビキチンリガーゼが存在することが明 らかになった。SCF^{Fbs1}は N型糖鎖を認識する複合体型ユビキチンリガーゼで、脳に特異的に存在 することが報告されている。我々は、この複合体中の基質認識ユニットである Fbs1と糖タンパク 質との相互作用様式を明らかにすることを目的として、Fbs1 中の 201 アミノ酸残基からなる糖鎖 結合ドメイン (SBD₉₇₋₂₉₇)を用いてクライオプローブを利用した NMR 解析を行った。各種三次元 NMR 法により SBD₉₇₋₂₉₇の主鎖シグナルの連鎖帰属を行い、キトビオースおよび Man₃Gl cNAc₂ との結合に よって誘起される化学シフト摂動を観測した (Figures 1 & 2)。その結果、SBD₉₇₋₂₉₇上のβ3-β4、 β9-β10 ループに標的糖鎖のキトビオース部分が結合し、β5-β6 ループがマンノース残基と相互作 用することが明らかとなった[2]。また、動物細胞培養系を利用して安定同位体標識を施した様々 な構造の糖鎖を担った糖ペプチドを調製し、SBD₉₇₋₂₉₇との相互作用解析を行った結果、①成熟した 複合型糖鎖は Fbs1 と結合しないこと、②標的基質上の糖鎖結合部位周辺のアミノ酸残基も Fbs1 との相互作用に関与することが明らかとなった。Fbs1 が結合する糖鎖還元末端のキトビオース部 分は糖タンパク質分子中で空間的近傍に存在するアミノ酸残基と相互作用している場合が多い。 したがって、Fbs1 はミスフォールド状態にある糖タンパク質と優先的に結合する可能性が高いと 考えられる。

Fig. 1 Fbs1-SBD₉₇₋₂₉₇の¹H-¹⁵N HSQC スペクトルと各 ピークの帰属

Fig.2 リガンド糖鎖(黒、キトビオース;灰色、 Man₃GlcNAc₂)との結合に伴う Fbs1-SBD₉₇₋₂₉₇ の化学シフト変化

【謝辞】本研究は東京都臨床医学総合研究所・田中啓二博士、吉田雪子博士、千葉智樹博士、ならびに大阪大学蛋白質研究所・月原富武博士、水島恒裕博士と共同で行ったものです。Parkin-Ubl の立体構造解析は理化学研究所ゲノム科学総合研究センター・横山茂之博士、菊地 淳博士との 共同研究です。また、本研究は演者のグループの山口芳樹、栗本英治、坂田絵理、平尾武士の諸 氏により推進されたものです。ここに謝意を表します。

- 75 -

[1] Sakata et al. EMBO reports 4, 301-306 (2003)

[2] Mizushima et al. Nature Struct. Biol. in press

3 L2

56kDa大腸菌NikA蛋白質のNMR解析

(理化学研究所 生体超分子構造・機能研究協力グループ¹, 横浜市立 大学 総合理学研究科 分子生理学², CREST/JST³, 横浜市立大学 総合理学研究科 設計科学⁴, University of Cambridge⁵, 横浜市立大 学 総合理学研究科 計測科学⁶)

〇伊藤 隆^{1,2,3}, Sundaresan Rajesh^{1,4}, 倉島 かおり^{1,2},

Daniel Nietlispach⁵, Jonathan Heddle⁴, Jeremy Tame⁴, 白川 昌宏⁶

NMR studies on the 56kDa Escherichia coli nickel-binding protein NikA

Yutaka Ito^{1,2,3}, Sundaresan Rajesh^{1,4,*}, Kaori Kurashima^{1,2}, Daniel Nietlispach⁵,

Jonathan Heddle⁴, Jeremy Tame⁴, Masahiro Shirakawa⁶

¹Research Group for Bio-supramolecular Structure-Function, RIKEN, Japan; ²Molecular and Cellular Physiology Laboratory, Graduate School of Integrated Science, Yokohama City University, Japan; ³CREST/JST; ⁴Protein Design Laboratory, Graduate School of Integrated Science, Yokohama City University, Japan; ⁵Department of Biochemistry, University of Cambridge, UK; ⁶Molecular Biophysics Laboratory, Graduate School of Integrated Science, Yokohama City University, Japan

*Present address: Division of Cancer Studies, UK Institute for Cancer Research. University of Birmingham, UK

Recent developments on protein stable isotope labelling and TROSY-based NMR measurements were applied to a 56kDa (502 amino acid residues) *Escherichia coli* nickel-binding protein NikA. The mature periplasmic NikA protein is the primary nickel-binding component and binds one Ni²⁺ ion per molecule. NikA shows significant sequence similarity to the oligopeptide binding protein OppA. Biochemical studies using purified NikA have suggested that Ni²⁺ binding induces conformational changes in the protein.

For backbone resonance assignment, we performed three pairs of TROSY-based triple-resonance experiments, HNCA/HN(CO)CA, HN(CA)CB/HN(COCA)CB and HN(CA)CO/HNCO on uniformly ${}^{2}H/{}^{13}C/{}^{15}N$ -labelled apo-NikA sample (~2 mM). Owing to the large size of the protein and limitations of conventional NMR experiments, full advantage was taken of TROSY based experiments for the backbone analyses. In addition, DQ-HNCA/intra-HNCA pair and a modified version of HN(CA)CO experiment were also applied in order to demonstrate the usefulness of these experiments in larger proteins. Assignments for more than 83% of non-proline residues (NikA has 38 proline residues) were obtained for the apo-NikA. For around 12% of non-proline residues, ${}^{1}H_{-}{}^{15}N$ correlation cross peaks were not detected in ${}^{1}H_{-}{}^{15}N$ TROSY-HSQC spectra. These "unobservable" residues were found to be located around the Ni-binding pocket, by mapping the residues onto the recently determined crystal structure of NikA in the Ni-binding state. This result suggested the local conformational flexibility around the Ni-binding pocket in Ni-free state. The secondary structure of NikA, predicted using the Chemical Shift Index (CSI) method from assigned ${}^{13}C'^{\alpha}$, ${}^{13}C^{\beta}$ and ${}^{13}C'$ resonances, showed good coincidence with that in the crystal structure of Ni-bound NikA. Side-chain resonance assignment and the analysis of structural information toward the global fold determination are in progress by using methyl/aromatic selectively protonated NikA sample.

序

重水素化をはじめとした安定同位体標識法の進歩と、TROSY 法を用いた測定手法の改良によって、 高分子量蛋白質や蛋白質複合体に対してもNMR による詳細な解析が可能になってきている. 我々は咋 年,高分子量蛋白質に最適化した新規3重共鳴測定法および芳香族アミノ酸選択的プロトン標識法を紹 介した. 今回はこれまでの方法論的研究を踏まえて、大腸菌 Ni 結合蛋白質 NikA (502 アミノ酸残基, 56kDa)について実際に試料調製および NMR 解析を行ったので報告する.

キーワード: 高分子量蛋白質, NikA, 選択的プロトン標識, 重水素化, TROSY

著者ふりがな: いとう ゆたか, Rajesh Sundaresan, くらしま かおり, Nietlispach Daniel, Heddle Jonathan, Tame Jaremy, しらかわ まさひろ

ニッケル(Ni)はいくつかのバクテリア酵素の必須な補因子となっているが、一方で過度のNiの蓄積はいくつかの必須な酵素活性を阻害することなどから細胞にとって有害である。バクテリアには細胞内のNiの恒常性を保つためのいくつかのNi輸送システムが存在するが、その中で大腸菌のnikオペロンにコードされているNikABCDEパーミアーゼは、ペリプラズムから細胞質へのNiの輸送に関わっていることが知られている.NikABCDEの中で、NikAはプライマリNi結合コンポーネントであり、一分子あたり一個のNi²⁺イオンを結合している。またNikAはオリゴペプチド結合蛋白質であるOppAと高いアミノ酸配列の相同性がある。これまでの解析によりNikAはNi²⁺結合に伴って比較的大きな構造変化をすることが示唆されていた。

試料調製, NMR 測定, およびスペクトルの解析

²H/¹³C/¹⁵N ユニフォーム標識 NikA 試料は, 99.9% 重水を用いて調製した M9 培地 (²H/¹³C-glucose および ¹⁵NH₄Cl を含む)を用いて大量発現させることで調製した.得られた NikA 試料は高 pH 緩 衝液中でインキュベートした後, 10% D₂O を含む緩衝液 [50 mM Na-phosphate (pH 7.5), 2 mM DTT, 2 mM EDTA] に置換した後濃縮し, 2 mM の Ni 非結合型 NikA 試料を得た.

この試料を用いて、6 種類の TROSY タイプの 3 重共鳴 NMR 測定(HNCA/HN(CO)CA, HN(CA)CB/HN(COCA)CB, HN(CA)CO/HNCO)を行った. 測定には理化学研究所和光本所の Bruker 社製 DRX600 スペクトロメータおよび常温の3 重共鳴プローブ(3 軸グラジエント)を用いた.

データ処理は AZARA v2.7 [Wayne Boucher (Cambridge Univ.), unpublished] を用い, Linux PC 上 で行った. NMR スペクトルの解析は ANSIG v3.3 (Per Kraulis, *J. Magn. Reson.*, 24, 627-633, 1989) を OpenGL 環境に移植した ANSIG-for-OpenGL v1.0.5 [Takeshi Nishimura (Tokyo Univ.), unpublished] を用いて, 同様に Linux PC 上で行った. 主鎖 NMR 改良して用いた. このマクロ・プログラムに おいては, アミノ酸タイプの判別のために, type_prob/seq_prob プログラム (Stephan Grzesiek & Ad Bax, *J. Biomol. NMR* 3, 195-204, 1993) を用いている.

主鎖NMRシグナルの帰属

上記の 6 種類の 3 次元 NMR スペクトルを解析することによって、プロリン以外の残基のうち おおよそ 83%の残基について、主鎖 $^{1}H^{N}$ 、 $^{13}C^{\alpha}$ 、 $^{13}C^{\beta}$ 、 ^{13}C 、 ^{15}N シグナルの帰属を行うことができ た. Figure 1 に Leu 340 残基から Asp 350 残基までの配列特異的帰属の様子を示した.

約 5%の残基については、¹H-¹⁵N TROSY-HSQC 上でクロスピークは観測されているものの、3 重共鳴 NMR スペクトル上でクロスピークが観測されなかったり、また類似配列が複数存在して 一義的な帰属が困難だったり、などの理由で帰属されなかった。

残りの 12%の残基については、¹H-¹⁵N TROSY-HSQC スペクトル上でクロスピークが観測されな かった. 測定に使用した NikA 試料は、精製後に高 pH 緩衝液中で一昼夜インキュベートすること によって、主鎖アミド基の水素を ²H 核から ¹H 核に置換したものである. したがって、このイン キュベート条件が不十分であるために、蛋白質の内部にあるアミド基や、蛋白質中で強固な水素 結合を形成しているアミド基において、¹H-¹⁵N 相関クロスピークが観測できないという可能性が 考えられた. これを検証するために、²H/¹³C/¹⁵N-NikA 試料の変性・巻戻し処理を行い、前後で ¹H-¹⁵N TROSY-HSQC スペクトルを比較したが、観測されるクロスピークの数にほとんど差は無かった. この結果から、これら約 12%の領域においては、化学交換などの理由によって ¹H-¹⁵N 相関ピーク の強度が著しく低下しているのではないかと推定される.

解析に用いた6種類のスペクトルの中で、最も感度が低く解析が困難であったのはHN(CA)CO スペクトルであった. Nietlispach らが最近考案したHN(CA)COの改良型のパルス・シークエンス をNikA についても適用することにより、感度の改善を試みた. 演者は昨年の本大会で、分子量 の増大(相関時間の増大)に伴ってHN(CO)CAやHN(COCA)CBなどのカルボニル¹³C核を利用 した実験について感度が低下することをシミュレーションによって示した. NikAの56kDaの分子 量では、全体的に見てHN(CO)CAやHN(COCA)CBのクロスピーク強度の低下による解析の困難 さが顕著になることはなかったが、50kDa 程度の蛋白質試料における DQ-HNCA/intra-HNCA 法の 有用性を検証するために、これら2種のスペクトルについても同様の条件で測定を行い、感度の 比較を試みた.

Figure 1

Contour strip plots of the ${}^{1}H^{N/13}C^{\alpha\beta}$ planes from HNCA, HN(CO)CA, HN(CA)CB and HN(COCA)CB spectra (panel A) and ${}^{1}H^{N/13}C$ planes from HN(CA)CO and HNCO spectra (panel B) showing the assignments for the stretch from Leu 340 to Asp 350 of apo-NikA. Cross peaks due to intraresidue correlations are shown with boxes, and the sequential connectivities are represented by horizontal lines.

Chemical Shift Index 法を用いた 2 次構造解析

帰属された ¹³C^a, ¹³C^b, ¹³C の化学シフト値から Chemical Shift Index 法を用いて、Ni 非結合型 NikA の 2 次構造の解析を行った. NikA は OppA とアミノ酸配列の相同性が高いと述べたが、両 者の 2 次構造を比較した結果、明らかな類似性があることが判明した.

演者らによる Ni 非結合型 NikA の主鎖 NMR シグナルの解析と平行して, Ni 非結合型および Ni 結合型 NikA の X 線結晶解析が共同研究者によって進められたが、ごく最近 Ni 非結合型および Ni 結合型の双方について結晶構造が明らかになった(Jonathan Heddle *et al.*, J. Biol. Chem. in press). NMR 法によって解析された Ni 非結合型の 2 次構造は(シグナルが観測されない領域を除いて)、結晶構造中の 2 次構造とよく対応している.

Ni 結合領域の構造多形性

プロリンを除くアミノ酸残基の約 12%については、¹H-¹⁵N TROSY-HSQC スペクトル上でクロス ピークが観測されなかったことは前に述べた.これら約 12%の残基を、NikA の X 線結晶構造に マッピングした結果、これらの残基のほとんどは Ni 結合に関与するポケット周辺に存在すること が判明した(Figure 2).このことから、Ni 非結合型 NikA においては、溶液状態で Ni 結合領域 付近に構造多形性が存在し、その結果として¹H-¹⁵N相関クロスピークの著しいブロードニングを招いている可能性が示唆された.

Figure 2

Distribution of residues for which ¹H-¹⁵N correlation cross peaks were unobservable is represented in black on the ribbon model of the crystal structure of apo-NikA. These residues were mainly located around the Ni-binding pocket between the two lobe structures (lobes I and II) or surrounding loop structures. Local conformational flexibility around the Ni-binding pocket in the Ni-free state in solution presumably leads to exchange line broadening of signals.

今後の展望

現在, lle/Leu/Val 残基のメチル基が¹H/ⁱ³C 選択的標識され,かつ Phe/Tyr/Trp 残基の側鎖 6 員環 部分が¹H/ⁱ²C 選択的標識された²H/ⁱ³C/ⁱ⁵N 標識 NikA 試料を調製し,この試料を用いて H(CCCO)NNH, (H)CC(CO)NNH, 3D ¹H(aromatic)-¹H^N NOESY などの測定を行うことによって側鎖 メチル基および芳香環のプロトンの帰属を進めている.さらに、これらのプロトン間の NOE 情報 を解析することによってグローバル・フォールド決定を試みていく計画である。 3 L 3

安定同位体標識 DNA/RNA を用いた

機能性核酸及びタンパク質-核酸複合体の構造解析 (横浜国大・院環境情報¹, 京大・院生命科学²) 榎園能章¹, 大橋粛¹, 小西由紀¹, 宮ノ入洋平¹, 松上明正¹, 外谷英嗣¹, 池田哲郎¹, 上杉晴一¹, 石川冬木², 〇片平正人¹

Structural analyses of functional nucleic acids and protein-nucleic acids complex

with the aid of stable isotope labeling of DNA/RNA

¹Grad. Sch. of Env. & Info. Sci., Yokohama Natl. Univ. and ²Kyoto Univ., Yoshiaki Enokizono¹, Kiyoshi Ouhashi¹, Yuki Konishi¹, Youhei Miyanoiri¹, Akimasa Matsugami¹, Hidetsugu Sotoya¹, Tetsuro Ikeda¹, Seiichi Uesugi¹, Fuyuki Ishikawa², and <u>Masato Katahira¹</u>

We have developed a new method to discriminate between intra- and intermolecular base pairs formed in homo-multimer, with the aid of stable isotope labeling. This time, we have applied this method to a quadruplex composed of two d(GGGCTTTTGGGC) strands. The quadruplex comprises both intra- and intermolecular base pairs. It turns out that our method can successfully discriminate the two types of base pairs of the quadruplex. Identification and stability of non-standard U:A:U base triple and G(:A):G(:A):G(:A):G heptad in the functional RNA/DNA have also been discussed. Furthermore, the structure of hnRNP D complexed with telomere DNA has been presented.

(序) 我々は昨年ホモ 2 量体中に形成された塩基対が、分子内で形成されたものなの か、あるいは分子間で形成されたものなのかを、核酸の安定同位体標識を利用する事 で区別する手法を考案し報告した。今回分子内塩基対と分子間塩基対を両方含む 4 重 鎖構造を取り上げ、我々の手法により両者の区別が実際に可能であるのかを、実験的 に検証した。また機能性 RNA 及び DNA における非標準型の塩基対の同定及びその安 定性について報告する。さらに、安定同位体標識した DNA を用いる事で初めて可能 となった hnRNP D タンパク質とテロメア DNA の複合体の立体構造についても報告す る。

(結果と考察)

1. 分子内塩基対と分子間塩基対の識別法 d(GGGCTTTTGGGC)は、ホモ2量体化し

キーワード: 4 重鎖構造、テロメア、水素結合、機能性核酸、核酸結合タンパク質

えのきぞのよしあき、おおはしきよし、こにしゆき、みやのいりようへい、まつがみ あきまさ、そとやひでつぐ、いけだてつろう、うえすぎせいいち、いしかわふゆき、 かたひらまさと

- 80 ---

て4重鎖を形成する。この4重鎖中には、分子内で形成されたG:G塩基対と分子間で 形成されたG:G塩基対の両方が存在する。クレノウフラグメントを用いた酵素合成に よりこのDNAの¹³C,¹⁵N標識体を調製した。HNN-COSYスペクトルを測定し、水素 結合をまたがったスピンースピン結合に由来する交差ピークの強度を求めた。次に標 識DNAと非標識DNAを1:1で混合し、同様に交差ピークの強度を求めた。この時、 強度が1/2になる交差ピークと1/4になる交差ピークが見られた。このDNAの立体構 造に照らしてみると、強度が1/2になったのは分子内塩基対に由来するピーク、一方 1/4 になったのは分子間塩基対に由来するピークであった。この結果は我々の予想通 りであり、交差ピークの強度の減少の度合いを調べる事により、分子内塩基対と分子 間塩基対を明確に識別できる事が分かった(1)。両者を明確に識別する事は、ホモ多量 体の立体構造を決定する上で欠かせないポイントである。標識DNAと非標識DNA を混合したものに関して edited/filtered-NOESY を測定する事によって、塩基対が分子 内か分子間かに関する間接的な情報は得られるが、曖昧さが残る。塩基対に関して直 接的な情報が得られる点が、本法の利点である。

2. 非標準型塩基対の同定とその安定性 水素結合をまたがったスピン-スピン結合 を検出する事によって、機能性核酸における U:A:U ベーストリプルや G(:A):G(:A):G(:A):G ヘプタッド等の非標準型の塩基対を同定できた(2-4)。またスピン -スピン結合定数の解析より、これらの塩基対の安定性に関する情報を得る事もでき た。

3. hnRNP D タンパク質とテロメア DNA の複合体の構造 テロメア DNA 結合タンパク 質 hnRNP D に関し、タンパク質単体の構造及びダイナミクスについては、同じ RNP 型の Musashi タンパク質と共に、既に報告してきた(5-7)。しかしテロメア DNA との 複合体に関しては、主に DNA の共鳴線の解析の困難さから、構造決定には至らなか った。今回 DNA 側も安定同位体標識する事で解析が可能となり、数多くの分子間 NOE 情報に基づいた複合体の構造決定に成功した(8)。複合体においては、さまざまな相互 作用が見られた。これらの相互作用が実際に複合体の安定性に寄与しているかは、タ ンパク質の変異体を用いたゲルシフトアッセイによって検証された。

(1) Sotoya et al., submitted (2003).

- (2) Matsugami et al., Structure, 11, 533-545 (2003).
- (3) Matsugami et al., J. Biol. Chem., 278, 28147-28153 (2003).
- (4) Katahira, J. Mol. Biol., review article, in press (2003).
- (5) Nagata et al., J. Mol. Biol. 287, 221-237 (1999).
- (6) Katahira et al., J. Mol. Biol. 311, 973-988 (2001).
- (7) Miyanoiri et al., J. Biol. Chem., in press (2003).
- (8) Enokizono et al., submitted (2003).

- 81 -

3 L4

立体整列同位体標識(SAIL)法の開発

~高分子量タンパク質の高効率、高精度な立体構造決定に向けて

(1CREST/JST, 2都立大院理)

○鳥澤 拓也¹, 寺内 勉¹, 小野 明¹、甲斐荘 正恒^{1,2}

NMR Analyses of Stereo-Array Isotope-Labeled (SAILed) Proteins: Towards the high-throughput, high-precision structural determinations of larger proteins

Takuya Torizawa¹, Tsutomu Terauchi¹, Akira M. Ono¹, and Masatsune Kainosho^{1, 2} (¹CREST/JST, ²Graduate School of Science, Tokyo Metropolitan University)

We have recently developed the SAIL (Stereo-Array Isotope-Labeling) method for proteins, which leads us to extend the accessible molecular weight limit for the structural determinations by NMR. In this approach, only single proton is left to be observed for each of the carbons of SAILed proteins: namely, methyl and methylene are replaced by ${}^{13}C^{1}HD_{2}$ and chiral ${}^{13}C^{1}HD$ groups, respectively, and all prochiral methyl groups are stereoselectively replaced with ${}^{12}CD_{3}$ and ${}^{13}C^{1}HD_{2}$. The latest NMR data collected for some of the SAILed proteins with different sizes will be shown to illustrate perspectives of this approach in the structural determinations of proteins.

近年の NMR 法の進歩によって分子量 40 kDa までのタンパク質の折りたたみ構造 を決定することが出来るようになった。しかしながら単一ペプチド鎖として 30 kDa 以上に及ぶタンパク質の側鎖の正確な構造情報を得ることはシグナルの縮重とその 緩和特性から未だ困難である。NMR 法において、分子量の上限、決定される構造の 質、構造解析のスピード、これらの間で妥協してしまうことを避けるためにも新規の NMR 技術の開発を行うことが重要であると考える。そこで我々は技術開発の視点を NMR 試料の調製に置き、これまでとは全く異なる新たな安定同位体標識パターンを 導入した"SAIL タンパク質"を開発した。このタンパク質は主に以下の3点のコン

キーワード:SAIL、立体整列同位体標識、重水素標識、立体構造決定、無細胞タン パク質合成

とりざわ たくや, てらうち つとむ, おの あきら、かいのしょう まさつね

- 82 -

セプトに基づいて設計された"SAILアミノ酸"によって構成される:

- (i) メチレン基:2個の¹Hの内、1個を立体選択的に²Hに置換する。
- (ii) メチル基:3個の¹Hの内、2個を²Hに置換する。
- (iii) プロキラルメチル基(Val, Leu):2 個のメチル基に、立体選択的に異なる重 水素置換を施す。(一方のメチル基を(ii)に従って重水素化し、他方はすべての ¹H を²H に置換する。)

本標識パターンの狙いは、立体構造決定に必要な情報を損失することなく NMR ス ペクトルを簡略し、さらに高感度な測定を行うことにある。我々は化学合成・酵素合 成を併用することにより、SAIL アミノ酸を全種類合成することに成功した。そして これらの貴重なアミノ酸を効率良く、代謝拡散を伴わずタンパク質に取り込ませるた めに、無細胞タンパク質合成系を採用した。さらに発現した SAIL タンパク質の精製 過程を最適化し、合成収率の上昇と作業の効率化を図った。これによって現在までに いくつかの SAIL タンパク質の調製を行うことが可能となった。SAIL カルモジュリ ン (M.W.; 17 kDa) では、通常の ¹³C、¹⁵N 二重標識カルモジュリンと比べ、側鎖非 交換性 ¹H の内の 44 %が ²H に置換されており、シグナル数も 40 %が削減される。 実際に測定したスペクトル群の側鎖領域におけるシグナルの縮重はこれによって大 幅に軽減され、さらにメチル基とメチレン基の ¹H、¹³C は共に大幅な緩和時間の延長 を獲得していることも確認された。この従来法から大きく改善されたスペクトルを用 いて側鎖の非交換性シグナルも全て帰属し、CYANA による立体構造決定を行うまで に至っている。

現在ではカルモジュリンのみならず、従来の NMR 法では立体構造決定が非常に難 しかった分子量領域のタンパク質にも SAIL 法の適用を行っている。At3g16450 (M.W.; 32 kDa)(ポスター番号;1P9)、MBP(M.W.; 41 kDa)(ポスター番号; 2P9)の SAIL 法による解析例も併せて示し、高分子量タンパク質の立体構造決定に 向けた我々の取り組みを展望と共に紹介したい。

-83-

3 L 5

NMRを用いたCD44のヒアルロン酸認識機構の解析

武田光広^{1,2}、寺沢宏明⁻¹、坂倉正義¹、山口芳樹¹、梶原正宏³、川島博人⁴、宮 坂昌之⁴、〇嶋田一夫^{1,5}

1 東大・院薬系、2 JBIC・JBIRC、3 明治薬科大院・薬品化学、4 阪大・院医 系、5 AIST, BIRC

Hyaluronan-recognition mode of CD44 revealed by cross-saturation and chemical shift perturbation experiments

Mitsuhiro Takeda^{1,2}, Hiroaki Terasawa¹, Masayoshi Sakakura¹, Yoshiki Yamaguchi¹, Masahiro Kajiwara³, Hiroto Kawashima⁴, Masayuki Miyasaka⁴, and Ichio Shimada^{1,5}

1. Graduate School of Pharmaceutical Sciences, the University of Tokyo, 2, JBIRC, JBIC, 3, Department of Medicinal Chemistry, Meiji Pharmaceutical, 4, University, Osaka University Graduate School of Medicine, 5, BIRC, AIST

CD44 is the main cell surface receptor for hyaluronic acid (HA) and contains a functional HA-binding domain (HABD) composed of a Link module with N- and C-terminal extensions. The contact residues of human CD44 HABD for HA have been determined by cross-saturation experiments and mapped on the topology of CD44 HABD, which we elucidated by NMR. The contact residues are distributed in both the consensus fold for the Link module superfamily and the additional structural elements consisting of the flanking regions. Interestingly, the contact residues exhibit small changes in chemical shift upon HA-binding. In contrast, the residues with large chemical shift changes are localized in the C-terminal extension and the first α -helix, and are generally inconsistent with the contact residues. These results suggest that, upon ligand-binding, the C-terminal extension and the first α -helix undergo significant conformational changes, which may account for the broad ligand specificity of CD44 HABD.

CD44は、細胞外N末端領域を介してヒアルロン酸(HA)やプロテオグリカンと結合することにより、 細胞接着、リンパ球活性化、癌転移などに関与する1回膜貫通型の膜タンパク質である。その細 胞外 N 末端領域には、リンクモジュール(LM)と呼ばれるアミノ酸相同性領域が存在する。リンク モジュールは、多くのヒアルロン酸結合タンパク質に共通して含まれ、ヒアルロン酸認識に関与し ているドメインである。リンクモジュールスーパーファミリーは、ヒアルロン酸結合ドメインの大きさ

CD44, ヒアルロン酸、交差飽和法、化学シフト摂動法、相互作用

たけだみつひろ、てらさわひろあき、さかくらまさよし、やまぐちよしき、かじわらまさひろ、かわしま ひろと、みやさかまさゆき、しまだいちお に基づき、Type A - C の3種類に分類されている。Type A に属する TSG-6 は、1つのリンクモ ジュールのみでヒアルロン結合活性を持ち、その立体構造はNMRにより明らかにされている。 CD44 は、リンクモジュールの N.C 末端の両側に付加配列を持つ Type B に属し、両端の付加配 列がヒアルロン酸結合活性に必要である。しかしながら、CD44 の立体構造に基づいた、リガンド 認識機構の詳細は明らかになっていない。

本研究では、CD44 のヒアルロン酸結合ドメイン(CD44 HABD)を用いて、交差飽和実験および化 学シフト摂動実験を組み合わせることにより CD44 のヒアルロン酸認識機構を解析することを目標 とする。

結果および考察

CD44 HABD の 性状解析

¹H NMR を測定したところ、CD44 HABD のNMRシグナルは良好な分散を示した。また、表面プラ ズモン共鳴法によりヒアルロン酸結合能を測定したところ、解離定数は 2.7 × 10⁻⁵ M となり、すで に報告されている値と良い一致を見た。これらの結果から、CD44 HABD は、構造および機能ドメ インであることが示された。

CD44 HABD の二次構造

¹³C、¹⁵N により安定同位体標識を施した CD44 HABD を調製し、定法により主鎖 ¹H、¹⁵N、¹³Cα、 ¹³Cβ の連鎖帰属を行った。帰属可能な 149 主鎖アミドシグナル中、144 残基の NMR シグナル を帰属した。さらに、化学シフトインデックスおよび interstrand NOE を解析し、CD44 HABD のトポ ロジーを決定したところ、N,C 末端に存在する付加配列は、TSG6 様リンクモジュールに組み込ま れ、βシートを形成していることが明らかになった。

ヒアルロン酸添加実験

ヒアルロン酸結合の影響を調べるため、平均分子量 6800 の ヒアルロン酸(HA-34)を用い添加 実験を行った。まず、HA 結合界面を同定するため、交差飽和法を適用した。その結果、LM 内の みならず、付加配列領域の一部もHA 結合に関与していることが明らかになった。さらに、HA 結合 に伴う化学シフト変化を解析したところ、HA 結合界面の残基は顕著な化学シフト変化を示さず、 結合界面から離れた付加配列領域に大きな化学シフト変化が観測された。これらの結果は、付加 配列領域にもHA と直接結合する領域が存在すること、並びにHA 結合に伴い付加配列領域に構 造変化が誘起されることを示す。

本研究で行われた交差飽和法と化学シフト摂動法の組み合わせは、リガンド結合部位の同定とリ ガンド結合に伴う構造変化を分離して解析でき、糖—蛋白質相互作用解析に有効であると考え る。

自発磁場配向膜中メリチンの高分解能動的構造の解析

横浜国大院·工 〇虎谷 秀一、西村 勝之、内藤 晶

High-Resolution Dynamic Structure of Melittin Bound to Magnetically Oriented Vesicles Graduate School of Engineering, Yokohama National University Shuichi Toraya, Katsuyuki Nishimura, and Akira Naito

We have developed a novel approach that determines high-resolution dynamic structure of melittin bound to magnetically oriented vesicles from ¹³C NMR spectra under fusion-induced conditions. ¹³C chemical shift anisotropies of carbonyl carbons were analyzed taking dynamics of melittin molecules into consideration to determine tilt angles of the N- and C-terminal helical axes from the membrane normal and phase angles of respective peptide planes from vertical sections of the helical rods. Furthermore, the inter-atomic distance between $[1-^{13}C]Val^8$ in the N-terminal helix and $[^{15}N]Leu^{13}$ in the C-terminal helix was determined as 4.8 Å through REDOR experiments. Thereby, it was revealed that melittin bound to DLPC and DPPC vesicles adopts unique pseudo-transmembrane α -helical structures bending with the interhelical angles of 126° and 119°, respectively. Melittin molecules are turned out to be laterally diffuse with rotating around the membrane normal, keeping the same tilt angle from the normal. This approach can be utilized for analyses of dynamic structure of other peptides bound to mobile membranes.

【序論】

3 L6

ハチ毒の主成分であるメリチン(GIGAVLKVLTTGLPALISWIKRKRQQ-NH₂)は、中央付近で折れ曲 がったα-ヘリックス構造をとり、リン脂質から成る膜小胞の融合および分断を誘起することが知られてい る。このメリチンの膜融合・分断機構を理解するには、メリチンの活性型動的構造を明らかにすることが重 要である。一般に固体 NMR においては、膜結合ペプチドの立体構造および膜に対する配向情報を得る ための試料として、ガラスプレート上に機械的に配向させたペプチドーリン脂質二分子膜系が用いられる。 しかしながら、このように膜がガラスプレート上で固定された非分散系では、二分子膜構造に対して動的 に作用するペプチドの活性型構造を明らかにするのは非常に困難である。我々はこれまで、膜融合・分 断を誘起するペプチドとリン脂質から成る膜小胞の膜面が自発的に静磁場に対し平行に配向する性質を 利用し^{1,2}、このような分散系におけるメリチンの動的膜結合構造を解析する手法を開発し提唱してきた。 ここでは、膜融合条件下における膜結合メリチンの高分解能動的構造を明らかにするための包括的な戦 略を報告する。

自発磁場配向膜、メリチン、高分解能動的構造、膜融合、¹³C化学シフトテンソル

とらや しゅういち、にしむら かつゆき、ないとう あきら

【実験】

Fmoc 固相法で合成した部位特異的標識メリチンとリン脂質をペプチド対脂質モル比が 1:10 になるよう に全量 50 mg を量り取り、300 µlの緩衝液(20 mM tris(hydroxymethyl)aminomethane, 100 mM NaCl, pH 7.5) で水和した。凍結・融解を 30 回繰り返し、これを¹H 高出力デカップリング (DD) 条件下における ³¹P および ¹³C NMR 測定に用いた。同試料を膜融合条件下で 1 時間放置し、急速凍結後、凍結乾燥したも のを交差分極マジック角回転 (CP-MAS) 法による ¹³C NMR 測定および Rotational Echo Double Resonance (REDOR) 法による原子間距離測定に用いた。全ての固体 NMR 測定は、Chemagnetics CMX infinity-400 NMR 分光器を用いて行った。

【結果】

1. メリチンによって誘起されるダイナミックな膜融合・分断現象

図 1 に示したように、ゲルー液晶相転移点(T_c)より高い温度では、メリチンによって膜融合が誘起され ることにより直径約 30 µm の巨大な膜小胞が形成された。T_cより低い温度では、円盤状膜断片が形成さ れることで膜分断が誘起され、膜小胞は視野から消失した。図 2 に示したように、メリチンーリン脂質二分 子膜系の ³¹P NMR スペクトルを測定した結果、T_cより高い温度で軸対称粉末線形の垂直成分のみが観 測された。このことは、膜分断後に静磁場中で膜融合が誘起されると、膜小胞の膜面が静磁場に対し平 行に配向することを示している。このように自発的に静磁場中で膜小胞が配向するのは、メリチンが誘起 する膜融合によって巨大膜小胞が形成され、リン脂質の分子磁化と静磁場の相互作用エネルギー(配向 エネルギー)が熱エネルギーより十分に大きいためである。

Fig. 1 Microscopic observations of a melittin-DMPC bilayer system. $T_c = 23$ °C **Fig. 2** Temperature variations of ³¹P NMR spectra of a melittin-DPPC bilayer system.

2. 膜融合条件下におけるメリチンのカルボニル炭素の¹³C NMR

急速凍結・凍結乾燥したメリチンのカルボニル炭素の¹³C NMR スペクトルは、表 1 に示したように¹³C 化学シフトテンソルの三つの主値で特徴付けられる約 150 ppm にわたる広幅な非軸対称粉末線形を示した。このような完全に運動がない条件、また膜融合条件(T > T_o)下においてもメリチンは、¹³C 等方化学シフト値と二次構造の相関からαーヘリックス構造をとることが判明した。一方、膜融合条件下では、自発磁場配向膜に結合したメリチンのカルボニル炭素の信号は一本のピークを示した。また、このピークは、回転数 100 Hz の MAS によって膜の配向を乱すことで得られる軸対称粉末線形の垂直成分に一致した。これらの結果から、自発磁場配向膜中のメリチンは一軸まわりで回転しており、その回転軸は静磁場に対して垂直、すなわち膜法線に対して平行であることがわかった。

3. 膜融合条件下におけるメリチンのカルボニル炭素の¹³C化学シフト異方性

腹融合条件下で得られたカルボニル炭素の配向状態の化学シフト値δ_{obs}(= δ₁)および等方化学シフト 値δ_{so}から求められた化学シフト異方性Δδを解析した。メリチンが図3のようにN末端またはC末端のヘリ ックスが膜法線から一定角度ζだけ傾き、また各々のペプチド面がヘリックスロッドのZX平面と定義した縦 断面と角度/成すとする。結果2で明らかになったようにメリチンが膜中でランダムに並進拡散する結果、 膜法線に平行な軸のまわりを回転するのと同等の挙動を示すとすれば、カルボニル炭素の¹³C化学シフト ト異方性Δδ は次の式で表される。

$$\overline{\Delta\delta} = \frac{3}{2}\sin^2\zeta \left(\delta_{11}\cos^2\gamma + \delta_{33}\sin^2\gamma - \delta_{22}\right) + \left(\delta_{22} - \frac{\delta_{11} + \delta_{33}}{2}\right)$$

ここでα-ヘリックス構造において隣り合うペプチド平面のyの差が100°であることに着目し、N末端および C 末端のヘリックスのそれぞれに対して、3 種類の標識部位における¹³C 化学シフト異方性の実験値と理 論値の最小 RMSD を求めた。こうして、得られた動的構造には数種類の可能性が残ったが、kink 近傍の 残基である N 末端側ヘリックスの Val⁸のカルボニル炭素と C 末端側ヘリックスの Leu¹³のアミド窒素の原 子間距離を REDOR 法を用いて測定した結果、DPPC 二分子膜系においては 4.8 Å であることが判明し た。その結果、最終的に図 4 に示したように膜融合条件下における DPPC 膜結合メリチンの動的構造が 一義的に決定され、N 末端と C 末端のヘリックスが成す角度は 119°であるこが判明した。また、同様にし て DLPC 膜結合メリチンの動的構造が決定され、ヘリックス間角度は 126°であるこが判明した。

	$\delta_{\rm iso}$ / ppm [‡]	STRUCTURE [‡]	$\delta_{ m obs}$ / ppm	$\Delta\delta$ / ppm [†]	δ _{ti} / ppm §	δ ₂₂ / ppm [§]	δ ₃₃ / ppm [§]	δ _{iso} * / ppm ^{§‡}
[1- ¹³ C]Gly ³	172.5	α-helix	181.1	-25.8	242.5	178.5	96.0	172.1
[1- ¹³ C]Ala ⁴	177.3	α-helix	167.7	28.8	242.5	193.5	94.5	176.7
[1- ¹³ C]Val ⁵	175.1	a-helix	179.1	-12.0	244.5	192.5	89.0	175.2
[1- ¹³ C]Leu ¹⁶	175.8	a-helix	178.5	-8.1	245.0	193.0	89.5	175.9
[1- ¹³ C]Ile ¹⁷	174.8	a-helix	166.6	24.6	247.0	189.5	88.0	1 74.8
[1-13C]Ile20	174.8	a-helix	172.6	6.6	244.0	192.5	89.0	175.2

Table 1. ¹³C chemical shift values of melittin bound to magnetically oriented DPPC vesicles under a fusion condition

Measurements of a melittin-DPPC bilayer system was performed at 50 °C.

§ Obtained from CP-MAS ¹³C NMR measurements of the lyophilized powder samples at 0 °C.

 $\Delta \delta = 3(\delta_{\rm iso} - \delta_{\rm obs})$, where $\delta_{\rm obs} \equiv \delta_{\rm L}$.

[‡] Typical ¹³C chemical shift values of (δ_{so} of α-helix, δ_{iso} of β-sheet) are (171.6, 168.5), (176.4, 171.8), (174.9, 171.8), (175.7, 170.5), and (174.9, 172.7) for [1-¹³C]Gly, [1-¹³C]Ala, [1-¹³C]Val, [1-¹³C]Leu, and [1-¹³C]Ile, respectively.³

【まとめ】

以上の結果をまとめると、膜結合メリチンはThr¹¹近傍で折れ曲がったα-ヘリックス構造をとり、そのヘリッ クス間角度は 120°程度であることが明らかになった。さらに、膜融合条件下においてメリチンは、膜中で 一定の傾き角を保ち、かつ膜法線に平行な軸のまわりを速く回転しながら並進拡散をしていることが判明 した。このような動的膜結合構造をとるメリチンは膜を貫通するのには長さが十分ではないため、不完全 に疎水性領域に挿入されている N 末端ヘリックスが二分子膜構造を乱すことが示唆された。この二分子 膜構造の乱れがメリチンによって誘起される膜融合現象の分子機構であると考えることができる。

Fig. 3 Schematic representation of the dynamics of melittin bound to the magnetically oriented vesicle. Z' axis is parallel to the membrane normal. γ and ζ represents the tilt angle of the helical axis from the membrane normal and the phase angle of the peptide planes from a vertical section, Z-X plane, of the helical rod.

Fig. 4 Schematic representation of dynamic structure of melittin bound to the magnetically oriented DPPC vesicles at 50 °C where membrane fusion occurs. Melittin laterally diffuses with rapidly rotating around the membrane normal, Z' axis.

【引用文献】

- 1. Naito et al.. 2000. Biophys. J. 78: 2405-2417.
- 2. Naito et al.. 2002. Biochim. Biophys. Acta 1558: 34-44.
- 3. Saitô and Ando. 1989. Annu. Rep. NMR Spectrosc. 21: 209-290.

繊維状タンパク質の繰り返し構造に関するモデルペプチドの固体NMR構造解析 (農工大・工)〇大郷耕輔、川瀬泰司、朝倉哲郎

Structural Analysis of Model Peptides of Repetitive Sequences in Fibrous Proteins with Solid State NMR Kosuke Ohgo, Taiji Kawase and Tetsuo Asakura

Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Tel&Fax: 042-388-7733 e-mail:asakura@cc.tuat.ac.jp

In recent years, new biomaterials based on fibrous proteins have been produced by genetic engineering method. For molecular design of such kinds of biomaterials, it is important to obtain the structural information on the original repetitive sequences in these fibrous proteins. Thus, we synthesized the repetitive sequential model peptides and analyzed their structures by combining several solid state NMR methods, that is, the quantitative use of the ¹³C chemical shifts and 2D spin-diffusion NMR.

【緒言】 蚕やクモの生産する絹など天然の繊維状タンパク質は、高強度・高弾性であるとともに高い 生体親和性を有する。長年にわたって、縫合糸として用いられてきたこともあって、近年、あらため て新規生体材料として関心が高まっている¹⁾。さらに、繊維状タンパク質は、一般に、特徴的な繰り 返し配列の組み合わせから構成されていることから、その特徴的な配列と対応する物性を予測し、繰 り返し配列を組み合わせた繊維状の人工タンパク質を設計、大腸菌等で発現する試みが行われるよう になってきた^{2,3})。しかしながら、その際、繊維状タンパク質の局所構造として、従来、類推されて きた局所構造モデルを詳細な構造の検討なしに、分子設計に用いているケースが多々見受けられる。

実際、特徴的な繰り返し配列について固体状態で決定される高次構造は、分子内相互作用だけでな く、分子間相互作用の寄与も大きく、むしろ後者が支配的な場合もあるので、分子設計するための構 造情報をより多く蓄積する必要がある。我々は、このような観点から、一連の繊維状タンパク質につ いて、その繰り返し配列を含むペプチドを合成し、固体NMR法の特徴を生かしながら詳細な構造解 析を行ってきた。

本発表では、クモの絹ならびにエラスチンに特徴的な繰り返し構造を取り上げ、その構造を決定す るとともに、家蚕絹ならびに野蚕絹の繊維化前後の特徴的な構造との比較について報告する。

【実験】 クモの生産する絹、dragline silk及びflagelliform silk、中に見られる繰り返し配列に基づくモデ ルペプチドとして、(AGG)10、QGAG(A)。GGAGA(GGA)。GAGRGGLGG及び(GPGGA)。Gを、また、弾性繊維 状タンパク質であるエラスチンの繰り返し配列のモデルペプチドとして(VPGVG)。を、Fmoc固相合成 法により合成した。構造解析の目的によって、適宜、安定同位体ラベルを行った。

二次元スピン拡散固体NMR測定には、Varian Unity INOVA400を用いOff MAS(54.7°+9°もしくは-6°)条 件下で行った。Mixing timeは2s、試料回転速度は6kHz、室温で測定した。アミノ酸残基の内部回転角に 依存するスペクトルパターンのシミュレーションを、Multi-step法を用いたFortranプログラムを使用し て行った。これらのシミュレーション計算はSGI社製のOCTANEを用いた。スペクトルパターンのグラ フィック化及び実測とシミュレーションスペクトルの誤差評価は、数値解析ソフトMATLAB(Math Works社製)を用いて行った。

【結果・考察】【エラスチン由来配列の構造】 (VPGVG)。の¹C CP/MAS NMRスペクトルは、Poly(VPGVG) のそれと概ね一致する事から⁴⁾、局所構造は同じであると言える。このポリマーの形成する構造モデル として、 β -spiral構造が提案されてきた⁵⁾。そこで、この構造を仮定し、14位のVal、15位のGly及び16位の Val残基の内部回転角を評価するための二次元スピン拡散固体NMRスペクトルパターンを計算し、実 測と比較したところ、その一致は悪かった。従って、少なくともこれら三つの残基においては β -spiral構 造は適切でないと言える。次に実測と計算スペクトルとの偏差 χ 。を計算し、 ϕ 、 ψ の関数として示したと ころ⁶⁾、極小点が複数現れた (Fig.1)が、そのどれも実測との一致は不十分であった。そこで、MD計算に 基づくGly残基のコンフォメーションの(ϕ , ψ)マップ⁷⁾を用いて重み付けを行ったところ、実測との一致 は格段に良くなった。従って15位のGlyは、特定の構造でなく、コンフォメーションが分布していると考 えられる⁶⁾。

一方、PG配列の形成する構造については、タンパク質中ではtypeIIβ-turn構造を形成しやすいと言われており、実際、(VPGVG)の繰り返し構造中でも同様の構造を形成しているという報告⁸⁾もあるので、

エラスチン・flagelliform silk・二次元スピン拡散固体NMR法・不均一構造 おおごうこうすけ、かわせたいじ、あさくらてつお

この点を明らかにするため、(VPGVG)=[1-"C]V[1-"C]PGVG(VPGVG)»及 び(VPGVG)2V[1-"C]P[1-"C]GVG(VPGVG)。を合成、その二次元スピン拡 散固体NMRスペクトルの解析を進めている。

[スパイダーシルクモデルペプチドの構造解析] (GGX)。配列は、

dragline silk及びflagelliform silkに見られる。この配列のモデルペプチド である(AGG)mについて、二次元スピン拡散固体NMR法を適用した結果、 Ala及びGly残基の二面角値は共に(φ, ψ)=(-90°,150°)と決定され、構造は 3.-helixであることが明らかになった⁹⁾。この構造はペプチドの処理を大 きく変えても保たれる事から、配列特有の安定な構造と考えられる。

また、QGAG(A)。GGAGA(GGA)。GAGRGGLGGはdragline silk(MaSp1)中 に見られる繰り返し配列であり、Ala連鎖領域とGGAの繰り返しを含ん だGly rich領域からなる。"CラベルペプチドQGAGAAA[1-"C]AAAGG-[2-¹³C]AGAGGAG[2-¹³C]G[3-¹³C]AGGAGAGRGGLGGについて¹³C

CP/MAS NMRスペクトルを測定、化学シフト値からラベル部位の局所構 造を検討した(Fig.2)。その結果、Ala連鎖領域及びその近隣はβ-sheet構造

を形成し、(GGA)₃の中心のAla残基は3₁-helixを 形成することが示唆された。

一方、flagelliform silkは高い弾性を示す。ま た(GPGGX)配列の繰り返し構造を有し¹⁰⁾、こ の配列は、(VPGVG)』と、PG配列をペンタペプ チド単位で含む点で類似しており、また双方 のタンパク質が弾性を有する点も類似する。 そこで、この構造はβ-spiral構造と言われてい たが、実験的な確証は得られていない。 (GPGGA)。Gの¹³C CP/MAS NMRスペクトルに おいて、AlaCBの化学シフト値はrandom coil構 造の値と一致を示した。また安定同位体ラベル Figure 2 "C CP/MAS NMR spectrum of QGAGAAA[I-"C]AAAGG-

を施した、(GPGGA),[1-"C]G[1-"C]PGGA-(GPGGA):Gについて、二次元スピン拡散固体NMR測定を行った (Fig.3)。現在、このスペクトルパターンの解析を行うと共に、隣接 する18位のGly残基についても同法による測定と解析を行い、PG 配列の形成する構造を検討している。同時に、(VPGVG)。の結果と の比較を行い、一次配列の類似する弾性繊維状タンパク質にお いて、高次構造は類似したものになるのか検討を行う予定であ る。

【謝辞】二次元スピン拡散固体NMR測定にご協力いただいた バリアンテクノロジーズジャパンの芦田淳博士に感謝します。

【参考文献】

[2-¹⁰C]AGAGGAG[2-¹⁰C]G[3-¹⁰C]AGGAGAGRGGLGG after dialysis.

Figure 3 2D spin-diffusion NMR spectrum of (GPGGA),[1-13C]G[1-13C]PGGA(GPGGA)2G in the solid state.

(1) Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L. Biomaterials 2003, 24, 401.

(2) Yao, J.; Asakura, T. J. Biochem. 2003, 133, 147.

(3) Megeed, Z.; Cappello, J.; Ghandehari, H. Adv. Drug Delivery Rev. 2002, 54, 1075.

(4) MacMillan, R. A.; Conticello, V. P. Macromolecules 2000, 33, 4809.

(5) Venkatachalam, C. M.; Urry, D. W. Macromolecules 1981, 14, 1225.

(6) Asakura, T.; Ashida, J.; Ohgo, K. Polymer J. 2003, 35, 293.

(7) Yamane, T.; Umemura, K.; Asakura, T. Macromolecules 2002, 35, 8831.

(8) Hong, M.; Isailovic, D.; McMillan, R. A.; Conticello, V. P. Biopolymers 2003, 70, 158.

(9) Ashida, J.; Ohgo, K.; Komatsu, K.; Kubota, A.; Asakura, T. J. Biomol. NMR 2003, 25, 91.

(10) Hayashi, C. Y.; Lewis, R. V. J. Mol. Biol. 1998, 275, 91.

マジック角回転条件での多次元固体 NMR による ¹³C,¹⁵N 標識

タンパク質の全構造解析法

(阪大·蛋白研) 〇藤原敏道, 阿久津秀雄

Structural analysis of fully ¹³C,¹⁵N labeled proteins by multi-dimensional solid-state NMR under magic-angle spinning conditions

> Toshimichi Fujiwara and Hideo Akutsu Institute for Protein Research, Osaka University

We have developed multi-dimensional magic-angle spinning NMR for the determination of protein structures in noncrystalline solid states. ¹³C and ¹⁵N chemical-shift correlation experiments were performed for obtaining intra- and inter-residue spin connectivities. The analysis of the obtained spectra enables the sequence-specific signal assignments, and allows the backbone structure prediction by using the database software for protein chemical shifts. Distance constrains are necessary for determining the 3-D structure. We have employed 2D high-resolution ¹³C-¹³C correlation experiments that provide ¹H-¹H distance information from fully ¹³C,¹⁵N labeled proteins. We demonstrate the application of this strategy to a peptide and membrane proteins.

[序] 固体マジック角回転NMRは、無配向の固体状態における蛋白質を対象にして構造解 析することができる. つまり, 脂質二重膜を貫通している膜タンパク質や繊維状の沈殿を形 成しているアミロイド・タンパク質の構造を調べることができるなど, 他の方法では解析が むずかしい系を対象にできる. これまで固体NMRでは, 分子全体の構造を解析対象とする 例としては, 結晶状態において数残基程度のペプチドの精密な構造決定や, 結晶状態におけ る 60 残基程度の蛋白質の構造決定が行われてきた.

私たちは、非結晶状態のタンパク質の全体構造を決めるための一連の方法を開発している.この方法は、2つの段階からなる.第一のステップは¹³C,¹⁵N 等方化学シフト相関を 用いて信号帰属と化学シフトに基づいて主鎖構造を解析する段階である.次のステップでは、 核間距離を求めて、一次構造上離れた残基間の関係を明らかにして3次構造構造を求める. これには完全標識試料を対象にした¹³C あるいは¹⁵N 観測による¹H-¹H 双極子相関が有効な方 法である.これまでに、この方法で得られた結果を報告する.

[実験] タンパク質分子のすべての部分から情報を得るために¹³C,¹⁵N で完全標識した試料 を主に用いた. 静磁場強度は¹H 共鳴周波数で 500MHz と 600MHz で,分光計は Chemagnetics

キーワード:固体NMR,タンパク質構造,マジック角回転,同位体標識 ふじわらとしみち,あくつひでお
Infinity Plus で実験した. ローターは 3.2mm あるいは 4mm 径のものを用いた. 化学シフト 異方性によるサイドバンドを小さくし ¹³℃間双極子結合を除くために試料回転速度は約 14kHz であった.試料回転などによる発熱を防ぐため多くの実験では試料は-50℃の乾燥空気で冷却 した. また,分子運動にともなう信号強度の低下を防ぐため,必要な場合には相対湿度も調 整した. また,凍結乾燥で構造の乱れが予想される場合にはトレハロースを加えた.

[信号の帰属と主鎖構造解析] 信号の帰属は、次のような一連の多次元NMR実験を行う.残基内での信号帰属のために、RFDR によるゼロ量子双極子結合による ¹³C⁻¹³C 相関、帯 域選択的な二量子双極子結合による $C^{\alpha}-C^{\beta}$ 相関、N-C^{α}C^{β}相関、また、残基間の相関を得るた めには($C^{\alpha}C^{\beta}$)_{i+1}-(C'C^{α})_i相関、N_{i+1}-(C'C^{α})_i相関を用いた.

アミノ酸 15 残基からなるマストパラン X (MPX) については,これらの実験により C^{α} , C^{β} , C', N を完全に連鎖帰属することができた.これまでの溶液 N M R タンパク質構造解 析などから得られた化学シフトと構造の関係をデータベースにして利用するソフトウェアが 多数,公開されている.これらを用いて,帰属で得られた化学シフトから主鎖構造を明らか した. MPX では,最初の2残基は分子鎖がのびているがそれ以降は α へリックスである構造 を RMSD 1 Åの精度で求めた.また,線幅の解析から固体状態において主鎖構造には RMSD で 1 Å程度の分布があることもわかった.

さらに,残基数が 100 程度の膜蛋白質として, H⁺-ATP 合成酵素 *c* サブユニット⁽¹⁾と トランスデューサ *p*HtrII に同様の方法を適用した.これら蛋白質の多次元スペクトルでは信 号の分離は十分ではない.しかし,立体構造を仮定すると化学シフトの予測と多次元スペク トルのシミュレーションができる.信号強度を求めるために,混合期の磁化移動を7スピン 系の大きさまで考慮した.これらの計算結果と実測スペクトルを比較することで,主鎖構造 の解析と信号帰属を行った.上記の膜タンパク質では,膜貫通領域ではαヘリックスである が,その他の領域ではターン構造や分子鎖が伸びているという結果が得られた.

[距離測定] 蛋白質の三次構造や超二次構造を決めるためには,距離情報を得ることが不可欠である.¹³C完全標識試料では,共有結合を一つ隔てた炭素スピン間の強い双極子結合のため,長い距離の測定はむずかしくなる.そこで¹H-¹Hの距離を¹³Cの高い分解能を利用して 測定する方法を開発してきた⁽²⁾.この方法で4Å以上の核間距離まで観測できることを示す. また,選択標識して距離測定をすることも有効である.これらの例をマストパランXなどに ついて示す.

[まとめ] 以上示したように,完全標識試料についての多次元NMRによる信号帰属と化 学シフトにもとずく二次構造解析,さらに距離測定を併用することにより,15残基程度のペ プチドについては,主鎖構造を決められた.また,100残基程度の蛋白質についても同様な 方法で詳しい2次構造の解析が可能であることがわかった.さらに,距離情報も得ることで, 結晶状態ではない蛋白質の構造決定を行うことの可能性が示された.

文献 (1)小林将俊ら.第42回 NMR 討論会,2P40.(2)高橋大樹ら.第42回 NMR 討論会,2P34.

-93 -

NMRダイナミクス情報に基づく抗プリ

オン薬の開発

(岐阜大学医学部高次情報統御学講座) 〇桑田一夫

Anti-prion drug design based on the NMR protein dynamics information Department of Biochemistry and Biophysics, School of Medicine, Gifu University Kazuo Kuwata

Several different compounds and antibodies have been reported to inhibit production of the abnormal prion protein, PrP^{Sc} in vitro, however the structural evidences regarding those mechanisms have not yet been obtained. Previously we characterized the intermediate conformer of prion, i.e. PrP^* , using high-pressure NMR, and hypothesized the conversion from PrP^C to PrP^* is the critical event for the subsequent pathogenic conversion. Here we have designed drugs that specifically interrupt the PrP^* formation, using *in silico* and *in vitro* screening from 32,000 potential candidates. We searched chemicals, which can bind to the unique pocket of PrP, and stabilize the normal conformation of PrP^C , and reduce the population of the intermediate conformer, PrP^* .

1. 今,何故,プリオン中間型か?

プリオンのフォールディング中間体は、グアニジウム塩酸などの変性剤存在下¹⁾ や低pH領域²⁾で、円二色性(CD)スペクトルを用いて観測された。最近では速度論的フォールディング中間体の存在を示唆する論文が発表されている¹⁾。一方、我々は高圧 NMR を用いて、プリオン中間型の構造を残基レベルで特徴づけることが出来た⁴⁾。

病気を引き起こすプリオンの変異部位⁵⁾が多数知られおり、それらは主にヘ リックスB、Cに集中している。一方、プリオン中間型においても、ヘリック スB、Cに部分的な変性が見られる (Figure 参照)。特に、N端のβシート部分 と接触している部分が特に局所的な安定性が低いことが分かった⁴⁾。このことは、 プリオン中間型が何らかの形で、プリオンの構造変換過程と関わっている可能 性を強く示唆している。

キーワード プリオン、ダイナミクス、抗プリオン薬

著者ふりがな くわたかずお

2.N端疎水性クラスターとC端へリックスとの関係は?

細胞型プリオン (PrP^c)のN端はほぼランダムコイルであるが、C端はヘリ ックスを形成している (Figure 参照)。静的構造だけを眺めれば、このふたつの 領域はあたかも独立に振舞っているかのように見えるが、感染という生物学的 機能に着目すると、両者は切っても切れない関係にある。

プリオンにおいては、細胞型からスクレイピー型 (PrP^{so}) へのプリオンの構 造変換過程は未だ明らかでないが、スクレイピー型は 2~6 量体程度のオリゴマ ーだろうと考えられている^{6) - 8)}。実際、プリオン蛋白の部分ペプチド PrP106-126 は、オリゴマーを形成し、それは神経細胞死を誘導するという⁹⁾。 ところが、感染性が成立するためには、この部分を含むN端の疎水性クラスタ ー部分とC端のヘリックス部分とが必要であるという¹⁰⁾。

これらの事実は、一見独立に振舞っているかに見えるN端の疎水性クラスターとC端へリックスとが、何らかの干渉を行っている可能性を示している。 NMR による低温変性実験の結果からも間接的に両者の相互作用が示されている⁴⁾。N端部分がアポトーシスを誘導するオリゴマーを形成するとすれば、C端 へリックスは一体どのような役割を果たしているのだろうか?

3.C端ヘリックスの役割

Prusiner, S. B. により提唱された 'Protein Only Hypothesis'⁶⁾⁷⁾によ れば、「神経細胞に毒性を持つプリオンの異常立体構造(スクレイピー型)は、 正常立体構造(細胞型)と接触することにより、細胞型をスクレイピー型に変 換する性質を有する。この反応は連鎖的に起き、指数関数的にスクレイピー型 が増加した結果として、神経変性疾患としてのプリオン病が成立する。」という 描像が成り立つ。

スクレイピー型がどのような機構で神経細胞死をもたらすか,という問題は 未だ解決していない。これがアポトーシスであるかどうかは重要な問題だろう。 PrP-106-126⁹⁾というプリオンの疎水性クラスター部分からなる 21 残基のペプ チドはアポトーシスを引き起こす効果があるらしい。最近,このような毒性は 繊維状構造ではなく,オリゴマー¹¹⁾であると報告されている。しかし,これら がスクレイピー型と同様の「感染性」を有するかどうかについては不明だ。

アミロイドの先端では、モノマー構造とアミロイド構造との間の交換反応が 生起している¹²⁾。律速段階は単分子における構造変換過程にある¹²⁾。スクレイ ピー型の特徴はその「感染性」にあるが、このようなアミロイドの性質と「感 染性」が何らかの関係があるかどうかは依然としてよく分からない。

現在ではどのようなタンパク質でも、条件さえ整えればアミロイドを形成す ると考えられている¹³⁾。実際、多くの典型的なアミロイド形成性ペプチドは、 モノマーでは構造を持っていない。

一方「感染性」に必要なものは、何だろうか?ここで一つの示唆がある。電 子顕微鏡画像から類推したスクレイピー型のモデル⁸⁾では、スクレイピー型は 細胞型構造が完全に崩壊したものではなく、一部のヘリックスを残存している、 と考えられている。これは「感染」が成立するためには、全蛋白共通のアミロ イド構造のようなものではなく、立体構造特異的な分子間「認識」がどこかに 必要であることを示唆しているのではないだろうか?

4. ダイナミクスに基づく創薬(DBDD)

構造に基づく創薬(SBDD)が唱えられてから久しいが,現在のところ,華々 しい成功は,主に酵素阻害剤に限られている。プリオンでも,プロテインX結 合サイトに結合する薬物が探索された¹⁴⁾。しかし,その後,このようにして選 ばれた薬剤は,「結局,効果がない」と評価されるに至った。実際,PrP^cにおけ るプロテインX結合サイトには,明瞭な結合ポケットは存在せず,たとえ Drug が表面に付着したとしても,結合定数はかなり低いと考えられる。

一方,先に述べたプリオン中間型に関する観測から,スクレイピー型 (PrP^{se}) は,変性型 (PrP^U) からではなく, PrP*から生成される可能性がある。

PrP^{Sc}の構造は未だ不明である。しかし, PrP^cの構造を基に, PrP*への構造変換を 選択的に抑制する薬剤をデザインすることは可能であろう。このような薬物は, PrP^c の遅い構造揺らぎを抑制し, PrP^c を安定化し, PrP*のポピュレーションを減少させる。 その結果として PrP^{Sc}の生成を抑制する。別の言葉で言えば, 地震対策の出来ていない 家の壁に, 頑丈な柱を入れて, 地震が来ても簡単には倒壊しないようにする, というこ とである。いわば, タンパク質のダイナミクスに基づく創薬 (Dynamics Based Drug Design, DBDD)の始まりである。

- 1. Zhang, H., Stockel, J., Mehlhorn, I., Groth, D., Baldwin, M. A., Prusiner, S. B., James, T. L., Cohen, F. E. *Biochemistry* **36**, 3543-53 (1997)
- 2. Hornemann, S., Glockshuber, R. Proc. Natl. Acad. Sci. U.S.A. 95, 6010-6014 (1998)
- 3. Apetri, A. C., Surewicz, W. K. J. Biol. Chem. 277, 44589-44592 (2002)
- 4. Kuwata, K., Li, H., Yamada, H., Legname G., Prusiner, S. B., Akasaka, K., James, T. L. *Biochemistry* **41**, 12277-12283 (2002)
- 5. Prusiner, S. B. Transgenetics of prion diseases. Curr. Top. Microbiol. Immunol. 207, 1-17 (1996)
- 6. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. *Scienece*, **216**, 136–144 (1982).
- 7. Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. USA, 95, 13363-13383 (1998).
- 8. Wille, H., Michelitsch, M. D., Guénebaut V., Supattapone, S., Serben, A., Cohen, F. E., Agard, D. A. & Prusiner S. B. Proc. Natl. Acad. Sci.99, 3563-3568 (2002)
- 9. Forloni, G. et al., Nature 362, 543-546(1993).
- 10. Muramoto, T., Scott, M., Cohen, F. E., Prusiner, S. B. Proc. Natl. Acad. Sci.93, 15457-15462 (1996)
- 11. Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., Glabe, C. G. Science **300**, 486-489 (2003)
- 12. Chen, S., Ferrone, F. A., Wetzel, R. Proc. Natl. Acad. Sci. U.S.A., 99, 11884-11889 (2002)

- 13. Fandrich, M., Fletcher, M. A., Dobson, C. M. Nature 410, 165-166 (2001)
- 14. Perrier, V., Wallace, A. C., Kaneko, K., Safar, J., Prusiner, S. B. and Cohen, F. E. Proc Natl Acad Sci USA. 97, 6073-6078 (2000)

Figure Schematic representation of three conformers of prion. PrP^{C} ; the native form, PrP^{*} ; the intermediate conformer, PrP^{U} ; the unfolded form, PrP^{Sc} , the pathogenic form. PrP^{Sc} can be produced via PrP^{*} .

REDORを用いたアンフォテリシン B-リン脂質会合体の構造研究 (¹大阪大学大学院理学研究科、²CREST) 〇松岡 茂^{1,2}、松森信明¹、池内宏貴¹、植野嘉之¹、大石 徹¹、村田道雄¹

Structural study on the amphotericin B – phospholipid complex using REDOR (¹Graduate school of Science, Osaka University, ²CREST) OShigeru Matsuoka^{1,2}, Nobuaki Matsumori¹, Hiroki Ikeuchi¹, Hiroyuki Ueno¹, Tohru Oishi¹ and Michio Murata¹

Poyene macrolide antibiotic amphotericin B (AmB) is known to form an ion-permeable channel across plasma membrane. In spite of vast researches in the last 30 years, the structure of the channel has not yet been solved. The AmB channel is thought to be a molecular assemblage formed by AmB, sterol and phospholipid, based on the observations that the channel activity of AmB is greatly influenced by membrane sterols and phospholipids. In this study we attempted to investigate the membrane binding of AmB by ¹³C{³¹P} REDOR using ¹³C-labeled AmB and phospholipid (DMPC). The results showed that the both ends of AmB are close to the phosphate of DMPC, hence supporting the single-length channel model.

序 放線菌 Streptomyces nodosus の生産するアンフォテリシン B(AmB、Fig. 1)は真菌感染症の治療 に用いられる重要な抗生物質である。AmB は脂質二重膜中でイオン透過チャネルを形成する。 AmB のチャネル活性は膜含有ステロールに大きく影響されることから、AmB-ステロール分子間相 互作用が選択毒性発現に関与すると考えられている。一方、最近リン脂質の重要性も指摘されてい る。このように、AmB のチャネルは AmB-ステロールーリン脂質の三者の複合体であると考えられ、 主に計算化学的手法によって構造が推定されているが、分光学的な構造解析による裏づけは、ほと んど得られていない。AmB 同様、生体膜中で超分子複合体を形成する天然有機化合物は数多く知 られているが、その複合構造のほとんどが未解明であり、方法論の確立が望まれている。我々は AmB-ステロールーリン脂質の会合体構造解析に固体 NMR の手法を適用することによって、生体 膜中における複合体構造を解析する方法論の確立を目指している。今回、REDOR 法を用いた分子 間双極子相互作用の観測から AmB-膜脂質の相互作用の解明を試みたので報告する。

標識試料の調製 AmB の¹³C 標識体は生産菌 Streptomyces nodosus の¹³C 強化培養により調製した。分子の両端を位置選択的に標識した[tri-¹³C] AmB は培地に[3-¹³C] propionate を添加して培養 することで得られた(Fig. 1)¹。また、分子全体を¹³C 標識した[u-¹³C] AmBも[¹³C₆] glucose を強化した 培地を用いて調整した。この他にコレステロール、エルゴステロールの¹⁹F 標識体を合成化学的に調 製した。

キーワード 分子間双極子相互作用、生体膜、REDOR、アンフォテリシンB、安定同位体標識

著者ふりがな まつおかしげる、まつもりのぶあき、いけうちひろき、うえのひろゆき、おおいしとおる、 むらたみちお **REDOR 測定** リン脂質膜の表面には多数の³¹P が存在する。そこで、リン脂質 (DMPC、Fig. 2)の³¹P と[tri-¹³C] AmB の ¹³C との分子間双極子相互作用を観察して、AmBーリン脂質の会合状態を調べた (Fig. 3)。その結果、AmB 分子の両端のカルボキシル基 (C41) およびメチル基 (C39 と C40) が DMPC の ³¹P と接近していることが明らかとなった。これは AmB 一分子で脂質二重膜を貫通した single-length チャネルモデル²と良い一致を示す。現在 ¹⁹F 標識ステロールと[u-¹³C] AmB の連結分 子を用いた ¹³C {¹⁹F} RDX REDOR³の測定も行っており、発表ではこれらを合わせて AmBー膜脂質 会合構造に関する結果を報告する予定である。

Fig. 1 Amphotericin B (AmB). Labeled carbons of [tri-¹³C] AmB are indicated with solid squares.

Fig. 2 ¹³C-assignment of dimyristoyl-sn-phosphatidylcholine (DMPC) ⁴.(see Fig. 3)

Fig. 3 ${}^{13}C{}^{31}P{REDOR}$ spectra of [tri- ${}^{13}C$] AmB/DMPC (75 MHz, CMX-300) in 50 wt% 10 mM HEPES/D₂O buffer (pH 7.0) obtained after 160 rotor cycles of diphasing with magic angle spinning at 7000 Hz. The spectra was measured at 30°C. The number of the scans accumulated for the full echo spectrum, S₀, was 61440. The top trace is the REDOR difference spectrum, Δ S. All signals from the both ends of [tri- ${}^{13}C$] AmB, C39, C40 and C41, showed significant dipolar coupling with ${}^{31}P$ of DMPC. On the other hand, the signals from the middle of the molecule, natural abundance (na) of C20-33, were not dephased.

Reference [1] C. M. McNamara et al. (1998) J. Chem. Soc. Perkin Trans. 1, 83-87.

[2] M. E. Kleinberg, A. Finkelstain (1984) J. Membrane Biol. 80, 257-269.

[3] A. K. Mehta, J. Schaefer (2003) J. Magn. Reson. 163, 188-191.

[4] C. W. B. Lee, R. G. Griffin (1989) Biophys. J. 55, 355-358.

3 L11

高等動植物の構造プロテオミクス

理研 GSC¹,理研播磨²,東大院理³,かずさ DNA 研究所⁴ 木川隆則¹,武藤 裕¹,林 文晶¹,畠中秀樹¹,山崎和彦⁻¹,山崎俊夫¹, Peter Güntert¹,前田秀明¹,好田真由美¹,廣田 洋¹,白水美香子¹,田仲 昭子¹,荒川貴博¹,カルニンチピエロ¹,河合 純¹,林崎良英¹,関 原 明¹,篠崎一雄¹,中山 学⁴,小原 收⁴,○横山茂之^{1,2,3}

Structural proteomics of animals and a plant

(RIKEN Genomic Sciences Center¹, RIKEN Harima Institute at SPring-8², Graduate School of Science, the University of Tokyo³, and Kazusa DNA Institute⁴) Takanori Kigawa¹, Yutaka Muto¹, Fumiaki Hayashi¹, Hideki Hatanaka¹, Kazuhiko Yamasaki¹, Toshio Yamazaki¹, Peter Güntert¹, Hideaki Maeda¹, Mayumi Yoshida¹, Hiroshi Hirota¹, Mikako Shirouzu¹, Akiko Tanaka¹, Takahiro Arakawa¹, Piero Carninci¹, Jun Kawai¹, Yoshihide Hayashizaki¹, Motoaki Seki¹, Kazuo Shinozaki¹, Manabu Nakayama⁴, Osamu Ohara⁴ Shigeyuki Yokoyama^{1, 2, 3}

RIKEN Structural Genomics/Proteomics Initiative (RSGI) (http://www.rsgi.riken.go.jp) was organized by RIKEN Genomic Sciences Center and Harima Institute at SPring-8 in 2001. RSGI has been integrated into the National Project on Protein Structural and Functional Analyses (NPPSFA or Protein 3000), organized by the Ministry of Education, Culture, Sports Science, and Technology (MEXT), as one center of the program for comprehensive studies. Proteins from human, mouse, plant, and an extreme thermophile, *Thermus thermophilus* HB8, involved in important biological and medically important phenomena, for example, signal transduction and nucleic acid binding are selected as our targets. Here we present some of our efforts in analyzing proteins from higher eukaryotes using NMR.

A large number of cDNA clones are expressed to obtain samples for structure and function studies. For eukaryotic multidomain proteins, the functional domains are informatically and experimentally determined by analyses of their amino acid sequences. A standardized method was established for high-yield cell-free protein synthesis, the key for high-throughput protein production. Protein samples are labeled with stable isotope $({}^{15}N/{}^{13}C)$ and subjected to HSQC screening. Selected constructs by the screening step are produced by large-scale protein synthesis. NMR spectroscopy and X-ray crystallography are used for the 3D structural analyses of proteins. In fiscal 2002, we determined 73 protein structures, from human, mouse, and *Arabidopsis thaliana* by NMR spectroscopy. Bioinformatic and experimental analyses of molecular and cellular functions are systematically performed. Various technologies for protein expression, structure determination, and functional analyses are being developed and improved for standardization, automation, and high-throughput operation. RIKEN is collaborating with Tsukuba Magnet Laboratory of the National Institute for Materials Science on the development of high resolution NMR spectrometer beyond 900 MHz and 920 MHz NMR magnet was successfully manufactured.

構造プロテオミクス, 無細胞タンパク質合成, 完全長 cDNA

- 100 -

きがわ たかのり、むとう ゆたか、はやし ふみあき、はたなか ひでき、やまさ き かずひこ、やまざき としお、ぎゅんたーと ペーたー、まえだ ひであき、よ しだ まゆみ、ひろた ひろし、しろうず みかこ、たなか あきこ、あらかわ た かひろ、かるにんち ぴえろ、かわい じゅん、はやしざき よしひで、せき もと あき、しのざき かずお、なかやま まなぶ、おはら おさむ、よこやま しげゆき

理化学研究所は、ゲノム科学総合研究センター(GSC)と播磨研究所によって、理化 学研究所構造プロテオミクス推進本部(RIKEN Structural Genomics/Proteomics Initiative, RSGI)(http://www.rsgi.riken.go.jp))を組織し、2002 年度より開始された文 部科学省の「タンパク 3000 プロジェクト」の網羅的解析プログラムを担当している. 例えば、情報伝達や核酸結合に関わる等、生物学的、医学的に重要なヒト、マウス、 シロイヌナズナなどの高等動植物や、ある生物種のゲノムにコードされている高度好 熱菌等の微生物をターゲットとして選択している.本講演では特にNMR法を用いて 解析を進めている高等動植物の構造プロテオミクス研究の現状を発表する。

大量の完全長 cDNA ライブラリが用いられ,インフォマティクスや機能解析スクリー ニングなどの実験的手法を組み合わせ,網羅的,体系的にターゲットを選択・機能ド メインへの分類をする.試料発現には,生細胞を用いた発現系とともに,ハイスルー プットな試料調整に最適な無細胞タンパク質合成系を用いたタンパク質発現法を用 いている.NMR 測定用の安定同位体標識(15N や 13C など)試料調製を行い,スクリ ーニングを実施し,それらの内から構造解析に好適なコンストラクトを選定し,大 量・多種のタンパク質試料の発現・調製を行う.作製された水溶液試料は,理研 GSC の大規模 NMR 施設を利用して立体構造を決定している.2002 年度は,NMR を用い て,ヒト,マウス,シロイヌナズナ由来の73 種類のタンパク質の構造を解析した. インフォマティクスや実験に基づく体系的機能解析も行っている.発現スクリーニン グや、ミリグラムスケールでの無細胞タンパク質合成をはじめとする,構造解析や機 能解析における様々なステップでの技術開発も進め,ロボットを用いた全過程の機械 化・自動化を進めている.これに加え,物質材料研究機構を中心とする 900MHz 超の 装置の開発に参加し,920MHzNMR 装置の開発に成功している.

3 L12

MRI を用いた遺伝子発現解析システムの構築

(横浜市大院・総合理) 〇杉原文徳、杤尾豪人、森田将史、奇世媛、岡田あずさ、笠原浩司、古久保哲郎、白川昌宏

Development of a reporter system of *in vivo* gene expression using MRI Graduate School of Integrated Science, Yokohama City University Sugihara,B., Tochio, H., Morita, M., Ki, S., Okada, A., Kasahara, K., Kokubo, T., Shirakawa, M.

[Abstract]

To provide an ideal method for monitoring *in vivo* gene expression, we are developing a novel method of reporter gene assay using NMR/MRI. In this method, activity of a gene expression is converted to ³¹P NMR signal of polyphosphate (PolyP). As fundamental study for developing this method, functions of genes, which were supposed to relate to PolyP accumulation, were analyzed in yeast cells at first. Then, the availability of the selected genes was tested. And, we have established the ³¹P MRI method for monitoring gene expression in yeast colonies. This method enables us to analyze gene expression of yeast *in vivo* and in a high-throughput manner.

[Introduction]

Whole genome sequences of many organisms appeared in the last decade. To expand our understanding of functions of genes beyond only the sequences, profile of gene expressions is of great consequence. Although a number of methods for analyzing gene expression are utilized, *in vivo* analysis of gene expression requires the method called Reporter Gene Assay. In this method, a target element of DNA sequence that includes a gene or a promoter is followed by a reporter gene such as GFP or β -gal. Upon the expression of the target element, the reporter gene is also expressed, so that the activity of the target element can be measured by the quantity of reporter gene's products. However, for those optical detection methods, it is difficult to observe deep inside opaque body. Although PET and X-ray are available for visualizing the interior of the body, these are harmful for living organisms.

As a non-invasive visualization method, we are developing a novel method of monitoring gene expression using ³¹P NMR/MRI and polyphosphate (PolyP). PolyP is known to accumulate in many organisms, though its biological relevance is not well understood. A number of candidates for reporter genes were selected, which were supposed to relate to synthesis of PolyP. Then, we surveyed the availability of the candidates in yeast cells. One example of the experiment is shown in Fig. 1. ³¹P NMR spectrum of Wild type of yeast has strong peak of PolyP, but after disrupting one of the candidate genes, *phm4*, no PolyP signal was detected, showing that PolyP accumulation in yeast can be assayed quite easily by using ³¹P NMR.

KYE WORDS: MRI, 遺伝子発現, ポリリン酸

すぎはらぶんとく、とちおひでひと、もりたまさひと、きせいおん、おかだあずさ、かさはらこうじ、こくぼてつろう、しらかわまさひろ

[Materials & Methods] Wild type and various recombinants of *S.cerevisiae* (yeast) strains were used for this study. NMR/MRI experiments were carried out on Bruker DRX 500MHz equipped with TBO and Micro5 probehead for yeast cell suspension and

Fig. 1 **A** : 31 P *in vivo* NMR spectrum of wild type of yeast in medium. **B** : Spectrum of $\Delta phm4$. No peak of PolyP on the spectrum.

colony images, respectively. The initial survey of the availability of reporter gene candidates was accomplished in culture medium state judging by ³¹P NMR (Fig.1). After that, a couple of successful candidates, *phm1-5*, *vma* etc., were selected. These candidates were further tested in colony state where chemical shift selective images were used for judging the availability (Fig.2). The correlations between the amount of PolyP and the transcriptional level of those genes were also tested with strains in which the gene expression was inducible by shifting temperature or changing carbon source component in culture media. Transcriptional level was determined by Northern blotting.

[Results & Discussion]

Whereas no PolyP NMR signal was detected in *phm4*-disrupted yeast ($\Delta phm4$), PolyP accumulated in $\Delta phm4$ with deriving and expressing *phm4* by plasmid vectors. And PolyP amount correlated to the expression level of *phm4*. The results indicate that *phm4*-PolyP reporter system is utilized for monitoring gene expression.

PolyP selective image clearly showed the difference of PolyP amount in wild type and $\Delta phm4$ yeast in colony state (Fig. 2). It revealed that the PolyP reporter system was available for analysis of gene expression even in colony state. For further assessment of the availability of the system, various strains of recombinant yeast were prepared and tested.

We confirmed the availability of our PolyP reporter system by the series of experiments. And research is ongoing to build a high throughput system for analyzing thousands of different target genes with our PolyP reporter. We also apply the reporter system to monitoring gene expression in higher eukaryote.

Fig. 2 **A** : The layout of yeast colonies. W represents colony of wild type yeast and Δ represents $\Delta phm4$. **B** : Proton image of yeast colonies. **C** : PolyP selective image of the sample. Polyps, accumulated in wild type, are only seen in this image. TR/TE = 400/2msec Original FOV = 2.5/1.2cm NS = 3k Total Time = 3h

-103 -

3 L13

超並列型 MR マイクロスコープを用いたヒト胚子

三次元撮像(1):-システム開発と撮像実験-

○ 松田善正¹, 小野真也¹, 半田晋也¹, 拝師智之², 巨瀬勝美¹ 1.筑波大学物理工学系, 2.(株)エム・アール・テクノロジー

 MR microscopy of a large human embryo collection (Kyoto collection) using a four-channel super-parallel MR microscope (1)
System development and measurement of human embryos -Y.Matsuda¹, S.Ono¹, S.Handa¹, T.Haishi², K.Kose¹
¹Institute of Applied Physics University of Tsukuba, ²MRTechnology Inc.

Kyoto University has a large human embryo collection (~ 50,000 specimens), collected in the 1960s. Because such a collection will never be obtained again, nondestructive 3D measurements of the embryos are highly desirable. Kyoto and Tsukuba Universities have therefore started a project to acquire 3D MR microscopic images of about 4,000 embryos in two years to create a 3D anatomical database.

1. はじめに

京都大学付属病院先天異常標本センター(センター長:塩田浩平教授)では、1960年代に組織的にヒト胚子を収集し、現在、数万体に及ぶヒト胚子の世界最大のコレクション(京都コレクション)を所蔵している.このコレクションは、米国の有名なカーネギーコレクションを遙かに凌ぐスケールを持ち、今後は、倫理的問題などにより二度と得ることができない、人類に遺された極めて貴重な財産となっている.ところが、このコレクションは、現在、保存上の問題などにより、散逸、劣化の危機にある.これに対し、我々はヒト胚子の三次元内部構造を、試料に一切影響を与えずにディジタルデータとして保存することを目的として、すべての胚子のMRマイクロスコープ撮像を行なうことを計画した.しかしながら、従来の技術では、三次元 MRマイクロスコープ撮像に、1 体あたり少なくとも数時間程度を要し、多数の試料の撮像を行なうことには、非常に困難であった.そこで、当研究室で、以前に提案し開発した超並列型 MRマイクロスコープを、このプロジェクトを実施するために、新たに構築することにより、この問題を解決した.

本研究では、京都コレクションの中の、代表的な胚子約4,000体の三次元 MR マイクロスコープ撮像を行なうことを目標とし、現在そのプロジェクト(京都4,000 プロジェクト)を開始したので、ここにその経過を報告する.

2. 超並列型 MR マイクロスコープ

本プロジェクトを行なう為に、動物実験用 MRI の超伝導磁石をもちいた 4 チャンネル超並列型 MR マイクロスコープシステムを構築した.

ヒト胚子, MRマイクロスコープ, 超並列型 MRマイクロスコープ, ディジタルデータ

まつだよしまさ、おのしんや、はんだしんや、はいしともゆき、こせかつみ

本システムで使用した超伝導磁石は,静磁場強度 2.34 T,室温開口径 40 cm,均一領域 16 cm 球 である. この磁石の均一領域に対応した,4 チャンネルアレイ型プローブヘッドと,100 MHz の 4 チャンネル MRI コンソールを開発した.

このアレイ型プローブにサンプルをセットし,超伝導磁石の中に挿入し,撮像を行なった. なお RF コイルとしては、15 mm の NMR 用試験管用には直径 18 mm の 3 ターンソレノイドコイル、 12 mm 管用には、直径 16 mm の 3.5 ターンのソレノイドコイルを使用した.

Fig.1 2.34 T superconducting Magnet

Fig.2 4CH MRI console

Fig.3 4CH probe head array

3. ヒト胚子サンプル

2年間に約2,000~4,000体(数量未確定)の胚子の撮像を行なう予定であるが,初年度は,18~23 ステージの比較的大きな胚子を4チャンネルのシステムで撮像する予定である.このため,NMR用 試験管外径12mm,内径10.5mm,および外径15mm,内径13.5mmに胚子を京大で挿入し,10% ホルマリン固定液を満たした状態で筑波大に輸送し,その保存液に浸したままで,撮像を行なうこ とにした.これにより,輸送中の振動,撮像中の磁化率アーチファクト,そして乾燥などを防ぐ対 策とした.

4. 最適な撮像シーケンスの決定

10%ホルマリン固定液に浸したまま撮像するために、ホルマリンの溶液の信号を抑制しつつ、最良のコントラストを得ることを目的として、パルスシーケンスの最適化を行った.このため、Ti強調シーケンスの使用を前提とし、コントラストとしては、胚子発生のキーポイントとなる椎体と椎間板の間のコントラストに注目して評価を行なった.すなわち、21 stage のヒト胚子の撮像を次のスピンエコーシーケンスで行なった.

エコー時間を 8ms で固定し、繰り返し時間を 80ms, 100ms, 150ms, 200ms, 400ms と変化
繰り返し時間を 200ms で固定し、エコー時間を 8ms, 12ms, 16ms, 20ms, 24ms と変化
上記の方法で、椎体と椎間板のコントラストの比較を行なった。 画素サイズは(120 µ m)³、 画素数は 128×128×256 である。その結果を Fig.4, Fig.5 に示す。

Fig.4 SE images obtained using several repetitions (1) 80 ms, (2) 100 ms, (3) 150 ms, (4) 200 ms, and (5) 400 ms

以上より, エコー時間は8ms~12ms, 繰り返し時間は100ms が最適と結論し, エコー時間10ms, 繰り返し時間100ms で撮像を行なうこととした.

5. 撮像結果

4 で決定した撮像シーケンスを用いて、21 stage および 19 stage の胚子撮像を行なった.現在合計約 300 体のヒト胚子の撮像を終了した. 21 stage は 120 ミクロン立方、19 stage は 100 ミクロン立方の画素サイズを用い、約8時間の撮像時間(信号加算回数 16 回)で解剖学的構造を良好に描出することに成功した. それぞれの撮像結果の一部を Fig.6,および Fig.7 に示す.

Fig.6 2D cross-sectional images selected from 3D images of 21 Carnegie stage human embryos. (Spatial resolution (120 μ m)³, Spin-echo, TR / TE = 100 ms / 10 ms, NEX = 16)

Fig.7 2D cross-sectional images selected from 3D images of 19 Carnegie stage human embryos. (Spatial resolution $(100 \ \mu m)^3$, Spin-echo, TR / TE = 100 ms / 10 ms, NEX = 16)

6. まとめ

本プロジェクトは現在,進行中であり,初年度に18~23 ステージの胚子の撮像を終了した後,来 年度は13~17 ステージの胚子の撮像を行なう予定である.今後,撮像を進めるとともに,さらに空間分解能の向上,撮像の高速化の為の手法の開発も同時に検討する予定である.

Reference

- Nishimura H, Takano K, Tanimura T, Yasuda M. Normal and abnormal development of human embryos: First report of the analysis of 1,213 intact embryos. Teratology, 1 (1968) 281-290.
- (2) Yoshimasa Matsuda, Shin Utsuzawa, et al. Super-parallel MR microscope: Magnetic Resonance in Medicine, volume 50 (2003). 183-189
- (3) 松田善正,宇津澤慎,栗本岳明,拝師智之,山崎由香子,巨瀬勝美,阿武泉,丸谷光廣 「超並列型MRマイクロスコープの開発」平成14年11月,第41回NMR討論会,P135 東京
- (4) 小野真也,松田善正,半田晋也,巨瀬勝美,拝師智之「超並列 MR マイクロスコープを 用いたヒト胚子三次元撮像(2)ー画像コントラスト最適化の研究ー」平成 15 年 11 月, 第 42 回NMR討論会、大阪

ポスター発表要旨

第一日

11月26日(水)

タンパク質溶液 NMR 測定における自動化の試み

(日本電子株式会社)○朝倉克夫、栗本智充、根本暢明

Automatic and High Throughput Protein NMR Measurement

(JEOL Ltd.)

OKatsuo Asakura, Tomomitsu Kurimoto and Nobuaki Nemoto

We develop an automation system designed for high throughput protein NMR in solution. We combine automatic calibration and automatic measurement to provide completely automatic system. This system does not need any trade-off in spectrum quality, and is extremely easy to operate.

近年、ポストゲノム時代を迎え、タンパク質の高次構造解析が盛んにおこなわれており、多 くの研究機関や企業において NMR による構造解析が進められている。しかしながら現在の タンパク質溶液 NMR 測定は、多くの場合、熟練した測定者による注意深い測定条件設定を 必要とし、初学者にとっては非常に敷居の高いものであると言わざるを得ない。スピードと 効率化が求められる現代において、測定作業が自動化されることは、タンパク質溶液 NMR の応用範囲をさらに広げることにつながる。NMR 測定における自動化の成否は、測定サン プルの導入からデータの取得に至るまでにおいて、どこまで測定者の操作を必要としないシ ステムを構築できるかにかかっている。しかし、現在市場にある一般的な NMR 装置に用意 されている自動測定機能は、測定の準備から実際の測定までを統合的に自動化するシステム にはなっておらず、自動で測定する場合にはパラメータの最適化の結果が不適切な場合に得 られたスペクトルの質が著しく損なわれてしまう。このため、熟練した測定者による段階的 なデータ評価を必要とするケースが多く、完全に自動で測定した場合に良好なスペクトルを 得られない危険性をはらんでいる。タンパク質溶液 NMR の測定は一般に長時間を要し、サ ンプル自体のライフタイムに限界があるため、そのような失敗は許されない。このため、測 定パラメータの精度良い最適化とその評価システムおよび、問題が発生した際の評価機構や 通知機能は不可欠である。我々は、得られるデータの質に対して悪影響を及ぼすことなく、 測定のセットアップからデータの取得までを自動化することを試みた。

タンパク質溶液 NMR の測定準備は、一般にサンプルの導入に始まり、測定温度設定、NMR ロック、コイルのチューニング、分解能調整、軽水信号消去のための照射位置の決定、パル ス幅等の各種測定パラメータのキャリブレーション、レシーバーゲインの決定までをおこな う。サンプルの導入から分解能調整までは、ハードウェアの構成次第で自動化することが可 能である。問題となるのは軽水信号消去のための照射位置やパルス幅などの測定パラメータ

自動化、測定条件設定、タンパク質溶液 NMR 測定

○あさくらかつお、くりもとともみつ、ねもとのぶあき

) A 1] .		Provide Ale		Direct
Filemans: Protein-A	samate . I					
Saurale ID:						
Cammanti Projein sa	■k A·I					
taguan_with_include	aujus					Remark)
Calibration	()015et 90:00:13	()Prome (00:01:41	()Calben 00:82:30	()Nitragen 00:03:51		A44 00:00:00
15N_HSQC	OCalibration 00:06:12	()10 00:00:21 / /	()2D 00:29:04			AM
13C_IISQC	OCalibration 00:04:51	()10 00;00:39	()2D 00:29:00			A44 00:00:00
ENCO	Od:08:42	()1D 00:08:21	()2DXY 00:30:02	()2DXZ 00:15;57	()3D 14.05:59:54	(<u></u>) 00:00:00
HN(CA)CO	00:08:42	()1D 00:00:22	()2DXT 00:30:30	()2DXZ 96:16:13	()3D 14 06:27:10	AAA 00:00:00
HINCA) ()Calibration	010	⊖20X7 09:39:04	()20XZ	()3D	AH
TCCB TOCST(AN AND	OCalibration	OID			()3D	
		00300,339 ()30-XYA 20111,24:36	()3D-XZA 24111-40:50	()4D 91 20:04:33		- 00:00:00
HCCILCOSY	Calibration	1)1D 00:00:39	()2DXT 00:57###	()2DXZ 00:16:12	()3D-X57Z 2411:26:29	A44 (08:800:00
: :	()20XA 00:16:12	(_]3D-XYA 2411:26:29	O3D-XZA 14:57:27	()4D 91 20;29:29	<u></u>	
HCCH COSY(arematic)	Calibration 00:08:42 C2DXA 00:15:56	()1D 105,001,29 ()50-XYA 24 10:25:34	()2DXY 00:56246 ()3D-XZA 14:42:00	()2DXZ 00:15:56 ()4D 94 16:26:14	* ()3D-XYZ 24 10:25:34	08:80:00
C edited_NOEST	OCalifyration 00:08:42	())D 01;00;00	()2BXY 01:00:33	()2DXZ 00:16:56	()3D 241+:10:48	A44 08:00:00
N-edited_NOESY	OCalibration 00:08:42	()1D 00:06:22	()2DX7 00:59:29	()20XZ 00:16:28	()3D 2413:35:10	00:00:00

の最適化である。前述のようにこれらは精度良く決定される必要があり、最終的に得られる スペクトルの質に大きく影響する。特に注意深く調整する必要のあるパラメータは、'H, '³C, '⁵N のそれぞれで必要な帯域を励起するためのパルス幅の最適化だが、マルチシーケンサを 用いた分光計では多数のチャンネルにそれぞれオフセット周波数を設定できるためオフレゾ ナンス・シェイプドパルスの最適化を必要とせず、各観測核の矩形パルスの 90 度パルスの みを最適化すれば、必要なパルス幅は単純な計算で算出できる。このため、サンプルごとに 必要なキャリブレーション作業を、軽水信号消去のための照射位置の最適化と 90 度パルス 幅の決定のみとすることができた。軽水信号消去のための照射位置の最適化は、照射位置を 段階的に変化させて最も良好に軽水信号が消去される位置を探索する。パルス幅の最適化に は、非線形最小自乗最適化によるパルス幅の算出を採用した。この手法では、測定者の判定 を必要とせずに短時間で極めて精度良くパルス幅を決定することが可能である。また、算出 されたパルス幅が何らかの障害により理想的でない場合には、自動的に電子メールで測定者 に通知する。これらのキャリブレーション結果を用いて測定を実行する統合環境を用意する ことにより、タンパク質溶液 NMR 測定自動化の実現を試みた。

非線形最小自乗フィッティングを用いた 90 度パルス幅等の最適パラメータ決定

(日本電子株式会社)

○栗本智充、朝倉克夫、山崎千春、根本暢明

Parameter Optimization Using Nonlinear Least Square Curve-Fitting Algorithm

(JEOL Ltd.)

OTomomitsu Kurimoto, Katsuo Asakura, Chiharu Yamasaki and Nobuaki Nemoto

We have developed a new parameter optimization system using non linear least square curve-fitting algorithm. It is very important for FT-NMR to optimize each parameters such as 90 degree pulse width correctly. Especially in the multi pulse experiments, inaccurate parameters reduce signal intensity drastically. We here report a technique of computing exact parameters.

パルス NMR 測定において、適切に調整されていない測定パラメータは、最終的に得られる 信号強度に対して重大な悪影響を及ぼす。このため、個々の測定パラメータは注意深く設定 する必要があるが、調整が極めて重要なパラメータの一つとして、パルス幅があげられる。 パルス幅の不正確さは、核スピンの励起を不完全にし、感度の低下を引き起こす。特に、多 数のパルスを用いてスペクトルを編集するマルチパルス NMR 実験においては、個々のパル ス幅の不正確さが微小であったとしても、それらが蓄積されることによって最終的に得られ る信号の強度を大きく低下させる。このため、マルチパルス NMR の測定前には、正確な 90 度パルス幅を決定する必要がある。例えば 'H の 90 度パルス幅を決定するには、緩和時間 やラディエーション・ダンピングの影響を取り除くために 360 度パルス幅を決定し、その 1/4 を 90 度パルス幅とすることが多い。具体的には、パルス長を段階的に変化させる Nutation 実験を行い、信号の強度変化から 360 度パルス幅を決定する。これを正確に求めるために は、360 度パルス幅付近を詳細に測定する必要がある。360 度パルス幅付近では信号が消失 するため、原理的に SN 比の小さいスペクトルを用いて判定しなくてはならず、厳密に正確 な 360 度パルスを決定するためには、長時間の測定を必要とする。そこで我々は、90 度パ ルス幅等の最適パラメータの決定に、適切なモデル式を仮定した上で非線形最小自乗計算を 適用することにより、必要な測定データ点数を大幅に削減しつつ、従来法より正確な最適パ ラメータの算出を可能とする方法を開発した。

非線形最小自乗フィッティング、測定パラメータ、90度パルス幅、Nutation 実験

○くりもとともみつ、あさくらかつお、やまざきちはる、ねもとのぶあき

今回我々が開発した手法における非線形最小自乗計算を適用した最適パラメータの決定では、 パラメータの変化量に対応する信号の強度変化を表す適切なモデル式を与え、このモデル式 の変数を満たす係数を算出する。たとえば、パルス幅の算出に利用する Nutation 実験では、 B,磁場で振動する正弦波に、B,磁場の不均一さに由来する信号強度の低下を勘案したモデル 式を仮定する(式①)。

$$I_t = Asin(\omega t + B) \exp\left(-\frac{t}{C}\right) + D \qquad \dots \exists \mathbb{T}$$

ここで I,はパルス長tにおける信号強度、A,B,C,D,ωはそれぞれ定数である。 Nutation 実験で得られたスペクトルの信号領域の積分値をパルス長に対してプロットした 曲線と、式①で与えたモデル式によって描かれる曲線が一致するように、非線形最小自乗最 適化計算により A,B,C,D,ωの最適値を算出する。得られた結果を基に計算される2π/ωが 360 度パルス幅であり、その 1/4 が 90 度パルス幅となる。下図は従来法による目測と本手法を 比較したものである。従来法は coarse で 21 点 (左図上段) とその結果を基に測定した fine の 21 点 (左図下段) から読み取った。本手法で計算に使用したデータは左図上段の 21 点 のみ (右図) である。従来の方法で目測により決定したパルス幅と本手法によって算出した パルス幅は良好な一致を示し、本手法がパルス幅の決定に極めて有効であることが示された。

本手法では、信号の強度変化をモデル化してパラメータの最適化を行うため、従来法で問題 となる SN 比の小さい領域での測定を必要とせず、短時間で正確なパラメータを決定するこ とが可能となる。また、適切なモデル式を与えることにより、パルス幅以外にも、INEPT の delay やコヒーレンス選択における磁場勾配パルス強度など、様々なパラメータの最適化 に応用することができる。

-113 -

極端条件下における核磁気共鳴法の開発と超臨界流体への応用 (産総研・超臨界流体研究センター, CREST) 〇梅木辰也・金久保光央・相澤崇史・増田善雄・生島豊

1 P3

Development of NMR Spectroscopy under Extreme Conditions and its Application to Supercritical Fluids (Supercritical Fluid Research Center, AIST and CREST) OTatsuya Umecky, Mitsuhiro Kanakubo, Takafumi Aizawa, Yoshio Masuda, and Yutaka Ikushima

We have developed several types of high-pressure and high-temperature NMR cells and probes for in-situ observations of supercritical fluid solutions. In order to monitor *macroscopic* behaviors, we newly present a multi-functional large-volume magnetic resonance imaging (MRI) cell, in which the sample solution can be independently heated (or cooled) in three directions. The volume expansion of liquid methanol in the addition of carbon dioxide was clearly observed.

【緒言】我々は、水や二酸化炭素をはじめとした超臨界流体を環境調和型プロセスの媒体として注目し、 その溶媒機能や反応機構の解明を目的として、核磁気共鳴法などのその場測定装置の開発を行なって きた。過酷な条件の超臨界水(臨界温度 374 ℃、臨界圧力 22.1 MPa)の実験では、アルミナ製セルを用 いて高温・高圧プローブを製作し、一方、比較的温和な条件の超臨界二酸化炭素(臨界温度 31 ℃、臨 界圧力 7.4 MPa)では、ポリマー材料を用いた簡便な高圧セルの提案を行った¹⁻³。本研究では、後者の ポリマー材料を用いて大容量型の高圧セルを設計・製作し、超臨界二酸化炭素 – 液体系の核磁気共鳴 画像の取得を試みた。

【高圧 MRI セルの構造と特徴】製作した高圧 MRI セルの概略と写真を Figure 1 に示す。高圧セルは耐 圧強度および加工性に優れたポリエーテルエーテルケトンを使用し、内径 30 mm、外径 50 mmとし、二 種類の長さ 170 mm と 250 mm のセルを製作した。セル内部の両端に温調された媒体が循環可能な Pyrex 製恒温槽(40 – 80 mm)を設置し、さらにセル外周に沿って試料を加熱制御可能な恒温槽を設けた。

キーワード:高温・高圧、プローブ、超臨界流体

high-pressure MRI cell.

Figure 2 Temperature profile in the high-pressure cell.

うめき たつや、かなくぼ みつひろ、あいざわ たかふみ、ますだ よしお、いくしま ゆたか

これら3つの恒温槽は独立して試料を加熱あるいは冷却可能である。実際に等方加熱(すべて 50 ℃; ●)、上方加熱(上部 60 ℃, 下部 40 ℃, 外周 50 ℃; ■)、および下方加熱(上部 40 ℃, 下部 60 ℃, 外周 50 ℃; ▲)をした場合のセル内の温度分布を Figure 2 に示した。比較的大容量(25 – 60 cm³)にも かかわらず、±0.2 ℃以内で温度制御可能であった。これまでのところ、本高圧セルは温度 120 ℃、圧 力 20 MPa 程度まで使用可能であることが分かっている。

【二酸化炭素による液体メタノールの体積膨潤過程の観察】高圧セルを 80 mm の内径のプローブにセットして、メタノールに二酸化炭素を加圧、溶解した時の ¹H の 2 次元画像の変化を観察した。なお、実験では、MRTechnology 社製の RF プローブ、磁場勾配ユニット、システム制御ユニット、および 0.3 T の U 型 永久磁石(¹H 共鳴周波数 = 12.8 MHz)を使用した。また、40 mmol dm⁻³のトリス(アセチルアセトナト) クロム(III) ーメタノール溶液を試料として用い、T₁を短くするように努めた(常圧で 150 ms 以下)。

Figure 3 Magnetic resonance imagings of methanol in contact with carbon dioxide at 50 °C; Spin-echo method, 0.25X0.25 mm boxes, 256X256 pixels, slice width ≈ 2 mm, pulse delay = 0.5 s.

Figure 3 から分かる通り、液体メタノールは二酸化炭素の加圧、 溶解により顕著な体積膨張を起こし、それに伴い1ピクセル当り の¹H スピン密度も減少することが磁気共鳴画像から確認された。 低圧の場合には液体メタノールのスペクトルに経時変化はほと んど見られなかったが、高圧(すなわち高密度)の二酸化炭素で は液体メタノールの体積膨張が時間とともに顕著となることが観 察された。また、常圧ではメタノールのメニスカスは凹状である が、上相の二酸化炭素の密度増加に伴いメニスカスはフラットと なり、表面張力が変化することが確認された。平衡到達後のス ペクトルから、体積変化を百分率で表し、圧力に対してプロットし た(Figure 4)。臨界圧力(7.4 MPa)付近からメタノールの体積膨

Figure 4 Pressure dependence of volume expansion of methanol in contact with carbon dioxide at 50 °C.

張は顕著となり、磁気共鳴画像法により相挙動の観察が可能であることが示唆された。 発表では、温度勾配を与えた場合の二液混合過程の観察結果や高温・高圧 NMR プローブの改良結 果を含めて報告するとともに、超臨界二酸化炭素が液体に及ぼす影響について考察を行う。

MRI 装置のセットアップでは、筑波大・巨瀬先生および MRTechnology・拝師様に多くのご助言をいた だいたことを記し、感謝の意を表します。また、本研究の一部は NEDO 平成 12 年度産業技術研究助成 事業の援助を受けて行われました。

【参考文献】

1. 金久保光央・梅木辰也ほか, 第41回 NMR 討論会, P23 (2002).

- 2. T. Umecky, M. Kanakubo, and Y. Ikushima, J. Phys. Chem. B, 106, 1114 (2002).
- 3. T. Umecky, M. Kanakubo, and Y. Ikushima, J. Phys. Chem. B, in press.

NMR を用いた高度好熱菌 RecR 蛋白質の機能解析

(¹ 理研・生体超分子構造機能研究協力 G. ²横浜市大院・総合理, ³CREST・JST)

O本多 賢吉^{1,2}, 井上 仁^{1,2}, SundaresanRajesh¹, 美川 務^{1,2,3}, 伊藤 隆^{1,2,3}, 柴田 武彦^{1,2,3}

NMR studies of *Thermus thermophilus* HB8 RecR

Masayoshi Honda^{1,2}, Jin Inoue^{1,2}, Tsutomu Mikawa^{1,2,3}, Yutaka Ito^{1,2,3}, and Takehiko Shibata^{1,2,3}

(¹ Research Group for Bio-supramolecule Structure-Function, RIKEN; ²Graduate School of Integrated Science, Yokohama City University; ³CREST/JST)

RecR, a highly conserved protein in eubacteria, is one of the key components in the RecFOR dependent replicational repair pathway. In *Escherichia coli*, RecR forms a complex with other RecF pathway proteins such as RecO and RecF. The RecR-RecF and RecR-RecO complexes act concertedly in modulating RecA activity, specifically at the site of single stranded DNA gaps. In this presentation, we report the nearly complete backbone NMR assignments for the full-length 42.4 kDa *Thermus thermophilus* HB8 RecR homodimer, by using six TROSY-based 3D triple-resonance experiments. The backbone assignments provide a framework for analysing the molecular basis of interactions between RecR and RecF, RecO, as well as DNA using NMR methods.

【序】

RecR 蛋白質は, DNA 相同組換えを介した複製後修復に深く関与しており, DNA 損傷 等により正常な複製が停止した際に生じる DNA ギャップ領域の認識に関わっている. RecR と同様に DNA 複製修復に関わる蛋白質として RecF および RecO が同定されているが, RecR はこれらの蛋白質と複合体を形成し, 相同組換え反応の主要因子である RecA 蛋白 質の活性を制御している.

このように複数の蛋白質と相互作用し、かつ DNA 結合活性も保持している RecR の機能 の分子基盤を明らかにするためには、RecR-RecF, RecR-RecO, RecR-DNA などのそれぞ れの相互作用を構造生物学的手法を用いて詳細に解析することが必須である. そこで我々 は、高度好熱菌 Thermus thermophilus HB8 由来の RecR(194 アミノ酸残基, 二量体)につ いて NMR 解析を開始した. 今回は RecR 二量体について主鎖の帰属を行ったので報告す る. また、この帰属を基に種々の DNA 基質や, RecO, RecF に対するタイトレーション実験を 行うことにより相互作用部位の決定・およびその結合定数を明らかにすることを試みた、

キーワード: 主鎖の帰属,相互作用,相同組換え

著者ふりがな: ほんだ まさよし, いのうえ じん, Rajesh Sundaresan, みかわ つとむ, いとう ゆたか, しばた たけひこ

- 116 -

【結果・考察】

ユニフォーム 2 H/ 13 C/ 15 N 標識された RecR 試料を調製し, 多次元 NMR 法により主鎖シグ ナルの帰属を行った結果, プロリンを除く 95%以上の残基について, 主鎖の 1 H^N, 15 N, 13 C^a, 13 C', 側鎖の 13 C^Bの帰属を行うことができた. 得られた化学シフトの情報から Chemical Shift Index 法を用いて解析された 2 次構造は, 既にアミノ酸配列の比較から予想された RecR の ドメイン構造を裏付けるものであった.

次に,²H/¹⁵N 標識 RecR 試料と RecO の NMR タイトレーション実験を行った結果, 主とし て RecR 中の 2 つの領域(80~85 残基, 135~140 残基)付近に顕著な化学シフト変化が観 測された. これらの 2 つの領域は toprin ドメインと呼ばれる領域の中に位置している. そこで, toprim ドメインを持ち既に構造が明らかになっているプライマーゼ上に, これらの 2 つの領 域をマッピングしたところ, プライマーゼの toprin ドメインの DNA 認識の中心部位であるキャ ビティー付近に位置していることがわかった.

現在,同様にして RecF,および DNA に対する NMR タイトレーション実験を進めており, RecR 上のこれらの分子との相互作用部位の同定を目指している.さらに,これらの相互作 用における結合定数・ストイキオメトリーの決定も同時に行い, RecR 蛋白質の持つ,多彩な 生体分子に対する認識および調節機構について議論したい.

The ${}^{1}\text{H}-{}^{15}\text{N}$ TROSY-HSQC spectrum of the ${}^{2}\text{H}/{}^{13}\text{C}/{}^{15}\text{N}$ -labelled *Thermus thermophilus* HB8 RecR at 45 °C, pH 7.2. Resonances are labelled according to the backbone assignments.

【参考文献】

K. Morimatsu & S.C. Kowalczykowski, Mol. Cell, 11, 1337-1347 (2003)

M. Honda, S. Rajesh, D. Nietilspach, T. Mikawa, T. Shibata & Y. Ito, J. Biomol. NMR, in press

流通式NMR装置を用いた超臨界水中における有機反応の観測

(京大院理)〇浦崎洋平·網田富士嗣·岡博之·向出政伸·梶本興亜·竹腰清乃理·寺尾武彦

Observation of an organic reaction in supercritical water with a new flow-type NMR probe (Graduate School of Science, Kyoto University) O Yohei URASAKI, Fujitsugu AMITA, Hiroyuki OKA, Masanobu MUKAIDE, Okitsugu KAJIMOTO, Kiyonori TAKEGOSHI, Takehiko TERAO

We made a new flow-type high-temperature and high-pressure NMR probe. Using this probe, we could observe ¹H NMR spectra in supercritical water. To prove the performance of this probe, Claisen rearrangement of allyl phenyl ether was followed in subcritical water and the reaction rate was determined to be 0.33 sec⁻¹. Furthermore, we tried to suppress the signal of water using 1331 pulse and succeeded to diminish the signal to 1/900.

これまでに超臨界水中にお いて数多くの特異な反応が 起こることが知られている が、それらの反応機構につい てはまだあまり明らかにさ れていない。我々はそれらの 反応機構を解明することを 目的とし、有機物の同定能力 が高いNMR分光法を用いた その場観別が可能な流通式 高温高圧NMR装置を開発し た。この装置では、超臨界水 (374 ℃, 22.1 MPa)の高温高 圧条件に耐えるように開発 した NMR プローブを使用し、

1 P5

図 1:APE の Claisen 転位の NMR スペクトル

キーワード:超臨界水、高温高圧、流通式 NMR

うらさきようへい、あみたふじつぐ、おかひろゆき、むかいでまさのぶ、かじもとおき つぐ、たけごしきよのり、てらおたけひこ 高温水(500℃)と低温のサンプル溶液(200℃)を混合し反応温度に瞬時達成させる急 速混合法を用いて超臨界状態を作り出している。実際にこの装置を用いて 400℃、 40MPa の超臨界状態を達成し、NMR スペクトルを観測することに成功した。

この装置の能力を検証するために、アリルフェニルエーテル(APE)の高温高圧水中 での Claisen 転位反応を観測した。流速を変化させて時間分解測定を行い、APE の Claisen 転位の反応速度を求めた。Claisen 転位は過去の報告により 1 次反応である ことが知られており、また高温高圧水中において数秒程度で起こるので本装置を用 いて反応速度を求めるのに適している。亜臨界条件(263℃、25.4MPa)において 0.57mol/L の APE 水溶液を反応させ、7.0 sec~17.6 sec の反応時間範囲で NMR スペ クトルを測定して、図 1 のようなスペクトルを得た。APE のシグナル強度が時間と ともに減少することから反応が進行していることが確認できる。APE のシグナル強 度を図 2 にプロットし、その傾きより反応速度(k=0.33 sec⁻¹)が得られた。しかし全 時間領域においてプロットは直線にはのらず、反応開始直後から数秒の間は 1 次反 応で予想されるよりも反応速度が遅くなっていることが分かる。この理由として、

混合直後において十分に混合 がなされず温度の不均一や濃 度の不均一が起こっているこ とが考えられる。今後、この原 因を究明し改善していく必要 がある。

現在の装置では、多量のサン プルを水と混合させて送液す る必要がある。このことが原因 で混合部において均一な水溶 液になるのに時間がかかって しまうことが考えられる。しか し低濃度での測定は、巨大な水 のプロトンピークが存在し、サ

図2: APEのClaisen転位の反応速度

ンプルのシグナルに影響を及ぼすため困難である。この問題を解決するために、 Binomial Sequenceの一種である1331パルス列を用いて水のプロトンピークの抑制 を試みた。その結果、超臨界水中で水のプロトンピークを約900分の1まで抑制す ることができた。以上より高温高圧水中での反応をより低濃度で観測することが可 能になると考えられる。

好中球活性酸素産生系 p67^{phox} と p40^{phox} の PB1 ドメイン 複合体の NMR 解析

(¹北大・院薬・構造生物,²タンパク 3000, ³九大・生医研・増殖分化制御)

 ○吉永壮佐^{1,2},小椋賢治¹,藤岡優子^{1,2},国府島庸之³, 湯澤聰^{1,2},堀内正隆¹,住本英樹^{2,3},稲垣冬彦^{1,2}

NMR analysis of a PB1 domain-complex of p67^{phox} and p40^{phox} involved in a neutrophil superoxide anion-producing system

(¹Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, ²National Project on Protein Structural and Functional Analyses, ³Division of Biochemistry and Molecular Biology, Medical Institute of Bioregulation, Kyushu University)

OSosuke Yoshinaga^{1,2}, Kenji Ogura¹, Yuko Fujioka^{1,2}, Motoyuki Kohjima², Satoru Yuzawa^{1,2}, Masataka Horiuchi¹, Hideki Sumimoto^{2,3}, Fuyuhiko Inagaki^{1,2}

PB1 (Phox and Bem 1) domain is evolutionarily conserved from yeast to higher plants and human in nearly 200 intracellular signal transduction proteins. Based on structural and functional analyses, we elucidated that PB1 domain forms a specific dimer with each other. In that course, we determined NMR structures of PB1 domains of Bem1p and Cdc24p, which take a similar ubiquitin fold [1, 2]. Mutational analyses revealed that PB1 domain binds to each other using mutually distinct regions of the ubiquitin fold [2]. Therefore, it is important to know the mechanism of specific molecular recognition of PB1 domain based on its tertiary structure, in order to understand the regulation of intracellular signal trunsduction. Here we report on NMR analysis of a PB1 domain-complex of $p67^{phox}$ and $p40^{phox}$ involved in a neutrophil superoxide anion-producing system.

【はじめに】

PB1(Phox and Bem 1)ドメインは、酵母から高等植物、ヒトに至る、200 近くの細胞内シ グナル伝達タンパク質に進化的に保存されている。その立体構造と機能の解析から我々は、 PB1ドメインが特定の PB1ドメイン同士で二量体を形成するタンパク質結合ドメインであ ることを解明した。この過程において、出芽酵母の細胞極性の確立に必須である Bem1pと Cdc24pの PB1ドメインの立体構造をそれぞれ溶液 NMR 法にて決定し、立体構造上、互い に似通ったユビキチンフォールドをとることを報告した[1,2].また、PB1ドメインが二

PB1ドメイン, PC モチーフ, NADPH オキシダーゼ, 分子認識, シグナル伝達

○よしなが そうすけ,おぐら けんじ,ふじおか ゆうこ,こうじま もとゆき, ゆざわ さとる,ほりうち まさたか,すみもと ひでき,いながき ふゆひこ

- 120 -

量体形成する際には、ユビキチンフォールド上、互いに異なる部位を用いて非対称的に相互 作用することを明らかにした [2]. つまり、一方の PB1 ドメイン (Type I) は、酸性残基に 富む PC (Phox and Cdc) モチーフ領域を結合部位として用いるが、他方の PB1 ドメイン (Type II)は、それとは立体構造上裏側に位置する塩基性残基に富む領域を結合部位として用いる. PB1 ドメインの特異的な分子認識を立体構造に基づいて理解することは、細胞内シグナル伝 達の制御機構を理解する上で重要である. 今回、ヒト好中球活性酸素産生系の細胞内活性化 因子 p67^{phox} と p40^{phox} の PB1 ドメイン複合体の NMR 解析について報告する.

【方法】

 $p67^{phox}$ と p40^{phox}の PB1 ドメインは、それぞれ大腸菌の系を用いて発現させた.¹⁵N および ¹³C/¹⁵N 標識体は、M9 培地にて取得した.個々のタンパク質を精製後、安定同位体標識体と 非標識体の組み合わせを変えた複合体試料を、それぞれゲル濾過クロマトグラフィーにて取 得した.これら試料について、Varian UNITY_{INOVA} 600 を用いて 35°C のもと、多核多次元 NMR 測定を行った.主鎖由来の信号の帰属には、自家製の帰属支援ソフト Olivia 上で、HNCO、 HN(CO)CA、HNCA、CBCA(CO)NH、HNCACB、HBHA(CBCACO)NH の各種スペクトルを 用いた.側鎖由来の信号の帰属には、C(CO)NH、HCCH-TOCSY の各種スペクトルを用いた. 水素核間距離情報は、¹⁵N-edited NOESY、¹³C-edited NOESY、 F_I -¹³C,¹⁵N-filtered ¹⁵N-edited NOESY の各種スペクトルから得た.また、重水素との交換の遅いアミドプロトンを、¹H-¹⁵N HSQC のスペクトルを経時的にとることで検知した.

【結果と考察】

これまでに、複合体中の p67^{phox} と p40^{phox} の PB1 ドメインそれぞれについて、主鎖由来の 信号の帰属と一部の側鎖由来の信号の帰属を行った.そして、これら帰属と各種 NOESY ス ペクトルを用いて得た水素核間距離情報と、重水素交換実験に基づいた水素結合情報から、 二次構造のトポロジーを解析した.その結果、p67^{phox} と p40^{phox} の PB1 ドメインは、ともに ユビキチンフォールドをとるが、立体構造既知の Bem1p と Cdc24p の PB1 ドメインとは若 干異なった立体構造を有する.p67^{phox} の PC モチーフに相当する領域は、ββ α の二次構造 をとるが個々の領域は短く、PB1 ドメイン Type I 特有の立体構造を持たない.また、これと は正反対のβ1、β2 と α1 の C 末端の領域において、単独と複合体の状態間の化学シフト差 が大きい.p40^{phox} の PC モチーフに相当する領域は、Type I 特有のββ α の二次構造を持ち、 また、水素結合に関与しないのに交換の遅いアミドプロトンがこの領域に局在する.以上の 結果は、p40^{phox} が Type I として、p67^{phox} が Type II として複合体形成することを支持してい る.一方、p40^{phox} のユビキチンフォールド内に含まれない C 末端領域が特定の立体構造を持 ち、この領域は p67^{phox} との相互作用に必須な領域であることから、分子認識の特異性という 点で興味深い.現在、複合体の立体構造決定に向けて解析中である.

【参考文献】

[1] Terasawa, H. et al. (2001) EMBO.J., 20 (15), 3947-3956.

[2] Yoshinaga, S. et al. (2003) EMBO.J., 22 (19), 4888-4897.

マウス構造プロテオミクス: Growth Arrest Specific 2 タンパク質の C末端ドメインの溶液構造

(理研・GSC¹、東大院理²、理研・播磨³)

○宮本和英¹、井上真¹、小柴生造¹、白水美香子¹、寺田貴帆¹、宇田広子¹、 矢吹孝¹、青木雅昭¹、松田貴意¹、関英子¹、布川絵未¹、藤倉由紀子¹、柴田 真希¹、宮本瑞夕¹、廣田洋¹、好田真由美¹、長内隆¹、田仲昭子¹、荒川貴博¹、 Piero Carninci¹、河合純¹、林崎良英¹、Peter Güntert¹、木川隆則¹、横山茂之^{1,2,3}

Mouse Structural Proteomics: Solution Structure of Growth Arrest Specific 2 C-Terminal Domain

Genomics Sciences Center, RIKEN¹, Graduate School of Science, University of Tokyo², Harima Institute, RIKEN³

OKazuhide Miyamoto¹, Makoto Inoue¹, Seizo Koshiba¹, Mikako Shirouzu¹, Takaho Terada¹, Hiroko Uda¹, Takashi Yabuki¹, Masaaki Aoki¹, Takayoshi Matsuda¹, Eiko Seki¹, Emi Nunokawa¹, Yukiko Hujikuwa¹, Maki Shibata¹, Mizuyu Miyamoto¹, Hiroshi Hirota¹, Mayumi Yoshida¹, Takashi Osanai¹, Akiko Tanaka¹, Takahiro Arakawa¹, Piero Carninci¹, Jun Kawai¹, Yoshihide Hayashizaki¹, Peter Güntert¹, Takanori Kigawa¹, Shigeyuki Yokoyama^{1,2,3}

Gas2 (Growth Arrest Specific 2) protein, which consists of 314 amino acid residues, is a component of the microfilament system in mouse and human. It is known that Gas2 efficiently increases cell susceptibility to apoptosis following UV irradiation or etoposide, and thus Gas2 induces p53-dependent apoptosis. In order to investigate the relationship between the structure of Gas2 and its function, we determined the solution structure of Gas2 C-terminal domain (Gas2 domain) by using heteronuclear NMR spectroscopy. The proper folding of Gas2 domain was found to require Zinc(II) ion. The NMR structure showed that Gas2 domain has a novel α/β sandwich fold with the topology of $\alpha\beta\beta\beta\beta\beta\alpha$ and the Zinc adopts a novel coordination (²³Cys-²⁵Cys-⁷⁵Asp-⁷⁷Cys). Highly conserved residues concentrate upon the surface of β -sheet, suggesting that this sheet plays a functional role.

構造プロテオミクス、マウスcDNA、無細胞タンパク質合成、growth arrest specific 2、亜鉛結合タンパ ク質

みやもとかずひで、いのうえまこと、こしばせいぞう、しろうずみかこ、てらだたかほ、うだひろこ、 やぶきたかし、あおきまさあき、まつだたかよし、せきえいこ、ぬのかわえみ、ふじくらゆきこ、し ばたまき、みやもとみずゆ、ひろたひろし、よしだまゆみ、おさないたかし、たなかあきこ、あらか わたかひろ、Piero Carninci、かわいじゅん、はやしざきよしひで、Peter Güntert、きがわたかのり、よ こやましげゆき

[序論]

Growth Arrest Specific 2(Gas2)はミクロフィラメントを構成する314残基からなるタンパク質 で、ヒトやマウスで保存されている[1]。Gas2はUV照射やエトポシドにより誘導されるp53依 存性アポトーシスや細胞周期に関与するとされており、非常に重要なタンパク質である[2]。 このGas2の構造と機能との関連を明らかにする為に、先ずGas2のC末端側に存在する保存性 の高い領域(Gas2 domain)の溶液構造を、NMR法を用いて決定した。

[方法]

無細胞タンパク質合成系により、¹³C/¹⁵N 標識された Gas2 domain を調製した。Bruker 社の AVANCE600 および AVANCE800 を用いる多核多次元 NMR 測定後、得られたスペクトルを NMRPipe、NMRView および Kujira(ポスター2P6 参照)で解析することにより、主鎖および側 鎖の帰属を行った。¹⁵N-edited NOESY と ¹³C-edited NOESY の NOE 自動帰属と立体構造計算に は CYANA-CANDID(ver.1.0.7)を用いた。

[結果と考察]

立体構造計算の結果、得られた構造を Fig.1(a)に示した。2本の α -Helix と5本の β -Strand から 構成され、 α/β sandwich 型の $\alpha\beta\beta\beta\beta\beta\alpha$ 構造をとる全く新規の Fold であることを見出した。更 に、Gas2 domain は Zn(II)結合能を有し、立体構造の形成に Zn(II)イオンが必要であることと、 Zn(II)が全く新規の coordination(²³Cys-²⁵Cys-⁷⁵Asp-⁷⁷Cys)を有していることを見出した。Fig.1(b) に、Fig.1を右 90^o回転させた構造に亜鉛とそれに結合する残基を示した。一方、Gas2 domain に存在する β -Sheet の表面に非常に保存性の高い残基が集まっており、これらが機能に重要な 役割を果たしていると考えられる。

Fig. 1 Solution Structure of Gas2 C-Terminal Domain (a) Ribbon Model (b) The side-chain of ²³Cys -²⁵Cys-⁷⁵Asp-⁷⁷Cys and Zn(II) ion are shown.

References

Brancolini C, Bottega S, Schneider C., J Cell Biol., 117, 1251-61(1992).
Benetti R, Del Sal G, Monte M, Paroni G, Brancolini C, Schneider C., EMBO J., 20, 2702 -14(2001).

溶液 NMR によるロドプシン様 7 回膜貫通型蛋白質 phR 及び ppR の構造解析

(¹奈良先端大・バイオ、²北大・院薬、³北大・院理)
○ 奥田 秀泰¹、須藤 雄気²、三島 正規¹、佐藤 麻希³、出村 誠³、
新田 勝利³、加茂 直樹²、児嶋 長次郎¹

Solubilization and assignment of seven-transmembrane proteins, phR and ppR, by solution NMR

○ Hideyasu Okuda¹, Yuki Sudo², Masaki Mishima¹, Maki Sato³, Makoto Demura³, Katutoshi Nitta³, Naoki Kamo², Chojiro Kojima¹

(Graduate School of Biological Science, Nara Institute for Science and Technology¹, Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University², Division of Biological Sciences, Graduate School of Science, Hokkaido University³)

Two archaeal seven transmembrane proteins, phR and ppR, were expressed in *Escherichia* coli and purified. The solubilization detergents were selected to have best ¹H-¹⁵N HSQC spectra of these proteins. For phR, n-Octyl- β -D-thioglucoside (OTG) was selected, and 4 and 19 residues at N-terminal and C-terminal, respectively, were assigned. For ppR, 1,2-Diheptanoyl-*sn*-Glycero-3-Phoshocholine (DHPC) was selected. However, further optimization was required for both proteins because many signals were still broad.

<u>序論</u>

近年、溶液 NMR による膜蛋白質の立体構造解析の例が報告されている。しかし、その全てが β ·バレル型のものであり、 α -ヘリカルな膜貫通型蛋白質の解析例はない。そこで我々は溶液 NMR による膜貫通型蛋白質の立体構造解析を目的として、高度好塩好アルカリ性菌 *Natronobacterium pharaonis*由来のHalorhodopsin(*p*R)及びphoborhodopsin(*p*R)をとりあげ た。それぞれレチナール蛋白質であり、Halorhodopsinは光異性化をきっかけにクロライドイオ ンを輸送し、また Phoborhodopsin は光センサーとして機能し、トランスデューサー蛋白質であ る Htr II との相互作用により好塩菌の負の走光性に関係すると考えられている。今回、これらの 膜貫通型蛋白質の大腸菌による大量発現、精製系を構築し、溶液 NMR 測定に適した条件検討を 行った。

キーワード:7回膜貫通型蛋白質、ハロロドプシン、溶液 NMR、光センサーロドプシン

おくだ ひでやす、 すどう ゆうき、 みしま まさき、 さとう まき、 でむら まこと、 にった かつとし、 かも なおき、 こじま ちょうじろう

試料調製

大腸菌株 BL21(DE3)を用いて、M9 最小培地で¹⁵N uniform label 及び¹³C/¹⁵N uniform label した phR 及び¹⁵N uniform label した ppR を Histag 融合蛋白質として発現させ、菌体破砕後、 膜面分を n-Dodecyl-β-D-maltoside(DM)により可溶化した。可溶化後、Ni カラム、ゲル濾過ク ロマトグラフィーでシングルバンドになるまで精製した。精製された phR、ppR は透析によって 種々の界面活性剤と交換し、溶液 NMR で測定した。

<u>結果と考察</u>

phR では4種の界面活性剤(DM、n·Nonyl· β ·D·glucoside (NG)、n·Octyl· β ·D·glucoside (OG)、 n·Octyl· β ·D·thioglucoside (OTG)) で可溶化し、溶液 NMR の測定条件の検討を行った。¹H·¹⁵N HSQC 測定を行った結果、DM では広幅化しており、鋭い信号はほとんど得られなかった。NG では信号数は最も多く観測されたが広幅化しているものも多かった。OG でも NG と同様の結果 が見られた。一方、OTG で最も多くの鋭い信号が得られ、その数は約 30 個であった。そこで OTG を用いた可溶化状態での phR の帰属を行い、N 末端側4残基、C 末端側 19 残基の帰属に成功し た(Fig.1)。しかし、現在観測されている領域は運動性の高いと考えられる末端部位であり、膜貫 通部位はまだ観測されていない。

また、ppR でも同様に 1,2·Diheptanoyl-sn-Glycero-3·Phoshocholine (DHPC)、CHAPS、OG、 NG、dodecylphosphocholine (DPC)で可溶化し、溶液 NMR で測定した。5 種の界面活性剤全て で約 30 個の鋭い信号が確認できた。その中では DHPC が最も良好なスペクトルを与えた。

nið c⁶²⁸⁶ o^{S285} 115 115 \$283 T287 о_{с Н294} 14 6 **D** E293 (udd) 8295 HOOP 0 0290 Z 120 120 H297 V274 O D291 ŝ H298 D280 0 🔿 V281 O A289 E3⁽⁾ 125 125 OH299 E31 A284 C 15 L5 ±130 7.5 1304-8.5 8.0 ω₂·¹H (ppm)

Fig.1 ¹H⁻¹⁵N HSQC spectrum of *p*hR at a ¹H resonance frequency of 800 MHz (pH 5.0, 298 K). Resonance assignments are given by one-letter amino acid codes and residue numbers.

立体整列同位体標識(SAIL)技術による高分子量タンパク質の NMR 解析 ~シロイヌナズナ由来 At3g16450(32 kDa)に関して

(¹都立大院理、²CREST/JST、³ウィスコンシン大)

○杉森 望¹、鳥澤 拓也²、寺内 勉²、J.L.Markley.³、D.Aceti³、甲斐荘 正恒^{1,2}

NMR analysis of larger proteins by the stereo-array isotope- labeling (SAIL) technology:

The case of a 32 kDa hypothetical protein, At3g16450, from Arabidopsis thaliana

(¹Graduate School of Science, Tokyo Metropolitan University, ²CREST/JST, ³Department of Biochemistry, University of Wisconsin⁻Madison)

Nozomi Sugimori¹, Takuya Torizawa², Tsutomu Terauchi², John L. Markley³, David Aceti³, Masatsune Kainosho^{1,2}

NMR structure determinations are quite difficult for proteins with molecular weights larger than 30 kDa, due to line broadening and spectral congestion, even by multidimensional spectroscopy. In order to overcome these drawbacks simultaneously, we have been developing a novel stable-isotope labeling technology method, named SAIL (Stereo-Array Isotope-Labeling). In doing so, systematic site-/stereo-specific deuterations together with ¹³C/¹⁵N labeling are introduced into all of the carbons in a target protein, by a cell-free expression system using isotopically labeled amino acids, to minimize the redundant structural information and proton density. In the present work, we report our progress using the SAIL technology in the spectral and structural analysis of a 32 kDa hypothetical protein, At3g16450, cloned from *Arabidopsis thaliana*.

【はじめに】

NMR 法によるタンパク質の立体構造決定は、解析試料の分子量の増大に伴い、飛躍的に困難 になり、解析可能な分子量は 30 kDa 程度に制限されていた。これは、分子量の増加により生じ る ¹H シグナルの広幅化と縮重により、シグナルの観測および NMR 解析が困難となるためである。

そこで、我々は NMR 構造決定限界の拡大を目指し、スペクトルが煩雑になる要因であるアミノ酸側鎖の ¹H のうち、構造決定に必要な ¹H のみを残して位置・立体選択的に重水素標識を施し、¹³C,¹⁵N-標識した SAIL (<u>Stereo Array Isotope Labeled</u>)アミノ酸を設計・合成した。さらに、それらを無細胞合成系により代謝拡散を伴わず目的タンパク質に効率よく取り込ませる技術を開発した。このようにして得られる SAIL タンパク質のスペクトルでは、シグナルは著しく簡略化され、またその線幅が鋭くなるために測定感度が大幅に向上すると見込まれる。

本研究では、従来の NMR 手法を用いる構造決定法の限界となる分子量を有するタンパク質シ ロイヌナズナのゲノムタンパク質 At3g16450 (M.W. 32 kDa)を対象として、SAIL 技術による 立体構造決定を試みた。

キーワード:SAIL、立体整列同位体標識、重水素標識、立体構造決定、無細胞タンパク質合成 すぎもりのぞみ、とりざわたくや、てらうちつとむ、J.L.Markley.、D.Aceti、かいのしょうまさつね 【実験】

At3g16450のN末端側にThrombin切断部位を含む、His tag を付加した融合タンパク質とし て発現させることにした。また、SAILアミノ酸を導入したAt3g16450 (SAIL 試料)を収率よく 発現・精製するため、無細胞系タンパク質合成条件と精製条件を検討した。NMR 測定時のタン パク質の溶解度、安定性を上昇させるために、hanging drop vapor diffusion 法を用いて測定用 緩衝液の最適化を行った。

まず、大腸菌発現系により均一¹³C,¹⁵N 標識 At3g16450 (UL 試料)を調製し、各種多次元 NMR スペクトル(¹H-¹⁵N HSQC, HNCACB, HN(CO)CACB, HNCO, HN(CA)CO, HBHANH, HBHA(CO)NH)を測定して主鎖シグナルの帰属を行った。その後、無細胞合成系により SAIL 試料を調製して UL 試料と同様の測定を行い、SAIL 特有の重水素標識により同位体シフトする シグナル(H³, C³, Gly の H^a, C^a)の帰属を行った。

【結果・考察】

無細胞系での反応条件を検討したところ、大腸菌抽出液を用いて 30℃で 14 時間合成反応させ るのが適当であった。精製条件の検討の結果、HiTrap DEAE Sepharose, Ni·NTA Agarose の順 に通し、Thrombin Protease により His tag を切断した後、Benzamidine Sepharose, Chelex 100 Resin, Ni·NTA Agarose によって精製し、収率よく高純度な At3g16450 を得ることが出来 た。NMR 測定用緩衝液の最適化を行った結果、20 mM Bis Tris, 100 mM KCl, pH 6.8 の条件 で 0.8 mM までのタンパク質を会合することなく溶解させることに成功した。

UL 試料と SAIL 試料の ¹H⁻¹⁵N HSQC スペクトル測定し、両スペクトルが同一であることに より、両手法から得たタンパク質が同じ高次構造を有していることを確認した。現在までに、主 鎖シグナル帰属(N, H^N, CO, C^{*a*}, C^{*j*}, H^{*a*}, H^{*g*})の 97%を完了することができた。

次に側鎖シグナルの検出を目的として¹H-¹³C ct-HSQC スペクトルを測定したところ、重水素 が位置・立体選択的に導入されている側鎖シグナル領域において、SAIL 試料のスペクトルでは 顕著なシグナルの縮重の緩和と先鋭化が観測された。(Fig. 1)

現在、側鎖シグナルの帰属および NOESY スペクトルの解析を行っている。SAIL 試料では、 重水素置換によって側鎖シグナルの 40.8%が削除されているため、解析の容易なスペクトルが得 られただけでなく、¹H, ¹³C の緩和延長により感度よく測定することができた。

以上のことから 32 kDa という高分子領域の立体構造決定を、SAIL 技術を用いることによって、従来法より効率的かつ高精度に行うことができると思われる。

Fig.1: ¹H⁻¹³C ct⁻HSQC Spectra of At3g16450 ⁻ methlene region (a) ¹³C, ¹⁵N doubly labeled (b) SAILed

Musashi タンパク質の 2 つの RNA 結合ドメインの結合能の差の起源 (横浜国大・院環境情報¹, 慶大・医²)

〇宮ノ入洋平¹,斎藤智¹,丸本佳代子¹,小林央典¹,渡辺道直¹, 宮下博之¹,永田崇¹,上杉晴一¹,今井貴雄²,岡野栄之²,片平正人¹

Origin of the difference in affinity to RNA between two RNA-binding domains of a Musashi ¹Grad. Sch. of Env. & Info. Sci., Yokohama Natl. Univ., ²Keio Univ. Sch. Med. <u>OYohei Miyanoiri¹</u>, Satoshi Saito¹, Kayoko Marumoto¹, Hisanori Kobayashi¹, Michinao Watanabe¹, Hiroyuki Miyashita¹, Takashi Nagata¹, Seiichi Uesugi¹, Takao Imai², Hideyuki Okano² & Masato Katahira¹

Musashi plays a dominant role in regulation of asymmetric division of neural stem cells through binding to a certain mRNA. It contains two RNA-binding domains, RBD1 and RBD2, the affinity to RNA of RBD1 being much higher than that of RBD2. We have found that the structure is nearly identical for both the RBDs, which has left the origin of the difference in affinity to be answered from other viewpoints. Here we have identified that there is a remarkable difference in surface electrostatic potential, the β -sheet of RBD1 being positively charged, which is favorable for binding negatively charged RNA, but that of RBD2 being almost neutral. There is also a difference in backbone dynamics, the central portion of the β -sheet of RBD1 being flexible, but that of RBD2 not. The flexibility of RBD1 may be utilized in the recognition process to facilitate an induced fit. Thus, the origin of the higher affinity of RBD1 than that of RBD2 has been rationally explained.

[序]

Musashi 蛋白質は、標的 mRNA の 3'非翻訳領域に結合して翻訳を抑制する事で、神経前 駆細胞の非対称分裂を制御している。この蛋白質は 2 つの RNA 結合ドメイン(RBD1, RBD2)を有しているが、RBD1 は RBD2 よりもかなり高い RNA 結合能を有している。我々は 既に、両ドメイン各々について立体構造及び標的 RNA との相互作用様式を解明してきたが、 両者の立体構造はよく似ており、立体構造の面からだけでは、結合能の差を説明する事が できなかった。そこで今回は、両ドメインについて表面静電ポテンシャル及び主鎖の運動性 の解析を行い、結合能の差の起源を解明する事を試みた(1, 2)。

また結合能の低い RBD2 の存在意義の考察、及び RBD1 と RBD2 の連結体 (RBD1-RBD2)とRNA の相互作用様式の解析も行った。

キーワード:立体構造、ダイナミクス、静電ポテンシャル、RNA 結合蛋白質、Musashi

みやのいりようへい、さいとうさとし、まるもとかよこ、こばやしひさのり、わたなべみちなお みやしたひろゆき、ながたたかし、うえすぎせいいち、いまいたかお、おかのひでゆき かたひらまさと
[結果と考察]

1. RNA との相互作用面における表面静電ポテンシャルの違い

これまでの研究から、RBD1とRBD2は共にβシート側の面において、RNAと相互作用す る事が分かっている。この相互作用面の立体構造は両者においてほとんど同一であるが、 表面静電ポテンシャルは大きく異なっている事が分かった(2)。RBD1においては、相互作用 面は正に帯電しているが、RBD2においてはほぼ中性であり、ところによっては負に帯電し ている。負に帯電している RNA を結合するには、正に帯電した RBD1の方が明らかに有利 であり、この事が RBD1が RBD2より高い結合能を示す一因だと考えられる。

Fig. 1 Mapping of the backbone dynamics.

The residues that require either a chemical exchange term, R_{ex} , or a two time-scale spectra density function with a correlation time for slow internal motion, τ_s , are colored black and gray, respectively. (A) RBD1 and (B) RBD2.

<u>2. RNA との相互作用面における運動</u> 性の違い

相互作用面の運動性に関しても、 RBD1とRBD2では際立った違いがある 事が分かった。モデルフリー解析を行っ た結果、RBD1においては、中央の2本 のβ鎖に関してミリ秒及びナノ秒領域の 運動性が同定されたが、RBD2にはこの 様な運動性は存在しなかった(2)(Fig. 1)。 RBD1におけるこのフレキシビリティーは 誘導適合をもたらし、強固な複合体の形 成に寄与すると考えられる。この事も、 RBD1が RBD2よりも高い結合能を示す 一因だと考えられる。

3. 結合能が低い RBD2 の意義

仮に RBD2 と RNA の複合体の解離定数が 10⁻³ M であっても、RBD2 が RBD1 と連結する 事により、最大で 10³ 倍結合は強くなり得る。実際 RBD1 に RBD2 を連結すると、RNA への 結合は 100 倍強くなる。RBD2 は結合能が低いが、その連結がもたらす結合能の上昇は、 機能発現において必須であると考えられる。また、もし RBD2 も RBD1 並に結合能が高いと、 連結体の結合能が高くなりすぎてターンオーバーできず、機能を発現する上で不都合とな る可能性がある。

この様に、表面静電ポテンシャルや運動性の違いによって結合能の高低を生み出す仕組 みは、機能を発現する為に要求される微妙な結合能の調節に役立っていると考えられる。 <u>4. RBD1-RBD2 連結体と RNA との相互作用の解析</u>

RBD1-RBD2連結体とRNAとの相互作用様式を、ケミカルシフトパータベーションによって 解析した。各ドメイン単独の時と同様、βシート面における相互作用が見られた。更にドメイ ン単独の時には見られなかった相互作用も同定された。現在、相互作用様式の詳細の解 明に向けて、解析を進めている。

(1) Nagata et al., J. Mol. Biol., 287, 315-330 (1999).

(2) Miyanoiri *et al., J. Biol. Chem.*, in press (2003).

高安定化磁場配向膜の開発とその応用

ー生体膜・タンパク質の高分解能 NMR 解析ー

(¹理研 GSC;² 横市院総理;³理研細胞情報;⁴ 東大院理) 〇菊地淳¹², 前田秀明^{1,2}& 横山茂之^{13,4}

Development of stable "bicelle-like" model membrane system and its application in biomolecular NMR studies. (1GSC, RIKEN Yokohama Inst.; ²Grad, Sch. Integ. Sci., Yokohama City Univ.; ³Cell. Sign. Lab., RIKEN Harima Inst.; ⁴Grad, Sch. Sci., Univ. Tokyo) OJun Kikuchi^{1,2}, Hideaki Maeda^{1,2} & Shigeyuki Yokoyama^{1,3,4}

Application of biceller system in biomolecular NMR studies is limited for only "well-behaved" samples due to its physical unstability. However, we have developed stable "bicelle-like" model membrane system to measure not only soluble proteins and sugar moieties but also for biomembrane system. Especially, we shall introduce novel method to monitor the interaction of membrane-associated proteins and our model membrane system doped with a variety of lipid molecules.

<緒言> 分子量の小さな水溶性タンパク質の NMR 解析法はかなり確立されてきており、今後はその高速化や分子量上限を引き上げる試みが望まれる.一方、単結晶化が極めて困難な生体膜やこれに相互作用する糖脂質・膜結合型タンパク質を解析する方法論の開発は、NMR 法の潜在能力を惹き出すことのできる課題と言えよう(1).水溶性タンパク質の場合、周囲は結合水であったが、膜系では1000種以上の脂質分子を使い分けた多種多様な環境に囲まれている.生命が地球史をかけて獲得してきた脂質利用の多様性は、多量体(膜タンパク質)の安定化、糖脂質等による構造水の保持、疎水環境での(積極的な)電荷の保持、キノンやカロテノイド等を利用したπ-σ,π-π結合やUV,O2 ストレスからの防御等々、枚挙に暇がない.本発表ではまず、我々の開発した高安定化磁場配向膜を用いた、弱配向系からの水溶性タンパク質や糖鎖に対する異方性抽出を紹介する.続いて、種々の脂質ドーピングによる膜結合型タンパク質や脂質生体分子との多様な相互作用検出についても言及する.

<1. 球状タンパク質, 糖鎖部位等の異方的構造 情報の抽出> 磁場配向膜に相互作用させない系の 異方性情報を抽出する際にも, 物理化学的安定性が 求められる(2). 我々の系とバイセルを同条件で比較 しても, 温度範囲にして20 ℃以上の, pH範囲にして3 以上の, 塩濃度範囲にして 200 mM 以上の広域で利 用できる(3).

キーワード: 生体膜,磁場配向,異方性,膜タンパク質,脂質分子 〇きくちじゅん,まえだひであき,よこやましげゆき

図1は調製直後,ならびに1年後のクロレラユビキチンの¹⁵N-¹H RDC 値を比較したプロットであるが, t1 軸の分解能ならびに立体構造計算の侵害値内で再現性良く観測できていることがわかる.本討 論会では,分子量50 kDaの糖タンパク質の配向実験データも発表予定なのでご参照戴きたい(4).

<2. 生体膜・膜結合型タンパク質間の弱い相互作用の検出> 我々のシステムの大きな特徴 は、³¹P-CSA や²H-QC(四重極カップリング)を用いて脂質側の、そして¹⁵N,¹³Cの相関スペクトルを用 いてタンパク質側の相互作用部位を溶液 NMR 法の高分解能でマッピングすることが可能な点にある. 固体 NMR 法に特有の、含水率の高い試料に対する発熱の問題もない. 図2は重水素化 DMPCを用 いた磁場配向膜について、各炭化水素鎖のオーダーパラメータ($S_{c-2H}(i)$ の温度依存性をプロットし たものである.ここでは、各炭化水素部の QC 値 $\Delta v_{Q}(i)$ = $3/2(e^2qQ)/h$ [$S_{c-2H}(i)$][$P_{A}(\cos\theta)$]で与え、電場勾配テンソル(e^2qQ)/h = 167 kHz として計算した.

まず, QC, S_{C-2H}(i)の値が固体 NMR 法で観測されている値と同 程度であることがわかる. リン脂質 ³¹P-CSA についても固体 NMR 法 の値とほぼ同等であることを考慮 に入れると, 生体膜のように配向 の方向性が極めて揃っているもの の D_{loca k} D_{overal}の許されている系 では, 固体 NMR 法と同様の異方 性シグナル観測が可能であること

を示唆している. ポスターでは種々の脂質分子をドーピングした例や, 膜表在性タンパク質との弱い 相互作用解析の有用性について議論したい.

<おわりに> 膜結合型タンパク質の NMR 解析は, 種々の要因から濃度の要請が厳しい. また側鎖 重水素化は試料の作成で困難であるばかりでなく, NMR 情報を希薄にするという難点もある. 我々は, 後者の¹H 密度の減少に関しては配向試料から異方性情報を駆使することにより, 前者の NMR 感度 の限界に関しては, 新規の高感度プローブを開発することにより克服しようとしている(5).

<参考文献>

1) Sasaki, H., Fukuzawa, S., Kikuchi, J., Yokoyama, S., Hirota, H. & Tachibana, K., Langmuir, in press (2003).

2) 菊地淳, "磁場配向を用いた生体分子の NMR 構造解析法" パリティ, 18, 64-65 (2003).

3) Kikuchi, J., Maeda, H. & Yokoyama S., 2nd Int. Conf. Struct. Genom., (2002).

4) 山口芳樹, 菊地淳, 西村真実子, 加藤晃一, 第42回 NMR 討論会講演要旨集(2003).

 Yokota, H., Okamura, T., Ohtani, Y., Kuriyama, T. Takahashi, M., Kikuchi, J., Yokoyama S. & Maeda, H., Adv. Cryo. Eng., submitted (2003).

¹⁰F NMR による還元型ミオグロビンの電子構造解析

(筑波大化学¹、長岡高専物質工²)

○ 長尾 聡⁻¹、平井佑紀⁻¹、猪瀬達徳⁻¹、照井教文⁻¹、三田 肇⁻¹、山本泰彦⁻¹、 鈴木秋弘⁻²

¹⁹F NMR Characterization of the Heme Electronic Structure in Ferrous Myoglobin

OS. Nagao¹, Y. Hirai¹, T. Inose¹, N. Terui¹, H. Mita¹, Y. Yamamoto¹, and A. Suzuki² ¹Dept. of Chem., Univ. of Tsukuba, ²Dept. of Materials Eng., Nagaoka Natl. Coll. of Tech.

Fluorinated hemes (7-PF and 3,7-DF (Fig. 1)) have been incorporated into the apoprotein of sperm whale myoglobin and then the heme electronic structures in ferrous myoglobins such as deoxy, oxy, and carbonmonoxy forms have been characterized by ¹⁹F NMR. The study demonstrated that the relative contributions of the orbital ground states derived from ⁵E, $(d_{xz})^2(d_{yz})(d_{z^2})(d_{x^2-y^2})$ or $(d_{yz})^2(d_{xz})(d_{xy})(d_{z^2})$ $(d_{x^2-y^2})$, and ⁵B₂, $(d_{xy})^2(d_{xz})(d_{yz})(d_{z^2})(d_{x^2-y^2})$, states to the heme electronic structure in deoxy Mb are affected by the distortion of the porphyrin π -system exerted by chemical properties of heme peripheral side-chains. The studies on the heme electronic structures of oxy and carbonmonoxy Mbs revealed the effects of the Fe $d_{\pi} \rightarrow CO \pi^*$ back-donation and the orientation of the bent Fe-O-O unit on the heme electronic structure.

<u>序論</u>

ミオグロビン(Mb)などヘムタンパク質の機能は、活性部位であるヘムの電子構造により調節される。従来 から NMR はヘムの電子構造解析に利用され、ヘムタンパク質の機能発現機構の解明に有用な多くの知 見を提供してきた。しかしながら、NMR によるヘムの電子構造解析の研究では、例えば Mb の場合ヘム鉄 の酸化数が+3 である酸化型 Mb における研究が多く、ヘム鉄の酸化数が+2 である還元型 Mb における研 究は著しく少ない。生体内における Mb の機能は O2 の貯蔵であるが、この機能は還元型 Mb でのみ発現し、 酸化型 Mb は O2 と結合することはできない。したがって、Mb の機能の理解には、還元型 Mb が O2 と結合 する前の状態であるデオキシ体(DeoxyMb)と O2 と結合した状態であるオキシ体(MbO2)におけるヘムの電 子構造に関する情報が必要となる。これまでに DeoxyMb や MbO2 のヘムの電子構造についての報告が少 ない主な理由は、それぞれ次の通りである。まず、DeoxyMb の場合は、ヘム側鎖プロトン由来のシグナル の線幅が常磁性緩和により比較的広い(約 120 Hz)ことに加えて、常磁性シフトが小さいため個々のシグナ ルの分離が悪くシグナル帰属やシフト値の解析が困難であることがあげられる。また、ヘムの電子構造を解 明するためにはモデル錯体を利用する研究が有用であるが、DeoxyMb のへムと同様な NMR 特性を示す 適当なモデル錯体がまだ見つかっていないことも、DeoxyMb のへムの電子構造の研究が難しい理由のひ とつとなっている。一方、MbO2 のへムは、不対電子をもたない反磁性であるので、ヘム側鎖プロトンに由来 する NMR シグナルのへムの電子構造に対する感度が低いことに加え、Mb のへム(Protoheme: Fig. 1) 自

体のポルフィリンπ電子系の4回転対称からの歪み のため、ヘムの電子構造の微小な変化を検出する ことは困難である。本研究では、Mbの本来のヘム である Protoheme を除去し、代わりに側鎖にフッ素 をもつフッ素化ヘム(Fig. 1)を組み込んだ再構成 Mb を調製し、還元型 Mbのヘムの電子構造解析 における¹⁹F NMR の有用性を検討した。

Fig. 1 Molecular structures of protoheme and fluorinated hemes used in the study.

<u>実験</u>

¹⁹F NMR 測定は Bruker AVANCE-500 を用いて行った。Fig. 1 のフッ素化ヘムをそれぞれマッコウクジラ Mbのアポタンパク質に組み込み、一般的な手法でDeoxyMb、MbO₂、COが結合した状態(MbCO)を調製 し、NMR 測定を行った。¹⁹F NMR の化学シフト値はトリフルオロ酢酸(CF₃COOH)を基準として示した。

Keyword : ¹⁹F NMR、常磁性シフト、電子構造、フッ素化ヘム、ミオグロビン

ながおさとし、ひらいゆうき、いのせたつのり、てるいのりふみ、みたはじめ、やまもとやすひこ、 すずきあきひろ

結果·考察

DeoxyMb のヘムの電子構造

DeoxyMb のへムの電子構造解析に重要なへ ム鉄の d 電子配置は、今日でも明らかになって いない。DeoxyMb (S = 2)のへム鉄の d 電子6つ の配置としては、⁵E, $(d_{x2})^2(d_{y2})(d_{x2})(d_{x^2},y^2)$ または $(d_{y2})^2(d_{x2})(d_{x2})(d_{x^2})(d_{x^2},y^2)$, $k^{5}B_2$, $(d_{xy})^2(d_{xz})(d_{y2})(d_{x^2})(d_{x^2},y^2)$, $k^{5}B_2$, $(d_{xy})^2(d_{xz})(d_{y2})(d_{x^2},y^2)$, が考えられる。⁵E $k^{5}B_2$ を区別するためには、ヘム鉄からポルフィリ ンのπ電子系へ非局在化する不対電子スピン1 つがある特定のピロール環のπ電子系へ優先的 に非局在化するのに対して、⁵B₂ では不対電子 スピン2つがポルフィリン環を構成する4つすべ

てのピロール環の π 電子系へほぼ均等に非局在化すると予想される。そのため、本研究で利用したフッ素 化ヘム再構成 Mb で観測される ¹⁹F NMR シグナルの常磁性シフトとシグナルの分離幅は、⁵E では常磁性 シフトは小さいが分離幅は比較的大きく、一方、⁵B₂ では常磁性シフトは大きいが分離幅は小さくなると推測 される。Fig. 2 に示す DeoxyMb の ¹⁹F NMR スペクトルから、7-PF の場合には ⁵E、一方 3,7-DF では ⁵B₂ で 予想される常磁性シフトパターンと一致していることがわかる。また、パーフルオロメチル基をもつ 7-PF では、 フッ素がポルフィリン環に直接結合している 3,7-DF よりポルフィリン環の π 電子系の4回転対称からの歪が 大きいことが実証されていることから、DeoxyMb のヘム鉄の基底状態の d 電子配置は、ポルフィリン環の π 電子系の非対称性に依存することが明らかとなった。

MbO₂、MbCO のヘムの電子構造

MbO2、MbCO のヘムの電子構造の比較は、Mb の機能の理解に重要である だけではなく、O2と CO の親和性の差を理解するためにも重要である。上述の ように、MbO2、MbCO のヘムの電子構造では、検出感度とポルフィリン環のπ 電子系の対称性が問題となる。本研究では、2回転対称な分子構造をもつ 3.7-DFをMbに組み込み、¹⁹FNMRによりMbO2、MbCOのヘムの電子構造を 解析した(Fig. 3)。3.7-DF の電子構造の対称性は Mb に組み込まれることによ り消失するため、Fig. 3 にあるように、MbO2、MbCOのスペクトルでそれぞれ2 つのシグナルが観測される。また、MbO2と MbCO が混在する試料では、両状 態に由来するシグナルが分離して観測されていることから、Oっと CO の配位子 交換は NMR タイムスケールより遅い反応であることがわかる。ところで、観測さ れる¹⁹F シグナルのシフト値自体を構造化学的に解釈することは容易ではない が、配位子が異なる以外に MbOっと MbCO の立体構造にはほとんど差がない というX線結晶構造解析の結果を基にすると、両者の19FNMRスペクトルの相 違を配位子とヘム鉄との結合に直接関わる構造化学的因子に関して解釈する ことができる。スペクトルの主な相違点としては、MbCO で観測される2つのシ グナルが MbO2 での対応するシグナルに比べてそれぞれ低磁場シフトしてい

Fig. 3 The 376 MHz 19 F NMR spectra of Mb reconstituted with 3,7-DF in 90 % H₂O/10 % D₂O, pH 7.0, at 25 °C. (A) MbO₂, (B) a mixture of MbO₂ and MbCO, and (C) MbCO.

ること、MbCO の2つのシグナルの分離幅が MbO2 のものよりも小さいことがあげられる。前者は、MbCO で の Fe と CO の配位結合には鉄の d 軌道から CO の軌道への逆供与が働くために、ヘムのポルフィリン環の π 電子系の電子密度が MbO2 の場合に比べて低下していることを反映していると考えられる。また、後者の シグナルの分離幅の大きさは 3,7-DF のヘムの電子構造の非対称性の指標とみなすことができるが、MbO2 のヘムの方が MbCO のヘムより電子構造の非対称性が大きい理由としては、MbCO における Fe-C-O は ほぼ直線状であるのに対して、MbO2の Fe-O-O は曲がっているためヘムの電子構造の非対称性が MbO2 でより大きくなると考えられる。このように、対称性の高いフッ素化ヘムを利用した ¹⁹F NMR によるヘムタン パク質の研究は、ヘム鉄と外部配位子との結合の性質を詳細に調べる上で有用である。

根粒菌 FixJ 蛋白質 C 末端ドメインの DNA との相互作用の解析 (横浜市立大学大学院・総合理学研究科¹,理化学研究所・生体超分子構 造・機能協力研究グループ², CREST/JST³,理化学研究所・生体物理化 学研究室⁴)

〇倉島かおり^{1,2}, 葛西祐一^{1,4}, 伊藤 隆^{1,2,3}, 柴田武彦^{1,2,3}, 田村浩二⁴, 中村寛夫^{1,4}, 城 宜嗣⁴

NMR studies on the interaction of the FixJ C-terminal domain with DNA Kaori Kurashima^{1,2}, Yuichi Kasai^{1,4}, Yutaka Ito^{1,2,3}, Takehiko Shibata^{1,2,3}, Koji Tamura⁴, Hiro Nakamura^{1,4}

and Yoshitsugu Shiro⁴

¹Graduate School of Integrated Science, Yokohama City University, ²Cellular and Molecular Biology Laboratory, RIKEN, ³CREST/JST, ⁴Biophysical Chemistry Laboratory, RIKEN Harima Institute

The FixL/FixJ system is a primary regulator of expression of nitrogen fixation related genes in Rhizobia. FixJ is led to activation of the DNA binding ability of the effecter domain towards the promoter regions of the target genes. *fixK* and *nifA*, by receiving the phosphoryl group from FixL. Recently, we determined the solution structure of the C-terminal domain of FixJ (FixJC), exhibiting structural similarity with the transcription activator domains of other response regulator proteins, such as NarL and Spo0A.

Here, we report the NMR titration experiments of the ${}^{13}Ci^{15}N$ -labelled FixJC with the dsDNA fragments, in order to understand the structural basis for specific recognition of fixK promoter region. Addition of the DNA fragment containing FixJ binding site exhibited the intermediate ~ slow exchange interaction, while the fast exchange was observed with the control DNA. Furthermore, these spectra suggest that more than one molecule of FixJC bind to a cognate DNA fragment, while FixJC exists as a monomeric form in a solution.

【序】

根粒菌の FixL/FixJ 二成分情報伝達系は窒素固定反応を制御している. Response Regulator である FixJ は、低酸素条件下で酸素センサー蛋白質である FixL にリン酸化される. その結果として FixJ は 転写活性を発揮し、二量体を形成して fixK, nifA プロモーターと結合する. これまでに、FixJ の N 末端ドメイン (FixJN), C 末端ドメイン (FixJC) をそれぞれ X 線構造解析, NMR 解析によって構 造決定した. DNA 結合ドメインである FixJC は HTH 構造を持ち, 他の Response Regulator である NarLC や Spo0AC と類似の構造を持っている (Fig.1). 今回は、FixJ の fixK, nifA プロモーター認 識のメカニズムを解明するために、 FixJC と種々の 2 重鎖 DNA との相互作用を NMR タイトレーシ ョン実験によって行ったので、これを報告する.

Fig1. Structural comparison of FixJC with NarLC and Spo0AC

Ribbon presentations of FixJC NMR structure (centre). NarLC crystal structure (right, Baikalov, I. et al., Biochemistry 37, 3665-3676, 1998) and Spo0AC crystal structure (left, Lewis, R. J. et al., Mol. Microbiol. 38, 198-212, 2000). Molecular graphics images were produced using the MidasPlus software.

キーワード: DNA 結合ドメイン, 高次構造解析, 蛋白質ーDNA 相互作用, タイとレーション, プロモーター配列

発表者ふりがな: くらしまかおり、かさいゆういち、いとうゆたか、しばたたけひこ、たむらこうじ、なかむ らひろお、しろよしつぐ

【実験】

FixJC と DNA とのタイトレーション実験について最適な条件を検討するために、安定同位体標識 された FixJC を用いて種々の条件下で 2D¹H·¹⁵N HSQC スペクトルを測定した. 続いて、最適化した 条件 [20mM Tris-acetate (pH 6.8). 100mM NaCl] でタイトレーション実験を行った. 0.1mM ¹³C/¹⁵N·FixJC に対して、*fixK*プロモーター上にある FixJ 結合領域を含む 21bp の DNA フラグメン トと、コントロールとして同プロモーター上の FixJ 結合領域外の 21bp の DNA フラグメントを、そ れぞれ 0.0125mM, 0.025mM, 0.05mM, 0.1mM, 0.2mM となるように添加し、2D⁻¹H·¹⁵N HSQC スペクトルを測定した. 全ての測定は構造解析の際と同様 Bruker 社 DRX600 を用い、298K で行っ た、データ処理及び解析は、それぞれ Azara、Ansig ソフトウェアを用いて行った。

【結果・考察】

FixJC 結合領域を含む DNA フラグメントとのタイトレーション実験では、DNA の添加に伴って著 しいシグナルのブロードニングが観測され、また複数の新しいブロードな¹H-¹⁵N 相関クロスピークの 出現も観測された.この結果から、この測定条件において FixJC と FixJ 結合配列を含む DNA は、slow ~ intermediate の交換状態にあることが示唆された.また、スペクトルは FixJC と DNA の相対濃度 が 2:1 になるまで変化していくが、さらに DNA を添加しても大きな変化は観測されなかった.したが って、DNA との相互作用には 2 分子以上の FixJC が関与していることが推定できた.

一方で, FixJ 結合配列を含まないコントロールの DNA とのタイトレーション実験から, この測定条件において FixJC とコントロールの DNA は fast exchange 状態にあることが判明した.このような, タイトレーション実験における 2 種の DNA の間の顕著な差異は, それぞれの DNA 分子と FixJC と の間の親和性の差に由来していると考えられる.

今回の実験によって、FixJC は 2 分子以上で *fixK*プロモーター領域に結合することが判明した. こ のことは、他の Response Regulator で観測されている知見と一致する. しかし一方で、他の Response Regulator と異なり、*fixK* プロモーター上の FixJC 結合領域には明らかな palindromic な配列や tandem な配列は見受けられない. FixJC と *fixK*プロモーター領域の相互作用のメカニズムを詳細に 解明するためにはさらなる解析を行っていく必要がある.

Fig2. NMR titration experiments of FixJC with cognate and non-cognate DNA fragments.

Expansions of 2D ¹H-¹⁶N HSQC spectra of ¹³C/¹⁶N-labelled FixJC on its own (1), in the presence of a *fixK* promoter DNA fragment containing the FixJC-binding region (2) and in the presence of another fixK promoter DNA fragment containing the sequence outside the FixJC-binding region (3).

酸化型シトクロム c 変異体における超微細電子構造解析

(筑波大化学¹、食総研²、阪大院工³、阪大院薬⁴、東大院農⁵、広大院生物圏⁶) 〇立入直紀¹、逸見 光²、高山真一¹、太 虎林¹、三上真一¹、三田 肇¹、 照井教文¹、内山 進³、小林祐次⁴、五十嵐泰夫⁵、三本木至宏⁶、山本泰彦¹

Paramagnetic NMR Characterization of Oxidized Cytochrome c Mutants

ON. Tachiin¹, H. Henmi², S. J. Takayama¹, H. Tai¹, S. Mikami¹, H. Mita¹, N. Tenui¹, S. Uchiyama³, Y. Kobayashi⁴, Y. Igarashi⁵, Y. Sambongi⁶ and Y. Yamamoto¹

¹Dept. of Chem., Univ. of Tsukuba, ²National Food Res. Inst., ³Graduate School of Eng., Osaka Univ., ⁴Graduate School of Pharm. Sci., Osaka Univ., ⁵Dept. of Biotech., Univ. of Tokyo and ⁶Graduate School of Biosphere Sci., Hiroshima Univ.

Cytochrome c_{552} (HT) from *Hydrogenobacter thermophilus*, cytochrome c_{551} (PA) from *Pseudomonas aeruginosa* are highly homologous and belong to a family of the so-called class I cytochrome *c*. Despite their structural similarity, their thermostabilities are considerably different with each other. A quintuple mutant of PA (qm : F7A/V13M/F34Y/E43Y/V78I), in which amino acid substitutions were selected with reference to the corresponding residues in HT, exhibits thermostability comparable to that of HT. We have been trying to elucidate the structure-function relationship of these proteins through paramagnetic NMR study. Paramagnetic susceptibility tensors in the oxidized forms of the proteins have been determined from the analysis of the pseudo-contact shifts observed for signals arising from amino acid residues located close to the heme on the basis of the atomic coordinates. The orientation of the tensor with respect to heme in PA was found to be essentially similar to that in qm, but largely different from that in HT. The present study demonstrated that the paramagnetic susceptibility tensor of cytochrome *c* is sensitive to physicochemical nature of the heme coordination structure.

序論

好熱性水素細菌(Hydrogenobacter thermophilus)シトクロム c_{552} (HT)と緑膿菌(Pseudomonas aeruginosa)シトクロム c_{551} (PA)はアミノ酸配列の相同性が 56%と高いにも関わらず、HT は PA に比べて約 40℃も高い熱変性温度を示す。HT との構造比較に基づいて PA のアミノ酸 5 残基を HT での対応する残基に置換した人工変異体(qm:F7A/V13M/F34Y/E43Y/V78I)は、HT に匹敵するほどの高い熱安定性を示した。HT、PA および qm は類似した高次構造を持つことから、その性質に大きな違いが生じる構造化学的因子を明らかにするためには、より微細な構造解析が必要であると考えられる。酸化型シトクロム c では、ヘム近傍のプロトンに由来する NMR シグナルがヘム鉄の不対電子により常磁性シフトして観測される。常磁性シフトは分子の立体構造を鋭敏に反映することから、酸化型シトクロム c の立体構造を常磁性シフトの解析から精度良く決定することができる。本研究では、常磁性シフトの解析から、HT、PA および qm のヘム活性部位の超微細電子構造を比較した。

結果·考察

NMR シグナルに生じる常磁性シフト(δ_{para})は、化学結合を介した不対電子の非局在化によるコンタクトシフト(δ_{o})と不対電子と核との双極子-双極子相互作用による擬コンタクトシフト(δ_{pc})の寄与を含んでいる($\delta_{para} = \delta_{c} + \delta_{pc}$)。酸化型シトクロム cのスペクトルで観測されるシグナルのうち、へム側鎖、ヘム鉄の軸配位子およびへムとチオエーテル結合している2つのCysに由来するプロトンシグナルの常磁性シフトには δ_{c} の寄与が含まれているが、それら以外のシグナルの常磁性シフトは本質的に δ_{pc} のみで決まる。分子の立体構造と δ_{pc} との関係は、Fig.1に示すように定式化されることから、常磁性磁化率テンソル(G_{ax}, G_{eq}, φ)を決定することにより、ヘム近傍の詳細な立体構造を δ_{pc} の解析を通して調べることが可能となる。

Keyword: 磁化率テンソル、常磁性シフト、シトクロム c、タンパク質の高次構造、ヘムの配位構造

たちいりなおき、へんみひかる、たかやましんいち、たいこうりん、みかみしんいち、みたはじめ、てるいのりふみ、 うちやますすむ、こばやしゆうじ、いがらしやすお、さんぼんぎよしひろ、やまもとやすひこ

磁化率テンソルの決定に必要なシグナル 帰属の中で、還元型HT、還元型qm、還元型 PA および酸化型 PA については報告済の帰 属(Hasegawa et al. (2000)、Timkovich et al. (1993))を用い、酸化型HTと酸化型gmの帰 属は新規で行った。また、立体構造は、PDB ファイル (HT: 1AYG (NMR)、qm: 1DVV (NMR)、PA:451C(X 線))を用いた。磁化率 テンソルを決定することは、それぞれのタン パク質の立体構造で、還元型と酸化型での 対応するシグナルのシフト値の差として得ら れる $\delta_{\rm ns}$ を満足する最適な $G_{\rm ax}$ 、 $G_{\rm ex}$ 、 φ (Fig. 1 参照)を選ぶことと等価である。得られた結果 を Table 1 にまとめて示す。 PAと gm の Gax、 果となった。これまでの研究から、HT におけ るヘム鉄と軸配位子 Met の配位結合(Fe-S) は、PA のものより強いことが実証されている が、両者の Gaxの違いは Fe-S の強度の差を 反映していると考えることができる。また、磁 化率の異方性は配位結合の強度に依存する と考えられるが、PAに比べてHT で G_{ax}/G_{eq} が大きくなっている(異方性が大きい)ことも 両者での Fe-S の強度の関係を支持している。 このように、磁化率テンソルは、配位結合の 性質を反映すると考えられる。

それぞれのタンパク質で得られた磁化率 テンソルの z 軸(g_2)と軸配位子との結合との 成す角(θ_N 、 θ_S 、Fig. 2 参照)を Fig. 2 に示す。 PA では、 g_z は軸配位子の結合軸にほぼ沿っ ていることがわかる。一方、HT、qm では g_z と 軸配位子の結合軸との成す角度は比較的大

Fig. 1 Orientation of the principal magnetic axes with respect to here φ is defined as the angle between z axis and normal to here plane. Pseudo-contact shift (δ_{pe}) is expressed in terms of the paramagnetic susceptibility tensor. (r, θ, ϕ) represents the polar coordinates for H. g_i (i = x, y, z) is the principal value of the *g*-factor. Other parameters represent usual meanings.

 Table 1
 Paramagnetic susceptibility tensors in cyt c.

Sample	<i>T</i> _m *	G_{ax}	G_{eq}	$G_{\rm ax}/G_{\rm eq}$	φ	
HT	91.8°C	4.88	0.82	5.95	7.8°	
qm	83.8℃	4.36	1.56	2.80	-8.1°	
PA	50.4℃	4.35	1.45	3.01	-5.9°	

Denaturation temperature in the presense of 1.5 M Gdn-HCl.

Sample	θ_{N}	$\theta_{\rm S}$
HT	25°(10°)	17°(10°)
qm	23 °(10 °)	11°(4°)
PA	7°	4°
<u></u>		

Fig. 2 Orientation of magnetic axes, g_x , g_y , g_z relative to heme molecular axes, x, y, z, in the proteins. θ_N and θ_S indicate the angles between g_z and Fe-His N_e bond and between g_z and Fe-His N_e bond, respectively. The values in the parentheses represent the angles calculated based on the structure of PA.

きいが、NMR により決定された還元型 HT、還元型 qm の構造(Hasegawa et al. 1998))におけるへム鉄の配位構造は、X線結晶構造解析で決定された PA での構造(Matsuura et al. (1982))に比べて正八面体構造からの歪みが大きいことに起因すると考えられる。このことは、PA での配位構造に HT および qm で決定された磁化率テンソルを適用して算出された θ_N 、 θ_S (Fig. 2 の表のカッコ内の角度)は小さい値となることから裏付けられている。したがって、NMR の結果に反して、HT および qm のへム鉄の配位構造は、PA と同様に正八面体構造に近いことが予想される。水溶液中のシトクロム c のへム近傍の立体構造の NMR による決定は、プロトンの空間密度の低さに起因する NOE 情報の少なさのために困難である。したがって、ヘム近傍の立体構造決定には、擬コンタクトシフトの解析に基づいた研究は有効であると考えられる。

x

 θ_{N}

g_y y

結論

- ・磁化率テンソルは、配位結合強度、結合角など、配位結合のさまざまな物理化学的性質を鋭敏に反映する ことが明らかとなった。
- ・擬コンタクトシフトの解析はヘム活性部位の詳細な電子構造の解析を可能とし、NMR で立体構造を決定する際も有効な方法であると考えられる。

安定同位体標識を用いた機能性RNA及びDNAの構造決定

(横浜国大院環境情報¹、産総研²、三菱化学生命研³)○松上明正¹、池 田哲朗¹、外谷英嗣¹、田村裕介¹、丸本佳代子¹、大橋 肃¹、小林伸一郎 ¹、奥泉智之¹、上杉晴一¹、Penmetcha Kumar²、河野俊之³、片平正人¹

Structure determination of functional RNA and DNA with the aid of stable isotope labeling ¹Grad. Sch. of Env. & Info. Sci., Yokohama Natl. Univ., ²Natl. Inst. of Advanc. Indus. Sci. & Tech., and ³Mitsubishi Kagaku Inst. of Life Sci. Akimasa Matsugami¹, Tetsuro Ikeda¹, Hidetsugu Sotoya¹, Yusuke Tamura¹, Kayoko Marumoto¹, Kiyoshi Ouhashi¹, Shin-ichiro Kobayashi¹, Tomoyuki Okuizumi¹, Seiichi Uesugi¹, Penmetcha Kumar², Toshiyuki Kohno³, and Masato Katahira¹

Non-standard base pairs formed in functional RNA and DNA play key roles in exerting certain functions. Here, we have utilized ¹³C-, ¹⁵N-labeling of RNA/DNA for the identification of non-standard base pairs. On the basis of detection of a spin-spin coupling across a hydrogen bond, we have directly identified U:A:U base triples in an RNA aptamer complexed with analogues of an HIV Tat protein, and G(:A):G(:A):G(:A):G heptad in a quadruplex of GGA repeat DNA. The stability of these base pairs has also been addressed. The whole structures of these RNA/DNA have been successfully determined with the aid of information on base pairs. We have also developed a new method to discriminate between intra- and intermolecular base pairs in a homo-multimer, and its usefulness has been confirmed experimentally.

(序)機能性のRNA及びDNA中には、ワトソンークリック型とは異なる非標準型の塩基対が 形成され、これが機能の発現と密接に結びついている。今回我々は安定同位体標識をした RNA及びDNAを用いる事で、この非標準型の塩基対の構造を確実に決定する事が出来 た。塩基対の安定性に関する情報も得られた。またある塩基対が分子内で形成されたものな のか、それとも分子間で形成されたものなのかを区別する手法を開発した。HIVのTatタンパ ク質に対するRNAアプタマー、GGAリピートが形成する新規4重鎖及びGGGC配列が形成 する4重鎖を例として取り上げ、得られた成果を報告する。

(結果と考察)

① <u>試料の調製</u>¹³C,¹⁵N標識したRNA及びDNAは、T7 RNAポリメラーゼ及びクレノウフラグ メントを用いた酵素合成法により各々調製した。

②HIVのTatタンパク質に対するRNAアプタマー中のU:A:Uベーストリプルの同定及びその 安定性の評価 Tatタンパク質のアナログの結合に伴いRNAアプタマー中には、U:A:Uベー ストリプル(Fig. 1a)が形成される事を、水素結合をまたがったスピンースピン結合^{2h}J_{NN}を検出 する事で、直接的に証明できた。またスピンースピン結合の値より、フーグスティン型のA:U塩

キーワード:機能性RNA、安定同位体標識、水素結合、4重鎖、RNAアプタマー

まつがみあきまさ、いけだてつろう、そとやひでつぐ、たむらゆうすけ、まるもとかよこ、おおはしきよし、こばやししんいちろう、おくいずみともゆき、うえすぎせいいち、Kumar Penmetcha、こうのとしゆき、かたひらまさと

基対が、ゆらいでいる事も分かった。塩基対の情報及び残余双極子結合の情報を取り入れる 事で、Tatアナログ-RNAアプタマー複合体の構造(Fig. 1b)を決定する事ができた(1)。 ③GGAリピートDNAが形成するヘプタッド構造の同定 GGAが8回繰り返したDNAは新規4 重鎖構造を形成する。4重鎖中にはG塩基4つとA塩基3つからなるヘプタッド(Fig.1c)が形成

される事を、2hJょwを検出する事により直接的に証明できた。またスピンースピン結合の値より、 各塩基対の安定性に関する情報も得られた。塩基対の情報を取り入れる事で、このDNAが 形成する全体構造(Fig. 1d)を決定する事ができた(2,3)。

④分子内塩基対と分子間塩基対を区別する手法の開発 ホ モ多量体において、分子内塩基対と分子間塩基対を区別する 手法を開発した。標識体:非標識体=2:0の時と1:1の時の両者 で、^{2h}J_{NN}の存在に由来した交差ピークの強度を測定する。注目 している塩基対が分子内で形成されていれば、交差ピークの強 度は1/2となり、一方分子間で形成されていれば1/4となるはず である。この事を実際に検証してみた。d(GGGCTTTTGGGC)は 2分子で4重鎖を形成する(Fig. 1e)。4重鎖中には、分子内G:G 塩基対と分子間G:G塩基対が存在している。上記の強度比較 を行なったところ、予想通り分子内塩基対では1/2、分子間塩基 対では1/4となり、我々の手法の有効性が確認された。

(a)

(c)

(e)

Fig. 1 (a) U:A:U base triple. (b) Structure of RNA aptamer complexed with Tat analogues. (c) G(:A):G(:A):G(:A):G heptad. (d) Structure of d(GGA)₈. (f) Structure of d (GGGCTTTTGGGC).

- (1) Matsugami et al., Structure, 11, 533-545 (2003).
- (2) Matsugami et al., J. Biol. Chem., 278, 28147-28153 (2003).
- (3) Katahira, J. Mol. Biol., review article, in press (2003).

スペルミジンーATP 複合体の NMR 解析 一弱い分子間相互作用解明への新しい試みー (阪大院理) 〇丸吉 京介、出村 哲夫、松森 信明、村田 道雄

Bimolecular Interaction between Major Cellular Constituents: Conformation of Spermidine upon Complexation with ATP

Department of Chemistry, Graduate School of Science, Osaka University Keisuke Maruyoshi, Tetsuo Demura, Nobuaki Matsumori, Michio Murata

Spermidine is known to form a complex with ATP in the physiological conditions, which should play a role in ATP-related cellular events. Its conformation analysis based on spin-spin coupling is, however, hampered by its acyclic structure, in which the absence of asymmetric center causes unresolved ¹H NMR methylene signals. This problem was solved by the diastereospecific labeling of each one of two geminal proton pairs with deuterium, leading to some new findings in the pH-dependent conformation change of the spermidine-ATP complex.

【序】

複数のアミノ基を有するポリアミン類は、多種多様な生物に広く分布し、核酸やタンパク質などの酸性 高分子物質と相互作用することによって、細胞増殖促進をはじめ多岐にわたる生理活性を担っている¹⁾。 しかし、ポリアミンはその生理的重要性が認識されているにもかかわらず、その相互作用が弱い(Table 1)ために、生体内における存在形態や生理活性発現機構の研究は大きく遅れている。そこで我々は、 NMR を用いた弱い相互作用の構造解析法を確立することに加えて、ポリアミンの生理作用を分子レベ ルで理解するために、生体内においても存在が予想されるスペルミジン(SPD)-ATP 複合体(Fig.1)に着 目し、複合体形成時におけるスペルミジンの立体配座変化の解明を試みた。

Tabel 1. Dissociation constant of spermidine with various anions¹⁾

Anion	K _d (mM)
DNA	15.63
RNA	2.66
Phospholipid	5.56
ATP	2.24

Figure 1. Hypothetical picture for spermidine-ATP complex.

【方法】

スペルミジンのようなフレキシブルな分子に関する立体配座解析には、¹H NMR スペクトルにおけるス ピン結合定数の二面角依存性を用いるのが最適である²⁾。しかし、SPD は不斉中心を含まない直鎖状分 子であり、メチレン部分におけるジェミナルプロトンの2 つの¹H NMR シグナルが等価に観測されるため、

Keywords: スペルミジン、ATP、弱い相互作用、スピン結合定数、立体配座解析 まるよし けいすけ、でむら てつお、まつもり のぶあき、むらた みちお 各々の水素についての正確な二面角が得られない。この問題はジェミナルプロトンの一方を立体選択的 に重水素化することで解決可能と考え、重水素標識された SPD を合成した³⁾(Fig.2: 2、3、4においては、 ¹H NMR シグナルの重複を避けるためにメチレン水素を重水素化してあるが、ここでは省略した)。

【結果と考察】

重水素標識体1について、SPD三塩酸塩とSPD-ATP複合体の二つのサンプルを調製し、pH 3.3 に おいてスピン結合定数を測定した。SPD に ATP を添加することで³J2403Hは 9.3 Hz から 7.8 Hz へと顕著 に減少し、さらに、SPD-ATP 水溶液を酸性から中性(pH 7.2) へと変化させると、3J2-H2-H2 にまで 減少した。また、2と3、4に関しても同様の実験を行ったところ、³Jm値の違いはあるものの同様の傾向が 見られた(Fig.3)。得られた結果よりアンチ・ゴーシュ配座の混合比を見積もったところ(Table 2)、SPD の 回転配座が、ATPとの相互作用によってアンチ優位の状態から、ゴーシュの割合が増加した混合状態へ と変化したことが分かり、SPD は ATP と複合体を形成するためにその構造を屈曲させることが示唆された。 また、酸性から中性へと変わるにつれて ATP は 1 価から 3 価の陰イオンへと変化するが、SPD は常に 3 価の陽イオンで存在していることを考慮すると、SPDとATPは価数が等しくなる中性付近で最も相互作用 しやすいことが予想された。これは中性において³Jmが最も小さい値を示した実験結果とも一致している。 さらに、各々の結合を比較してみると、ブタニレン側(C2-C5)の方がプロパニレン側(C7-C9)よりも屈曲し やすいことが分かった。ブタニレン側、プロパニレン側の窒素間距離(N1-N6、N6-N10)は、伸張形配座 においてはそれぞれ約 6.0、4.8 Å であり、ATP 三リン酸部分の隣接する酸素間距離より大きいため、SPD と ATP が相互作用するためにはブタニレン側がより屈曲しなければならないと考えられる。現在、残りの 結合に関しても同様の立体配座解析を行い、SPD 塩の水溶液における時間的平均像の解明を進めて いる。

Figure 3. ¹H NMR signals for H-5 of <u>2</u> upon complexation with ATP in various pH

Tabel 2. Populations of rotamers obtain	ed
from ¹ H NMR experiments	

		•				
	SPD	(3HCl)	SPD-A1	(P (pH 7.3)	pH 7.3)	
Comp.	Anti	Gauche	Anti	Gauche		
. 1	79%	21%	57%	43%		
2	82%	18%	71%	29%		
3	86%	14%	74%	26%		
4	83%	17%	70%	30%		

【参考文献】

- 1) Watanabe, S.; Kusama-Eguchi, K.; Kobayashi, H.; Igarashi, K. J. Biol. Chem. 1991, 266, 20803-20809.
- 2) Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. J. Org. Chem. 1999, 64, 866-876.
- 3) Fukuyama, T.; Cheung, M.; Jow, C. K. Tetrahedron Lett. 1995, 36, 6373-6374.

-141 -

分子内 CH---O 相互作用

---立体的にかさ高いケトン類の¹⁷O,¹³C 及び¹HNMR 法による解析---(産総研・生物情報解析研究センター)〇秦 旭栄、中西 洋志

NMR study on an intramolecular CH---O interaction

-----¹⁷O, ¹³C, and ¹H NMR analyses of overcrowded ketones -----(AIST, Biological Information Research Center)**O**Qin xu-rong, Hiroshi Nakanishi

Correlation analysis of ¹⁷O NMR chemical shifts versus the number of the γ -carbon atoms of alkyl group, in alkyl phenyl ketones and alkyl t-butyl ketones indicated that the bulky ketones such as t-butyl phenyl ketone and di-t-butyl ketone show an abnormally large low-field ¹⁷O chemical shift. Analyses of the ¹⁷O and ¹³C NMR chemical shifts of the carbonyl group, ¹HNMR chemical shifts of the t-butyl group in crowded ketones and IR carbonyl stretching absorption bands were conducted. We concluded that there is an intramolecular through-space CH₃---O interaction between the methyl of the t-butyl group and oxygen atom of the carbonyl group in overcrowded ketones.

1序:最近、タンパク質、核酸、糖鎖などの生体分子系や材料科学の分野において、分子間 及び分子内の弱い相互作用が分子系の構造や機能に与える影響が注目を集めている。 我々は先に、トリ t-ブチルカルビノール等の立体的に混み合った分子系において、 CH---Oの分子内相互作用が存在することを報告した¹⁾。本研究では、これらのアル コール系より分子構造が solid であるといわれるケトン類で、このような相互作用が あるかどうかを NMR 法や IR 法で研究を行ったので、その結果について報告する²⁾。

2 実験:実験で用いたケトン 1a-e, 2 a-e, は 一部は市販品を用いたが、多くは化学合成を 行い、精製した。3a-e は パリ第7大学の John.S. Lomas 博士から提供を受けた。 ケトン類の¹⁷O NMR、¹³CNMR,及び¹HNMR スペクトルは それぞれ JEOLα-500 分光器(¹⁷O核;67.6MHZ), JEOL EX 270 分光器(¹³C核;67.8MHZ), 及び JEOL ECP 800 分光器(800.08MHZ)を用いて測定した。

*CH---O 相互作用、かさ高いケトン、¹⁷O NMR、¹³CNMR、異常な化学シフト

しん きょくえい、 なかにし ひろし

in R group of PhCOR(1)

3 結果と考察: 図に示すようなかさ高いアルキルケトン類(フェニルケトン1、t-ブチルケトン2)の NMR 測定を行った。立体効果を観察するために、一方の基は立体的に大き いフェニル基や t-ブチル基とし、他方は立体的に小さい基から大きな基が置換した ケトンを選択した。カルボニキルに対するアルキル基の立体効果を見るために、δ-効果を調べた。Fig. 1 に PhCOR(1)のアルキル基がカルボニルの¹⁷O NMR のシグナル にどのような効果を示すかを示した。アルキル基がメチル基、エチル基、n-ブチル 基、イソプロピル基にだんだん大きくなると(1a-1d)、¹⁷O NMR シグナルはそのア ルキル基のもつδ-炭素の数とともに高磁場側にシフトする(δ-効果)。しかしながら t-ブチルケトン(1a)のみは、こららの δ-効果からはずれて大きく低磁場にシフトす ることが見出された。

同様の現象がよりかさ高いジェーブチルケトン(2a)でも観測された。1e のようにかさ 高いと、その立体反発でカルボニル基がひずむ可能性がある。このことは、これら のケトンのカルボニルの¹³CNMR 化学シフトの検討を行ったところ、予想される通 常の δ-効果しか観測されなかった。また、1R スペクトルのカルボニル基の伸縮振動 の検討からも同様の結論が得られた。これらの結果は 1e において、以前に報告され たような分子内 CH---O 相互作用の可能性を強く示唆している。更に¹HNMR シグナ ルでも、1e においてのみ異常なシフトが観測された。1のケトン類よりさらに立体効 果が大きいと考えられる t-ブチルケトン類(2a-2e)でも、上述したような NMR 及び1 R の結果が得られた。この場合には、CH---O 相互作用とともに立体的なひずみの効 果も観察された。

 T.Tezuka, M.Nakagawa, K.Yokoi, Y.Nagawa, T.Yamagaki, H.Nakanishi, Tetrahedron Lett., 1997, 38, 4223
 T.Tezuka, M.Nakagawa, H.Nakazawa, Y.Nagawa, T.Yamagaki, Qin xu-rong, H.Nakanishi, Spectrochim. Acta, A, 2003, in press

安定同位体標識と磁場配向を利用した糖タンパク質の高次構造解析 (名市大院薬¹, CREST/JST², 理研 GSC³, 横市大院総理⁴) 〇山口芳樹 ^{1,2}, 菊池 淳 ^{3,4}, 西村真美子 ¹, 加藤晃一 ^{1,2,3}

Structural analyses of glycoproteins assisted by stable-isotope labeling and field oriented media

¹Graduate School of Pharmaceutical Sciences, Nagoya City University, ²CREST/JST, ³Genomic Sciences Center, RIKEN Yokohama Institute, ⁴Graduate School of Integrated Science, Yokohama City University

○Yoshiki Yamaguchi^{1,2}, Jun Kikuchi^{3,4}, Mamiko Nishimura¹, and Koichi Kato^{1,2,3}

We have been developing NMR techniques for structural analyses of glycoproteins. In this methodology, the glycans and/or polypeptides of glycoproteins are uniformly or selectively labeled with stable isotopes (²H, ¹³C, and ¹⁵N) in metabolic or enzymatic manners. By use of isotopically labeled immunoglobulin G (IgG)-Fc (56 kDa) thus prepared, we have almost completely assigned resonances from its polypeptide backbone and carbohydrate chains. To obtain structural information on carbohydrate chains in detail, we have observed C-H residual dipolar couplings for the glycans on Fc using bicelle. NMR spectral data of the isotopically labeled IgG-Fc preparations could provide us with information at atomic resolution of structure and dynamics of a series of glycoforms of the Fc glycoproteins in solution. We will discuss the glycoform-dependent interactions of Fc with a variety of Fc-binding proteins on inspection of the NMR data.

【はじめに】糖タンパク質の NMR による高次構造解析は,安定同位体標識技術が未発達で あることや高次構造を規定する NMR パラメータの少なさのためこれまでほとんど行われて こなかった。そのため,演者らは糖タンパク質の安定同位体標識技術の開発とそれを利用し て得られた標識試料を用いて糖鎖由来の NMR シグナルの帰属・高次構造解析を行ってきた。 本発表では,免疫グロブリン G の Fe 部分をモデル糖タンパク質として,安定同位体技術と残 余双極子カップリングを用いた高次構造解析の結果について報告する。

キーワード:糖タンパク質,安定同位体標識,磁場配向,バイセル,残余双極子カップリング

やまぐち よしき, きくち じゅん, にしむら まみこ, かとう こういち

【方法】¹³C と¹⁵N で均一に標識された藻体の加水分解物および 7 種類の ¹³C, ¹⁵N 標識アミ ノ酸 (Arg, Asn, Cys, Gln, His, Trp, Tyr), [¹³C₈]ピルビン酸, [¹³C₄]コハク酸, [¹³C₆] グルコースを用いて調製した無血清培地中でハイブリドーマを培養し, ポリペプチド鎖と糖 鎖が ¹³C および ¹⁵N で均一に標識されたマウス IgG2b を大量に得た (70 mg/L culture)。こ の IgG2b をパパインで限定分解することにより Fc (56 kDa) を調製して, クライオプロー ブを利用した NMR 測定を行った。HN(CO)CA, HNCA, CBCA(CO)NH, CBCANH をはじ めとする各種 3 次元 NMR スペクトルを解析することによりポリペプチド主鎖の連鎖帰属を 行った (Fig. 1)。また, HCCH・COSY, HCCH・TOCSY などの測定を行うことにより糖鎖由 来のシグナルの帰属を行った。糖鎖部分の残余双極子カップリングは, バイセル存在下およ び非存在下における ¹H-coupled ¹H-¹³C HSQC スペクトルを測定することにより決定した。 様々な糖鎖構造を有する Fc は各種グリコシダーゼあるいはグリコシルトランスフェラーゼを 用いて調製した。

【結果・考察】各種3次元NMRスペクトルを解析することにより,Fcのポリペプチド主 鎖および糖鎖由来のシグナルをほぼ完全に帰属した。また,糖鎖の構造情報を得るため,バ イセルを用いて試料を配向させることにより,C・Hの残余双極子カップリングを観測するこ とに成功した。糖鎖の高次構造を規定するNMRパラメータは一般に少ないため,糖鎖部分に 由来する残余双極子カップリングは糖鎖の高次構造を規定するうえで極めて有用である。さ らに,様々な糖鎖構造におけるFcのNMRスペクトルを測定することにより,ポリペプチド 鎖部分の高次構造変化を追跡した。NMRを用いて観測されたFcの高次構造の変化が様々な Fc 結合タンパク質との相互作用に及ぼす影響について議論する。

Fig. 1 ¹H⁻¹⁵N HSQC (left) and HN(CO)CA (right) spectra of [u⁻¹³C/¹⁵N]Fc

【謝辞】本研究を行うにあたりご協力を頂きました日本酸素株式会社に感謝致します。

— 145 —

金属酸化物をコアにもつ無機−有機分子ハイブリッドの シラノールとの置換反応および生成物の構造 京大化研 ○日下 康成・山本 靖・梶 弘典・堀井 文敬

Institute for Chemical Research, Kyoto University

Yasunari Kusaka, Yasushi Yamamoto, Hironori Kaji, and Fumitaka Horii

Substitution reactions of an inorganic-organic molecular hybrid material that has polyoxoantimonate cores $[Sb_4O_6(OH)_4\{OSi(CH_3)_2(t-C_4H_9)\}_6]^{2^*}$ (1) with various silanols in solution have been investigated in detail. The reactions are found to depend on the concentration c_a of 1 and the molar ratio R_s of 1/silanol. Here, the results of dimethyl vinyl silanol C=CSi(Me)₂OH are mainly described. In CH₃CN solution, at $c_a = 0.5$ wt% and $R_s = 1$, only two silyl groups of site A of 1 are substituted by dimethyl vinyl silanol to produce another anion 2 while other four silyl groups of site B stay unsubstituted. However, a considerable amount of an unknown product (X) is also produced and its yield is increased with increasing c_a and R_s . In contrast, almost pure anion 2 is found to be generated at $c_a = 0.5$ wt% and $R_s=1$ in CH₂Cl₂ without the production of X. The structure and dynamics of the crystals of 2 thus obtained are also characterized in detail by CP/MAS ¹³C and ²⁹Si NMR spectroscopy.

[緒言] 表面酸素の塩基性が高いアンチモン酸は、無機 - 有機分子ハイブリッドのコアや、ナノコンポジット 材料のビルディングブロック、無機-有機共有結合の インターフェイスとしての利用が可能と考えられる。 我々は[Sb₈O₁₂(OH)₂₀]⁴に *t*-butyl dimethyl silanol を反応 させることにより、[Sb₄O₆(OH)₄{OSi(CH₃)₂(*t*-C₄H₉)}₆]²· アニオン1 (Fig.1)を(C₄H₉)₄N⁺塩として単離すること に成功した。¹⁾しかし、他のシラノールについては、 同様の直接反応によって特定の Sb-O 骨格をもつ化合 物を得ることが困難である。本研究では1の *t*-butyl dimethyl silanol 残基と種々のシラノールとの置換反応 により置換体を合成し、その結晶状態の構造と分子運

Fig.1 The structure of $[Sb_4O_6(OH)_4 \{OSi(CH_3)_2(t-C_4H_9)\}_6]^2$ anion.(1) Ellipsoids are drawn to encompass 50 % of the electron density.

動を固体 NMR により解析する。 [実験] 最終濃度が $0.5 \sim 2.5$ wt%に なるように 1 の $(C_4H_9)_4$ N⁺塩を CH_3CN 、 CH_2Cl_2 またはその D 化溶 媒に溶解し、種々のシラノールの対 応する溶液を 1 の silyl 基とシラノー ルのモル比 R_s が $0.2 \sim 8$ になるように 窒素気流中、室温および-70 ℃で、 ゆっくりと攪拌しながら混合した。 $1 \sim 200$ 時間反応させ、溶媒を減圧除

Fig.2 Substitution reaction of $[Sb_4O_6(OH)_4 \{OSi(CH_3)_2 (t-C_4H_9)\}_6]^2$ with dimethyl vinyl silanol.

inorganic-organic hybrid, substitution reaction, polyantimonate, silanol, CP/MAS ¹³C and ²⁹Si NMR

くさかやすなり、やまもとやすし、かじひろのり、ほりいふみたか

去後、得られた白色固体を CD₃CN または CD₂Cl₂ に溶解して、JEOL AL-300 分光計により H NMR 測定を行った。固体 NMR 測定は Chemagnetics CMX400 分光計により 9.7 T の静磁場下で行った。 [結果・考察] 最初に dimethyl vinyl silanol C=CSi(Me)₂OH との反応に関する結果を示す。アニ オン1は dimethyl vinyl silanol との置換反応により アニオン2 (Fig.2)を生成した。CD₃CN 溶液中にお いて、1の濃度 caや Rsが高い場合は、アニオン2 とともにかなり多量の副生成物が生成した。このた め c_a=0.5 wt %溶液中で反応を行い、R_s=1のとき2 が最も多く生成すること、しかし依然かなりの副生成 物が生成することを明らかにした。一方、CD₂Cl₂中 では、c_a=0.5 wt %、R_s = 1 の条件下で、副生成物をほ とんど生成することなく2が生成するが、この系にお いてもc_aやR_sが高い場合は、CH₃CN 系と同様の副生 成物が生成することを確認した。ca=0.5 wt%、Rs =1、 反応物の溶液を-70 ℃で混合し、-20 ℃で反応させた ところ、Fig.3 のように、副生成物を生成することな くほとんどの1を反応させることができた。2は1の 6つの silyl 基の内 2 つの silyl 基(サイトA、Fig.2 点

Fig.3 Time dependence of mole fractions during substitution reaction in 0.5 wt% CH_2Cl_2 solution.

Fig.4 Plots of the mole fractions of different Si-Me groups; site A or B in anion 1 and 3, against the reaction times.

線部)のみが選択的に dimethyl vinyl silanol と置換された構造をもつことを、¹H NMR および X 線結晶 構造解析により明らかにした。

次にアニオン1と*n*-butyl dimethyl silanol *n*-(C₄H₉)Si(Me)₂OH との置換反応に関する結果を示す。1の シロキシ基は c_a =0.5%、 Rs = 1の CH₃CN 溶液中において、特定の副生成物を生成することなく *n*-(C₄H₉)Si(Me)₂OH と置換反応を起こし、dimethyl vinyl silanolの系と同様に、サイトAのみが置換された アニオン3を生成した。 R_s を8まで上げてもビニルシラノールの系のような特定の副生成物はほとんど生成しな かった。Fig.4には、段階的に*n*-butyl dimethyl silanolを加えて反応させた系のモルフラクションの変化を 示す。いったん置換反応が飽和した R_s = 1の溶液を減圧下で溶媒やシラノールを除去した後に、新たに 溶媒と*n*-butyl dimethyl silanolを加えて溶液の再調製を行なった。(図の点線部)生成物3の強度が再調 整後さらに増加しており、段階的な添加によってさらに置換反応が進むことがわかった。この結果は、 アニオン3と系内の遊離した *tert*-butyl silanol との逆反応の存在を示唆している。

また、triethyl silanol (C₂H₅)₃SiOH との置換反応でも*n*-butyl dimethyl silanol と同様に、CD₃CN 中において特定の不純物を生成することなく、サイトAのみが置換された化合物3を生成することを確認した。

以上の結果により、3種類のシラノールはいずれも、アニオン1と反応し、その結果サイトAのみ がそれぞれのシラノール残基と置換されたアニオンを生成することを確認した。発表では、アニオン2 からなる結晶の構造と分子運動に関する固体 NMR 解析についても報告する。

1) Y. Kusaka, Y. Ozawa, A. Yagasaki, Inorg. Chem. 2001, 40, 2634.

- 147 --

超高磁場勾配¹³C及び¹H NMR 法を用いた等方相及び液晶相 における棒状高分子の高精度拡散係数解析 東工大院理工¹、高分子センター²、東京家政大³ 〇金坂 将¹、木村英昭¹、黒木重樹^{1,2}安藤 勲^{1,2}、藤重昇永³

Diffusional Behavior of Rod-like Polymer in the Isotropic and Liquid Crystalline Phases as Studied by High Field-Gradient ¹³C and ¹H NMR

Sho Kanesaka¹, Hideaki Kimura¹, Shigeki Kuroki^{1, 2}, Isao Ando^{1, 2} and Shouei Fujishige³

'Department of Chemistry and Materials Science, Tokyo Institute of Technology

²International Research Center of Macromolecular Science, Tokyo Institute of Technology

³ Tokyo Kasei University

The phase transition of poly(di-*n*-ethylsiloxane) (PDES) from the biphasic phase composed by the isotropic and liquid crystalline regions to the monophasic isotropic phase is characterized through the observation of static solid-state ²⁹Si spectra in the temperature range from 20 to 50°C. The experimental results show that PDES forms the biphasic phase between 20 to 40°C, and then the liquid crystalline region of the biphasic phase melts completely at above 50°C. The diffusion coefficients (*D*) of PDES in the liquid crystalline region of the biphasic phase have been determined by using pulse field-gradient stimulated-echo ¹³C NMR with ¹H CW decoupling as designed by us and also in the isotropic region of the biphasic phase have been determined by using conventional pulse field-gradient stimulated-echo ¹H NMR method. From the determined diffusion coefficients, it is found that the PDES polymer chain in the liquid crystalline region of the biphasic phase is diffusing faster than in the isotropic region.

[緒言]

棒状高分子の拡散理論は Kirkwood¹⁾により表式化され、Doi と Edward²⁾によって発展させられてきた。 このような理論研究は古くよりなされているが棒状高分子の拡散係数測定が困難であることから、実験的 な研究はほとんどなされていなかった。 磁場勾配発生装置の高性能化によって Yin らは磁場勾配¹H NMR 法を用いてサーモトロピック³⁾及びリオトロピック液晶状態⁴⁾にある長鎖アルキル基を有する棒状ポリ ペプチドの拡散係数の測定に成功し、サーモトロピック液晶状態において Kirkwood の理論が成り立つこ とを示した。 しかしながら、多くの棒状高分子は相対的に T₂ が短く、拡散係数が小さいため磁場勾配パ ルス印加時間(δ)及び拡散時間(Δ)を長くすることができない。 そのため、正確な拡散係数の測定は 非常に難しい。

Poly(diethylsiloxane) (PDES)は主鎖にシロキサン結合(-Si-O-)を持ち、側鎖にエチル基を有する 無機-有機混成ポリマーである。 その高分子量(Mw > 30000)のものは典型的なメソゲンを持たない にもかかわらず主鎖と側鎖の相互作用のバランスにより30℃近傍において液晶領域と等方領域が

液晶性高分子、ポリジエチルシロキサン、超高磁場勾配¹³C NMR、拡散係数

かねさかしょう、きむらひであき、くろきしげき、あんどういさお、ふじしげしょうえい

混在する混合相を形成することが知ら れている。 液晶状態において PDES 鎖 は規則構造を有しており、それぞれの 鎖は棒状態をとっていることが予想され る。 このとき、その鎖は強い双極子相互 作用にさらされており¹H T₂は200 μ s 程度 と短く、拡散係数は分子量が大きいことか ら 10^{-8} cm²/s 程度と小さいため一般的な pulse field-gradient spin-echo¹H NMR 法 による拡散係数の精度高い測定はできな い。

そのような背景から本研究ではッが小

Fig. 1 A diagram of PFGStE ¹H NMR pulse sequence (a) and PFGStE ¹³C NMR pulse sequence with ¹H CW decoupling (b).

さく、相対的に T2の長い¹³C 核を拡散プローブとして用いた磁場勾配 NMR 法を開発し、棒状高分子の 拡散挙動を明らかにすることを目的とする。

[実験]

Static solid-state²⁹Si NMR法、pulsed field-gradient stimulated-echo¹H NMR (PFGStE) 法(Fig. 1(a))、 PFGStE¹³C NMR under¹H CW decoupling法 (Fig. 1(b))は高磁場勾配パルス発生装置を備えたBruker Avance DSX300 NMR spectrometerを用いた(共鳴周波数²⁹Si: 59.61MHz, ¹³C: 75.47MHz, ¹H: 300.11MHz)。

PFGStE¹³C NMR under ¹H CW decoupling 法において、¹H decoupling は磁場勾配パルスを印加して いる時間を避けて行った。 磁場勾配をかけると試料管内にある核は空間的な位置に依存した異なる磁 場を感じるためその共鳴周波数が異なる。 大きな磁場勾配をかけると核の共鳴周波数は幅広い周波数 域に広がるため (例えばサンプル厚 2 mm、G が 1000 G/cm とすると±1400 ppm 以上)¹H decoupling の 効率が落ちる。 通常の PFGStE 実験では G または δ を変化させてそのエコー強度の減衰より拡散係数 を求めるが、磁場勾配パルス印加と¹H decoupling を同時に行うと得られるエコー強度の減衰は拡散によ る効果だけでなく、decoupling 効率の違いからくる T₂緩和の影響が入ってしまう。 このような artifact を取 り除くために Fig. 1(b)のようなパルス系列を用いた。

エコー強度減衰の解析に拡散成分が1成分のときは式(1)を用いた。

$$\frac{A(G)}{A(0)} = \exp(-\gamma^2 \delta^2 G^2 D(\Delta - \delta/3))$$

(1)

ここでA(G)はあるGでのエコー強度、A(0)は磁場勾配をかけないときのエコー強度、 γは磁気回転比、Dは自己拡散係数である。 また、拡散成分が複数成分存在すると きは2成分と近似し、その解析には式(2)を用いた。

$$\frac{A(G)}{A(0)} = f_{fast} \exp[-\gamma^2 \delta^2 G^2 D_{fast} (\Delta - \delta/3)]$$

(2)

+
$$f_{slow} \exp[-\gamma^2 \delta^2 G^2 D_{slow} (\Delta - \delta/3)]$$

ここで D_{fast}と D_{slow} はそれぞれ拡散の速い成分と遅い成分の自己拡散係数、同様に f_{fast}と f_{slow} はそれぞ

-149-

れの分率でその和は f_{fast}+f_{slow}=1。

[結果と考察]

PDES は充分に乾燥させた hexaethyltrisiloxane をモノマーとし、水酸化カリウムを開始剤とした開環ア ニオン重合により得た。 得られた PDES の分子量はウベローデ粘度計により 215,000 と決定された。 PDES は7℃において α_2 結晶相から混合相へ、17℃において β_2 結晶相から混合相に転移することが知 られているが混合相から等方相への転移温度は分子量等に依存する。 そこで本 PDES の混合相一等 方相の転移温度を明らかにするために static solid-state ²⁹Si NMR 測定を行った (Fig. 2)。

20、30、40℃においてそのスペクトルは等方的な成分と異方的な成分の重ね合せで、50℃では等方的 な成分のみが観測された。このことから異方的な成分は液晶相を形成している高分子鎖に対応している ことがわかる。このスペクトルより液晶相を形成するポリマー鎖は異方的な回転運動をしており、鎖が棒 状態にあることがわかる。

次に液晶成分、等方成分の¹H T₂を決定するために solid echo 測定、Hahn spin echo 測定を行うと液晶 成分と等方成分の T₂はそれぞれ 0.2、7.4 ms であった。 そこで、 Δ = 500 ms, δ =8 ms, τ =11.2 ms とし、 G を 0~1,160 G/cm まで変化させながら PFGStE ¹H NMR 測定を行い、等方成分の拡散係数を決定した (Fig. 3)。 PFGStE ¹H NMR 測定を用いた場合、この T₂で等方成分の拡散係数は充分に測定できるが 液晶成分に由来する信号は Δ の間に緩和してしまい観測されない。 単一な等方相を形成する温度であ る 50, 60, 70, 80℃において観測された拡散成分は 1 成分であり、その拡散係数は 6.2 x 10⁻¹¹ から 7.4 x 10⁻¹¹ cm²/s へと温度増加に伴い徐々に増加した。 このような非常に小さな拡散係数を示した原因として 絡み合いの影響があげられる。 この温度で PDES 鎖はランダムコイル状態をとっており、強く絡み合って いる。 その結果として 10⁻¹¹ cm²/s オーダーの小さな拡散係数が観測されたものと考えられる。

Chemical shift (ppm)

Fig. 2 Observed solid-state ²⁹Si NMR spectra of PDES at temperatures from 10 to 50°C by single 90° pulse with high power ¹H decoupling.

Fig. 3 The plots of diffusion coefficients *D* of PDES against temperature by PFGStE ¹H NMR method: the diffusion component(\Box) at temperatures from 50 to 80°C in the isotropic phase, the slow diffusion component(\circ) and the fast diffusion component(\bullet) in the biphasic phase at temperatures from 10 to 40°C.

- 150 -

また、混合相を形成する温度である 20, 30, 40℃では拡散成分が 2 成分観測された。 ここで液晶成分 は T₂の短さから観測されていないので混合相中の等方領域に 2 つの拡散成分が存在し、液晶領域との 境界に近い方に存在する PDES 鎖は速く拡散し、内部側は遅く拡散していると考えられる。

次に液晶成分の拡散係数を決定するために PFGStE¹³C NMR under ¹H CW decoupling 測定を 20, 30°Cで行った (Fig. 4)。 このときの実験条件は Δ=1,000 ms, δ=0.5 ms, τ=1.7 ms で G を 0 から 1,160 G/cm まで変化させながら測定を行った。 これらの温度において PDES は混合相を形成しているが液晶 成分の分率は ¹H solid echo 測定の結果より 20°Cで 81%、30°Cで 69%と支配的であることが明らかとなっ ている。 液晶成分の ¹³C T₂は ¹H T₂より長いため、この実験条件においてその信号を観測することができ る。 この測定の結果、Fig. 4(a)に示す減衰直線が得られた。 Fig. 4(b)はこの測定条件における拡散に よる減衰を拡散係数 10⁻⁸~10⁻¹¹ cm²/s に関してシミュレーションしたものである。 等方成分の ¹³C T₂ は液晶 成分の ¹³C T₂よりも長いため最終的に得られるエコーには等方成分と液晶成分の両方に由来する信号が 含まれ Fig. 4(a)の減衰直線には両成分からの寄与が含まれている。 しかしながら、Fig. 4(b)に示したよう にこの実験条件において等方成分の拡散は非常に遅く、その信号はほとんど減衰しないためその寄与 は無視できる。 よって、Fig. 4(a)に示した減衰は液晶成分に由来するものと帰属できる。 そこで減衰直 線の傾きよりこの液晶成分の拡散係数を決定すると 20°C: 9.9x 10⁻⁹ cm²/s, 30°C: 3.3 x 10⁻⁸ cm²/s であった。 この結果より棒状態にある PDES 鎖はコイル状態にある鎖よりもその自己拡散係数が大きいことが明らか になった ⁵。

Fig. 4 The plots of ln[A(G)/A(0)] against $\gamma^2 G^2 \delta^2 (\Delta - \delta/3)$ for determining diffusion coefficients *D* of PDES by PFGStE ¹³C NMR method at 20 (\circ) and 30°C (\bullet) (a) and theoretical curve of probe molecules with $D = 10^{-8}$ (dotted line), 10^{-9} (dashed line), 10^{-10} (fine line) and 10^{-11} cm²/s (bold line).

- 1) Kirkwood, J. G., *Rec. Trav. Chim.* **1949**, *68*, 649.
- 2) Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon Press: Oxford, 1986.
- 3) Yin, Y.; Zhao, C.; Kuroki, S.; Ando, I. *Macromolecules* **2002**, *35*, 2335.
- 4) Yin, Y.; Zhao, C.; Sasaki, A.; Kuroki, S.; Ando, I. *Macromolecules* 2002, 35, 5910.
- 5) Kanesaka, S.; Kimura, H.; Kuroki, S.; Ando, I.; Fujishige, S. Macromolecules, submitted.

キラル液晶 NMR 法による光学異性体の分離 III - フッ素を有するトリアゾール系化合物への応用 – (神戸薬大¹, 埼玉大理工², 理研³, 阪大院医⁴) 〇中尾佳範¹, 杉浦眞喜子¹, 伊藤允好¹, 関亦克彦², 鵜澤洵³, 吉田茂男³, 浅見忠男³, 木村敦臣⁴, 藤原英明⁴

Discrimination of enantiomers by means of NMR spectroscopy using chiral liquid crystalline solution III. – Application to triazole compound containing fluorine –

Yoshinori Nakao¹, Makiko Sugiura¹, Masayoshi Ito¹, Katsuhiko Sekimata², Jun Uzawa³, Shigeo

Yoshida³, Tadao Asami³, Atsuomi Kimura⁴, Hideaki Fujiwara⁴,

¹Kobe Pharmaceutical University, ²Graduate School of Science and Engineering, Saitama University, ³RIKEN and ⁴Graduate School of Medicine, Osaka University,

A triazole compound containing fluorine, novel brassinosteroid biosynthesis inhibitor, has been dissolved in PBLG-CDCl₃ chiral liquid crystalline solvent for measurement of ¹³C NMR. The chemical shift separations due to the chemical shift anisotropy have been observed on several aromatic carbons between the enantiomers ((2S,4R) and (2R,4S)). Direct couplings of C-F have been observed on several carbons and the measured coupling constants (D_{C-F}) are different between these enantiomers.

【はじめに】液晶 NMR 法は, PBLG (Poly-y-(benzyl-L-glutamate)) などによるキラル液晶

を溶媒とし, 化学シフト異方性, 双極子直接結合, 四極子結合などの差を利用して光学異性体の分離 観測を行う方法であり, 対象となる光学活性体に 化学修飾を施すことなく直接観測出来ること, 溶 媒として用いる液晶がヘリックス構造をとるため 生理環境に近いということなど, 魅力的な方法で ある。演者らの研究室では, これまで生理活性を 有するトリアゾール系化合物にこの方法を適用し, 光学異性体存在比の決定, 配向パラメーターの計 算等を行ってきた。

今回は、フッ素を有し、さらに光学中心を 2 個 有するトリアゾール系化合物 Brz220 (1) »にこの 方法を適用した。化合物は、brassinosteroid 生合成 阻害活性を有し、しかもその光学異性体によって その活性に差がみられる。 ここではもっとも活性 の高い〔2S,4R〕 体(Ia)とそのエナンチオマー

〔2R,4S〕体(Ib)混合物について、PBLG-CDCI。液晶溶媒中で¹³C NMR の測定を行い、 シグナル分離の有無を調べた。

【実験】 ラセミ体 I を, PBLG- CDCl₃ 液晶に溶解し (I/PBLG/CDCl₃: 24/210/700)

キラル液晶,エナンチオマー,化学シフト異方性,C-F 双極子結合定数, brassinosteroid 生合成阻害剤

なかおよしのり,すぎうらまきこ,いとうまさよし,せきまたかつひこ,よしだしげお, あさみただお,うざわじゅん,きむらあつおみ,ふじわらひであき サンプルとした。液晶状態の確認は、²D NMR によって行った。NMR の測定は、Varian Unity-500 または INOVA-500 (¹³C:125.7 MHz, ²D:76.8MHz) を用い, いずれの測定も, Lock な しで行った。分離観測出来た光学異性体の帰属を行うため、Ia 単独及び Ia/Ib(1/4) 混合 物についても, 同様に PBLG- CDCl。液晶中での¹³C NMR 測定を行った。

【結果と考察】液晶溶媒中でのラセミ体 Iの¹³C NMR は、予想通り芳香環炭素で、化学シ フト異方性の違いによる光学異性体間での分離を観測出来た。また C-F 間の双極子直接結 合によるシグナルの分裂が,いくつかの炭素で観測出来,しかもその結合定数に光学異性体 間でわずかではあるが差が見られた。観測された化学シフト(δ_c)と双極子直接結合定数 (D_{c-F}) の値を, Table1 にまとめた。

光学異性体間

のシグナルの分 離は、期待 ほど大きく いが、ベン 環炭素と僅 はあるが C 炭素で観測 ている。大 シグナル分 観測出来な は, 分子の 性運動に関 ているので いかとも思 るが. 詳細

Table 1. The observed δ_c and $D_{C,F}$ values for la and lb.

は、期待した		6	ზ _c (ppm	1)		Do	_{>-F} (Hz)
Fジナキくけた	Carbon	Liquid	Liquid Liquid Crystal				
		,	la	lb _	∆(la-lb)	la	lb
か, ヘノセノ	2	106.80	107.09	107.09	_		
設素と僅かで	4	76.70	77.21	77.21			
tあるが CF3	5	70.30	70.30	70.30			
素で観測され	6	34.70	34.27	34.27			
いろ ナキか	7	18.80	18.60	18.60			
	8	13.90	13.65	13.65			
クナル分離を	9	56.10	55.50	55.50	Ŧ		
測出来ないの	12	151.20	151.84	151.84			
、,分子の異方	14	144.60	145.27	145.39	-0.12		
運動に関係し	15	143.60	145.01	145.01		9	7
いるのでけた	16	126.30	126.97	126.87	0.10	12	11
V100 C12/2	17	125.60	126.19	126.11	0.08	22	20
かとも思われ	18	131.20	*	*			
が,詳細は検	19	125.60	126.19	126.11	0.08	22	20
中である。	20	126.30	126.97	126.87	0.10	12	11
一方 C-F 双	21	123.90	123.90	123.89	0.01	394	401

極子直接結合定

討中である

* Cannot be observed because of the overlapping with PBLG signal,

数は,値自体が大きいものには,わずかに光学異性体間で差がみられる。データ数が少ない ので、これらの値から配向パラメーターを計算することは出来ないが、この差もこれら光学 異性体の液晶中での配向の違いを反映していることは明らかであり,今後これらの値につい ても詳細な検討を加える予定である。

[参考文献]

1) K. Sekimata, et.al, J.Agric. Food Chem., 50, 3486 (2002); K. Sekimata, et.al, Tetrahedron Asymm., 13, 1875 (2002)

磁場勾配 NMR 法による高分子ミクロキャビティー中の メタン及びエタン分子の拡散過程の研究 (東工大院理工) 〇松井政徳、山根祐治、木村英昭、 *黒木重樹、*安藤勲、付凱、渡辺順次

Diffusion behavior of methane and ethane molecules in the cylindrical cavity channels of PBpT-O12 as studied by PFGSE ¹H NMR method Masanori Matsui, Yuji Yamane, Hideaki Kimura, Shigeki Kuroki, Isao Ando, Kai Fu and Junji Watanabe (Department of Chemistry and Materials Science, Tokyo Institute of Technology)

Diffusion process of methane and ethane molecules in the cylindrical cavity channels of poly(*p*-biphenylene terephthalate) with *n*-dodecyl side chains [PBpT-O12] has been studied by pulse field-gradient spin-echo¹H NMR spectroscopy. Self-diffusion coefficients of methane and ethane molecules in the cylindrical cavity channels of PBpT-O12 have been determined, to be $\sim 10^{-7}$ and $\sim 10^{-8}$ cm²/s, respectively. These experimental results exhibit that the mobility of methane and ethane molecules is strongly restricted by the cylindrical cavity channels.

【緒言】液晶性高分子エステルである poly(*p*-biphenylene(dodecyloxy) terephthalate) [PBpT-O12] は、剛直な主鎖と柔軟な側鎖との相互作用によりさまざまな形態を形成し、カラムナー相からネマチ ック相さらに等方相へと熱相転移を起こす。なかでもカラムナー相は、約3 nm の直径を有する高分 子ミクロキャビティーチャンネルを形成する。そこで、本研究では固体 NMR 法を用いて、相転移に伴 う PBpT-O12 の構造変化を明らかにした。さらに、カラムナー相のキャビティー中にメタン及 びエタン分子を充填させ、磁場勾配¹H NMR 法から得られるメタン及びエタン分子の拡散係 数から拡散過程とキャビティーチャンネルの特性を明らかにした。

【実験】 固体 NMR 測定は CP/MAS アクセサリーの装備されている Bruker DSX 300 NMR 分 光器(¹H 共鳴周波数: 300MHz)を用い、ローターの回転数は 3~5 KHz、接触時間は 1.5 ms、 繰り返し時間 5 s で行った。¹³C NMR 化学シフトは、アダマンタンの高磁場側のピークを 29.5 ppm として校正を行った。

磁場勾配 NMR 測定は高磁場勾配発生装置を装備した Bruker DSX 300 NMR 分光器を用いた。 pulsed-field-gradient spin-echo¹H NMR 法を用い、

$\ln[A(G)/A(0)] = -\delta^2 G^2 \gamma^2 (\varDelta - \delta/3) D$

(1)

の関係から自己拡散係数 D を決定した。¹H NMR 化学シフトは、重水のピーク 4.72 ppm を 外部基準として用いた。

磁場勾配 NMR、環電流シフト、拡散係数、制限拡散、高分子キャビティー、メタン、エタン

まついまさのり、やまねゆうじ、きむらひであき、くろきしげき、あんどういさお、 ふがい、わたなべじゅんじ 【結果と考察】

(1) 相転移に伴う PBpT-O12 の構造変化

図1に、PBpT-O12の構造式と室温から 160℃までの ¹³C CP/MAS NMR スペクトルを示す。 高磁場側のピークからそれぞれ CH₃, α -CH₂, β -CH₂, int-CH₂, γ -CH₂, OCH₂ と帰属することがで きる。CH₃, α -CH₂, β -CH₂, int-CH₂のピークは、室温から 80℃までの範囲において all-trans zigzag コンホメーションの結晶に由来するピークと trans と gauche コンホメーションの速い交換を

している非晶に由来するピー クが観測された。この結果か ら、側鎖は完全な不規則では なく結晶領域と運動性の良い 領域の共存した状態であると いうことがわかった。温度上 昇とともに、非晶に由来する ピークの割合が徐々に増加し、 80~120℃の間で完全に結晶 に由来するピークが消失した。 これらの結果は、温度の上昇 に伴い側鎖の運動性の増加を 示す。主鎖領域のピークは、 高磁場側からそれぞれ C4, C7, C6, C2, C8, C3, C5, C1 と帰属 することができる。80~120℃ の間で主鎖部のテレフタレイ ト部位に由来する C4, C2, C3, C1 のピークが消失した。これ

Figure 1 ¹³C CP/MAS NMR spectra of PBpT-O12 as a function of temperature. Assignments are indicated on peaks.

は温度の増加に伴い主鎖のテレフタレイト部位が¹H デカップリング周波数(約 60KHz)に相 当する運動を開始したために、CP 効果が減少しピークが消失した。この側鎖と主鎖の構造変 化がカラムナー相からネマチック相への相転移を引き起こす原因であるということを明らか にした。

(2) キャビティーチャンネル内のメタン分子及びエタン分子の拡散過程

図 2(a)に、純メタンガスの¹H NMR スペクトルを示す。純メタンガスのシグナルは、2.5ppm に現れた。このスペクトルは重水のシグナル(4.72 ppm)を TMS 基準に換算し外部基準とした。 図 2(b)に、PBpT-O12 のキャビティーチャンネル内に充填させたメタン分子の¹H NMR スペクトル を示す。このスペクトルでは、PBpT-O12 の側鎖に由来する幅広なシグナルによってメタン分 子に関する情報を得られない。図 2(c)は、この幅広なシグナルを部分的に緩和させた partially-relaxed ¹H NMR スペクトルである。このスペクトルにおいて、キャビティーチャンネル 内のメタン分子に由来するシグナルが 0.12 ppm、キャビティーチャンネル内に充填されず、NMR

管の中に残ったメタンガス に由来するシグナルが 2.5 ppm に現れた。キャビティー チャンネル内のメタン分子 に由来するシグナルは、主 銷部のフェニレン基のπ電 子によって誘発される環電 流の効果を受けた結果とし て高磁場側に環電流シフト を示した。この結果から、 メタン分子がキャビティーチ ャンネル内に充填されている ということが明らかにされた。 また、キャビティーチャンネル 内に充填されたエタン分子の シグナルも、エタンガスのシグ ナルと比較すると高磁場側に 環電流シフトを示した。

 $\boxtimes 3 \ \mathcal{K}, \ \Delta = 5 \ \mathrm{ms}, \ \delta = 1.5$ ms、G = 0~1100 G/cm で測 定したキャビティーチャンネ ル内のメタン分子の PFGSE ¹HNMR スペクトルを示す。 磁場勾配強度 G = 0G/cm のスペクトルにお いて、試料の外側のメタ ンガスに由来するシグ ナルとキャビティーチャ ンネル内のメタン分子 に由来するシグナルの 両方が観測された。G= 79 G/cm 以上のスペクト ルにおいて、メタンガス に由来するシグナルは 完全に減衰した。メタン ガスの拡散係数は、 PFGSE¹H NMR 法によ って 1.7×10⁻¹ cm²/s と決

Figure 2. Single-pulse ¹H NMR spectrum of pure methane gas (a), single-pulse ¹H NMR spectrum of methane molecules in the cylindrical cavity channels of PBpT-O12 (b) and partially-relaxed ¹H NMR spectrum of methane molecules in the cylindrical cavity channels (c).

Figure 3. PFGSE ¹H NMR spectra of methane molecules in the cylindrical cavity channels of PBpT-O12 at room temperature by varying field gradient pulse intensity (G). The field gradient pulses intensity (G) used are from 0 to 1100 G/cm. The gradient pulse length (δ) and the diffusion time (Δ) are 1.5 and 5ms, respectively.

定できた。従って、図3の測定条件におい ては純メタンガスのシグナルが G = 79 G/cm で完全に減衰することが理解できる。 このように、メタンガスとキャビティーチャ ンネル内のメタン分子の拡散過程が大きく 異なることから、容易に二つのシグナルを 分離できる。また、キャビティーチャンネル 内のメタン分子に由来するシグナルは磁場勾 配強度 G を強くしていくにつれ、徐々に減衰 していることがわかる。この結果から、メタン分 子がキャビティーチャンネル中を拡散してい ることが明らかになった。

図4に、 $-\delta^2 G^2 \gamma^2 (\Delta - \delta/3)$ に対して得られた シグナルの面積強度の比 ln[A(G)/A(0)]を プロットした。直線が得られたことから、キャ ビティーチャンネル内のメタン分子の拡散成 分は、この測定の観測時間内においては1成 分であることが示された。この直線の傾きから 決定したキャビティーチャンネル中のメタン 分子の拡散係数は 1.6×10⁻⁷ cm²/s である。 この値は純メタンガスと比較すると約10-6 倍である。また、一般的な溶媒の拡散係数 ~10⁻⁵ cm²/s と比較すると約 10⁻² 倍と小さ な拡散係数が得られた。この結果からキャ ビティーチャンネル中のメタン分子の運動 性はチャンネルによって強く制限されてい るが、キャビティーチャンネル内を拡散してい るということが明らかになった。また、キ ャビティーチャンネル内のエタン分子の拡散 係数は、~10⁻⁸ cm²/s とさらに小さな値であ

Figure 4. The plots of diffusion spin-echo attenuation of methane molecules in the cylindrical cavity channels of PBpT-O12 against diffusion parameters by varying field gradient pulse intensity (G).

Figure 5. Plot of the diffusion coefficient for methane molecules in the cylindrical cavity channels of PBpT-O12 against diffusion time Δ at room temperature.

った。エタン分子の運動性は、チャンネルによってメタン分子よりも、さらに強く制限を受けている。 図5に拡散時間ム(磁場勾配パルス間隔)に対して、その拡散時間ムで測定して得られた拡散 係数Dをプロットした。ム=2msからム=4msの間隔において拡散時間が長くなるにつれて 拡散係数の減少が観測された。この結果は、この拡散時間において、メタン分子の拡散過程が制 限拡散であることを意味している。すなわち、キャビティーチャンネル内のメタン分子は、ム=2ms ~ 4msの間では制限拡散が起こる。そして、ム=4ms でその制限拡散の効果が失われ平衡状 態に到達したことがわかった。さらに詳細なキャビティーチャンネル内のメタン分子とエタン分 子の拡散時間の依存性等については、討論会で報告する。

超偏極二次元 NMR 法による Xe-129 ガスのダイナミクス評価 ー多孔質微粒子およびマウス肺胞表面でのキセノンガス交換現象についてー 〇若山哲也、木村敦臣、藤原英明 大阪大学大学院医学系研究科保健学専攻

Dynamics of Xe-129 gas by hyperpolarized 2-dimensional NMR spectroscopy —Xenon gas exchange on the surface area porous materials and alveoli— OTetsuya Wakayama, Atsuomi Kimura, and Hideaki Fujiwara Course of Health Science, Graduate School of Medicine, Osaka University

Applicability of the two-dimensional EXSY which utilizes hyperpolarized Xe-129 gas has been tested for the industrial microporous materials such as polygosil60-100 and for the living systems of mouse lung alveoli. The cross peaks appeared sufficiently in both samples and dynamics of the gas adsorption process is proved to be monitored by this sophisticated method of diagnostics. It is expected that for the industrial microporous materials gas adsorption exchange process will provide precise information on the shape and size of cavities and that for the living systems it will provide a new diagnostic scale of gas absorption exchange rate.

1.はじめに

超偏極 Xe·129 ガスを用いた MRI/MRS は、プロトン MRI では対象となりにくい肺などの空洞 部分のイメージングを行うことができ、様々な肺疾患の診断方法として期待されている。現在、 臨床で稼動している画像診断装置では肺でのガス取り込みを直接観察する方法はなく、超偏極 Xe·129MRI/MRS でガス取り込みを観察、定量的評価することができれば、肺水腫、ARDS をは じめとする種々の肺疾患の診断に適用できる可能性があると考える。そこで本研究では、超偏極 Xe·129 ガスを二次元 NMR 法に応用することを考え、2D·EXSY によって 2·site 系における交換 速度定数が求まることから、交換速度定数に注目し、多孔質微粒子、マウス肺胞の表面における 交換速度定数を測定した。

2. 方法

自作の常圧フロー型超偏極 Xe・129 ガス生成装置を用い、光ポンピング法によって超偏極 Xe・129 ガスを生成した。光ポンピング法は Rb の電子スピンをレーザーによって偏極させ、その 電子スピン偏極を Xe・129 ガスの核スピンに移す方法である。Rb を封入した偏極セルを 110℃に 温めておき、レーザー(Coherent 社製 FAP システム Ga・Al・As ダイオードレーザー:波長 795nm) を照射して、Rb の電子スピンを偏極させた。天然存在比組成のキセノンガス(Xe・129:26.4%)を

超偏極二次元 NMR 交換速度定数

わかやまてつや、きむらあつおみ、ふじわらひであき

Na-K 合金に通して乾燥(脱酸素)させてから偏極セルに送り込み、超偏極 Xe-129 ガスを生成した。 測定用の NMR 装置は Varian 社製 INOVA-400WB(9.4T)を用い、多孔質微粒子の測定時には、 Varian 社製 10ϕ プローブを、マウス胸部の測定時には Doty 社製 Gradient プローブを用いた。 測定は超偏極 Xe-129 ガスをフロー開始した後 1 秒おきに 1D スペクトルを測定し、信号が平衡状態になったら 2D-EXSY 測定を開始した。

Fig.1 : Hyperpolarized Xe 129 gas supplying system

3. 結果と考察

多孔質微粒子に超偏極 Xe-129 ガスをフローさせて獲得したスペクトルからはガスピークと吸着ピークを観測した。また、マウスに自発呼吸で超偏極 Xe-129 ガスを吸入させて、マウス胸部

から獲得したスペクトルには 0ppm のガスピー クのほかに 192~205ppm に4つの溶解ピーク を観測した。これらのピークの具体的な帰属は 現在調査中であるが、0ppm のピークは肺胞内の Xe-129 ガス、192~205ppm のピークは肺胞表 面から生体内に取り込まれた Xe-129 に由来す る。そこで、多孔質微粒子については Xe-129 ガ スと吸着した Xe-129 の間での 2site 系を、マウ スの肺については肺胞内の Xe-129 ガスと肺胞 表面から生体内に取り込まれた Xe-129 の間で の 2site 系を考え、2site 系におけるキセノンガ ス交換速度定数を算出した。

— 159 —

低出カラジオ波を用いた新規固体 NMR 双極子磁場分離法の開発

横浜国立大学 工学研究院

○西村勝之、 内藤 晶

Development of New Technique of 2D-Separated Local Field in Solid State NMR Using Weak Rf Field.

Katsuyuki Nishimura and Akira Naito

Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501

The new solid-state 2D separated local field NMR technique with low rf power for observed nuclei is developed. Experiment is referred as TANSEMA, which is acronym of *T*ime *A*veraged *N*utation *S*pin *E*xchange at *M*agic *A*ngle. This experiment is designed based on recently developed TANMA-CP (Nishimura et al 2003) which allows to reduce rf power for observed nuclei to satisfy Hartmann-Hahn matching condition and ¹H homonuclear dipolar decoupling, simultaneously. Better qualities of spectra over PISEMA were obtained experimentally for TANSEMA without sample heating at MBBA in the liquid crystalline state with the achievement of 1/3 and 1/10 reductions of rf nutation frequency and rf power for observed nuclei, respectively.

<概要>

1 P24

¹H 同種核間磁気双極子相互作用を削除しながら観測核へ適用するラジオ波を任意 に削減し、定量的に¹H-X 異種核間磁気双極子相互作用を測定可能な、新規固体 2 次 元双極子磁場分離(SLF)法 TANSEMA (Time Averaged Nutation Spin Exchange at Magic Angle)の開発を行った。液晶試料を用いて既存の同様な測定法 PISEMA(Polarization Inversion Spin Exchange at Magic Angle)と性能比較を行い。観測核へ適用するラジオ 波歳差周波数を 1/3、出力を 1/10 に削減しながら同様な性能が得られていることが実 験的に観測された。また観測された磁気双極子相互作用の解析から TANSEMA では PISEMA に比べ試料発熱が大幅に抑制されていることも判明した。

<序論>

昨年筆者らは、比較的局所分子運動性の高い静止試料に適用可能な新規固体高 分解能 NMR 感度向上法 TANMA- CP¹⁾法の開発を行い、その有効性を立証した。本 研究ではこの TANMA-CP 法を発展させ、試料発熱を抑制可能な弱い出力のラジオ波 磁場を用いて、配向試料で磁気双極子相互作用を観測可能な新規固体 NMR 測定法 TANSEMA (Time Averaged Nutation Magic Angle)の開発を行った。観測される磁気双 極子相互作用および化学シフトは静磁場に対する各テンソルの主軸の相対方向を与 えるため、静磁場に対する生体分子の配向角を正確に求めることを可能にし、膜結 合ペプチドや膜タンパク質の構造解析のための情報を与える。

<理論>

図 1 に(a)PISEMA²⁾、(b)TANSEMA(half cycle)、(c)super cycle、(c)super cycle with Rf ramp を示す。¹H 核へ歳差周波数 ω_{eff} で τ_1 時間+LG^{3,4)}、 τ_2 時間-LG、観測核へは

NMR 双極子磁場分離 低出カラジオ波 にしむら かつゆき ないとう あきら

歳差周波数 $\omega_{1S}x$ で連続的にラジオ波を照射した場合の、m回 TANMA 周期 $\tau_c = \tau_1 + \tau_2$ に対する TANMA-CPの0次の平均ハミルトニアンを explicit に計算する と以下のように求められる。

$$\overline{\widetilde{H}}_{int}^{(0)}(m\tau_c) = \frac{D\sin\phi_I}{i(\omega_{eff}^2 - \omega_{1S}^2)m\tau_c} \left[I^+S^- *Q^+ + I^-S^+ *Q^- \right]$$

 $Q^{\pm} = \mp (\omega_{eff} - \omega_{1S}) [\exp\{\pm i\Delta\omega_{IS} m\tau_{c}\} - 1] + 2\omega_{eff} [\exp\{\pm i(\omega_{eff} - \omega_{1S})t_{1}\} - 1] \sum_{n=0}^{m-1} \exp[\pm i\Delta\omega_{IS} n\tau_{c}]$ $\hbar z \hbar z \cup \Delta \omega_{IS} = (\frac{\tau_{1} - \tau_{2}}{\tau}) * \omega_{eff} - \omega_{1S}.$

すなわち TANMA-CP の Hartmann-Hahn(HH)⁵⁾条件は $\Delta \omega_{IS} = 0$ と求められる。よっ て任意の周期 τ_c に対する τ_1 、 τ_2 の比率、すなわち時間平均因子 $TAF = \frac{\tau_1 - \tau_2}{\tau_c}$ を変化 させることにより HH 条件を任意に調整することが可能であることが分かる。

Fig. 1. (a) PISEMA²⁾, (b) TANSEMA (half cycle), (c) full cycle, (d) full cycle with rf ramp for obs. Nuclei. Dark gray and bright gray areas indicate +LG and –LG irradiations for ¹H nuclei, and on-resonance +X and –X rf irradiations for observed nuclei, respectively.

TANMA-CPのHH条件下 $\Delta \omega_{IS} = 0$ で¹H、観測核双方の正味のラジオ波が時間平均される 2π 回転周期の奇数サイクル((τ_1 時間+LG、 τ_2 時間-LG、観測核へは $\omega_{1S}x$ で連続的 ラジオ波を照射)と偶数サイクル(τ_1 時間-LG、 τ_2 時間+LG、観測核へは- $\omega_{1S}x$ で連続的 ラジオ波を照射)での各々のサイクルでの TANMA 0 次の平均ハミルトニアンは

得られた平均ハミルトニアンはスケーリングファクタ Q を除き PISEMA と同一の平 均ハミルトニアンである。図 2 に Time Averaging Factor と R(LG サイクルに対する TANMA サイクル比)を関数とするスケーリングファクタ Q を示す。

MBBA

<実験>

Chemagnetics CMX 400Infinity 固 体分光器を用いて 5mm O.D.の 2 重 共鳴 MAS プローブ静止状態で測定 した。液晶試料 MBBA をガラス管に 封入して試料管中央 5mm のところへ 設置し、温度 25°Cに設定した。¹H核 で 41 kHz の LG spin locking CP, LG 照 射時は 32 kHz。Decoupling 時は 35 kHz。 HH 条件を満たすようにラジオ波の微 調整を行った。TANSEMA の time averaging factor (TAF)は全て 0.328 で行 った。 $\tau 1 = 7.8 \ \mu s \ \tau 2 = 3.8 \ \mu s \ \tau c =$ 12.2 μs 、周波数、位相同時切り替え 300ns。

<結果-考察>

図3に(a) PISEMA、(b) TANSEMA (half cycle)、(c) super cycle、(c) super cycle with Rf ramp で得られた 2D-SLF スペクトルを示す。PISEMA スペクトルに対して TANSEMA half cycle は carrier offset 依存性が存在することが分かる。on resonance 付近では定量性があるが、offset 値の大きいスペクトル両端ではスピン 交換は消滅している。一方 super cycle スペクトルではこのような依存性は確認さ れない。Super cycle ではパルスシーケンスの対称性から 'H 同種核間磁気双極子相 互作用の高次項を消去することができる。また実数項のみのハミルトニアンである。 これらの総合的な改良が性能向上をもたらしたと考えられる。さらに PISEMA 法で磁 気双極子相互作用の定量性向上のために提唱されている LG2π周期内の観測核の rf 傾斜を TANSEMA で行った場合、off set 依存性が改善されていることが分かった。ま た PISEMA から得られた双極子結合定数は TANSEMA に比べて、aliphatic 領域では約 50%、aromatic 領域では 80%程度にスケールされていることが判明した。これは試料 発熱により運動性が増大したことに起因すると考えられる。 <結論>

full cycle の TANSEMA では PISEMA に対して 1/10 の低出力のラジオ波を用いて試 料発熱が抑制され、PISEMA と同等の性能を持つことが実験的に証明された。

Fig. 4. 2D-SLF spectra obtained by (a) PISEMA²⁾, (b) TANSEMA (half cycle), (c) super cycle, and (d) super cycle with rf ramp for obs. nuclei, respectively. Only 6.0 w rf out put was used for observed channel for all TANSEMA experiments during spin exchange, in contrast to 67.0 w for PISEMA.

<参考論文>

1) K. Nishimura, and A. Naito, C.P. Letters in press (2003).

2) C. H. Wu, A. Ramamoorthy, and S. J. Opella, J. Magn. Reson. A 109, 270, (1994)

3) M. Lee, and W. I. Goldburg, Phys. Rev. A. Lett. <u>140</u>, 1261, (1965).

4) A. Bielecki, A. C. Kolbert, and M. H. Levitt, Chem. Phys. Lett., 155, 341, (1989).

5) S. R. Hartmann and E. L. Hahn, Phys. Rev. 128, 2042, (1962).

強度位相変調 rf 磁場を用いた試料回転の下での核スピン相互作用の
 decoupling/recoupling と化学シフト異方性の決定への応用
 (理研 GSC¹、京大院理²)
 〇西山裕介¹、山崎俊夫¹、寺尾武彦²

Decoupling and recoupling of nuclear spin interactions by an amplitude and phase modulated rf-field and its application to chemical shift anisotropy determination under sample spinning

(RIKEN GSC¹, Kyoto University²)

OYusuke Nishiyama¹, Toshio Yamazaki¹, and Takehiko Terao²

A new method to obtain an amplitude and phase modulated rf field which decouples and/or recouples nuclear spin interactions under sample spinning is presented. Euler angles $\Omega_{\rm rf}(t)$ which describe the rotation in spin space is determined in order to fulfill the symmetry principle selection rules. Then, the rf field is directly calculated from $\Omega_{\rm rf}(t)$. As example of this approach, a new modulated rf field which recouples chemical shift anisotropy (CSA) interactions is developed, and experimentally demonstrated on ¹⁵N-N-acetylalanine to determine CSA principal values via a 2D powder pattern.

序

試料回転の下で NMR 相互作用 Hamiltonian の decouple/recouple を行うパルスシーケ ンスを求める symmetry principle が Levitt らにより提案された[1]。この手法では rf 磁場による スピン部分の回転を表す Euler 角に特有の周期性を持たせることによって、Hamiltonian の decouple/recouple を行う。Levitt らが提案した手法では π パルスを特定の規則に則って並べるこ とにより結果として Euler 角の周期性を満たす symmetry-based sequence が作成される。本発表 では、周期性を満たす Euler 角をあらかじめ設定し、その Euler 角から直接 rf 磁場を求めること によってパルスシーケンスを作成する。

理論

symmetry-based sequence には $CN_n^{\nu} \geq RN_n^{\nu}$ の2種類があり、ともに N,ν,n の3つのパ ラメーターによりスピン部分の回転を表す Euler 角 $(\alpha_{rf}(t), \beta_{rf}(t), \gamma_{rf}(t))$ の時間に対する周期性が 定められている。また、これらのシーケンスの周期は試料回転周期 τ_r の*n*倍である。ここでは RN_n^{ν} に注目する。周期性は

固体 NMR, recoupling, decoupling, MAS, OMAS

にしやまゆうすけ、やまざきとしお、てらおたけひこ
$$\beta_{\rm rf}\left(t + \frac{n\tau_{\rm r}}{N}\right) = \beta_{\rm rf}\left(t\right) + \pi, \gamma_{\rm rf}\left(t + \frac{n\tau_{\rm r}}{N}\right) = \gamma_{\rm rf} - \frac{2\pi\nu}{N} \tag{1}$$

で与えられ、得られる average Hamiltonian と N, v, n には次の関係がある。

$$\overline{H}_{im\lambda\mu} = 0 \text{ if } mn - \mu\nu \neq \left(2Z + \lambda\right)\frac{N}{2} \quad (Z: \text{ integer})$$
(2)

*l*は空間の rank であり*m*は*m* = -*l*,-*l*+1,...*l*の値をとる。またんはスピン空間の rank であり $\mu = -\lambda, -\lambda + 1, ...\lambda$ の値をとる。従来の手法とは異なり、まずあらかじめ $\beta_{\rm rf}(t) \ge \gamma_{\rm rf}(t)$ を設定す る。(1)式の周期性を満たすあらゆる $\beta_{\rm rf}(t) \approx \gamma_{\rm rf}(t)$ は次のように記述できる。

$$\beta_{\rm rf}(t) = \frac{\pi N t}{n\tau_{\rm r}} + \sum_{m} \left[b_{cm} \cos \frac{2\pi N m t}{n\tau_{\rm r}} + b_{sm} \sin \frac{2\pi N m t}{n\tau_{\rm r}} \right]$$

$$\gamma_{\rm rf}(t) = -\frac{2\pi V t}{n\tau_{\rm r}} + \sum_{m} \left[g_{cm} \cos \frac{2\pi N m t}{n\tau_{\rm r}} + g_{sm} \sin \frac{2\pi N m t}{n\tau_{\rm r}} \right]$$
(3)

このようにあらかじめ $\beta_{rf}(t) \ge \gamma_{rf}(t) \ge \gamma_{$

CSA recoupling

化学シフト 異方性(CSA)を復活させることにより $2D\sigma_2/\sigma$ 相関スペクトルを off-magic-angle spinning (OMAS)のもとで観測する。ここで

$$\sigma_{2} = \frac{1}{4} \sin^{2} \theta \left[3 \sin^{2} \beta_{PR} \left(\sigma_{zz}^{PAS} \sigma^{iso} \right) + \left(1 + \cos^{2} \beta_{PR} \right) \cos 2\alpha_{PR} \left(\sigma_{xx}^{PAS} - \sigma_{yy}^{PAS} \right) \right]^{2} + \left[2 \cos \beta_{PR} \sin 2\alpha_{PR} \left(\sigma_{xx}^{PAS} - \sigma_{yy}^{PAS} \right) \right]^{2} \right]^{1/2}$$

$$(4)$$

$$\overline{\sigma} = \sigma^{\text{iso}} + P_2(\cos\theta) \left[P_2(\cos\beta_{\text{PR}}) \left(\sigma_{zz}^{\text{PAS}} - \sigma^{\text{iso}} \right) + \frac{1}{2} \sin^2\beta_{\text{PR}} \cos 2\alpha_{\text{PR}} \left(\sigma_{xx}^{\text{PAS}} - \sigma_{yy}^{\text{PAS}} \right) \right] (5)$$

である。 $(\alpha_{PR}, \beta_{PR}, \gamma_{PR})$ は CSA テンソル の主軸系(PAS)を rotor-fixed frame に移す Euler 角であり、試料管の中での CSA テ ンソルの PAS の配向を表す。 θ は試料回 転軸と静磁場のなす角、 $\sigma_{ii}^{PAS}(i = x, y, z)$

は CSA テンソルの主値、 σ^{iso} は CSA テ ンソルの等方値である。 $\sigma_2/\overline{\sigma}$ 相関スペ クトルは t_1 次元に $\overline{H}_{2\pm 2\pm 1\pm 1}$ の項を復活さ せ σ_2 を観測し、 t_2 次元で OMAS のもと で FID を観測($\overline{\sigma}$)することにより得ら

$$\begin{aligned} & (\sigma_2, \overline{\sigma}) = \left[\sigma_{x_e}^{PAS} - \sigma_{yy}^{PAS} \left| \sin^2 \theta / 2, \sigma^{iso} + P_2(\cos \theta) \left(\sigma_{z_e}^{PAS} - \sigma^{iso} \right) \right] \\ & \left[\sigma_{yy}^{PAS} - \sigma_{z_e}^{PAS} \left| \sin^2 \theta / 2, \sigma^{iso} + P_2(\cos \theta) \left(\sigma_{x_e}^{PAS} - \sigma^{iso} \right) \right], \text{ and} \\ & \left[\sigma_{z_e}^{PAS} - \sigma_{x_e}^{PAS} \left| \sin^2 \theta / 2, \sigma^{iso} + P_2(\cos \theta) \left(\sigma_{yy}^{PAS} - \sigma^{iso} \right) \right]. \end{aligned}$$

— 165 —

れる。粉末試料のこの CSA/CSA 相関スペクトルには Fig.1 に示すように A,B,C3 つの singularity が現れ、singularity の位置から CSA テンソルの主値を決定することができる[3]。singularity の 位置から CSA が決まるため、精度よく CSA を決定できる。また、 σ^{iso} が同じで CSA が異なる 複数のサイトが存在する場合、通常の MAS のもとでの CSA recoupling では信号が重なってしま う。 $\sigma_2/\overline{\sigma}$ スペクトルでは分離した singularity から CSA を決定できるため、このような状況で は特に有用になりうる。

結果と考察

我々は $\overline{H}_{2\pm21\pm1}$ (および等方 J)を recouple し、そのほかの項を decouple する $R14_6^5$ の対称 性を用いてパルスシーケンスを作成した。Fig.2 に従来の手法に基づいて π パルスを基本要素とし て作成した symmetry based sequence と本発表の手法を用いて $b_{s1} = 0.15$ rad, $g_{s1} = 0.067$ rad (その他のパラメーターはすべて 0)のパラメーターを用いて作成した sequence を示す。前者のス ケーリングファクターは 0.148 であり、後者は 0.277 である。

Figure 2 Phase and amplitude of rf-field for symmetry-based $R14_6^5$ sequences constructed by the conventional method with a element of a π pulse (a) and by the new method with $b_{s1}=0.15$ rad, and $g_{s1}=0.067$ rad (b).

Figure 3 Calculated peak position divided by $\sigma_2=0.2 \omega_1/\omega_0$, which is used in the calculation. The spectrum is calculated with $R14_6^5$ sequences by the conventional method with a element of a π pulse (a) and by the new method with $b_{s1}=0.15$ rad, and $g_{s1}=0.067$ rad (b).

Fig. 3 に $\sigma_2 = 0.2\omega_r/\omega_0$ (ω_0 は Larmor 周波数)の CSA に対して計算したオフセットと rf 磁場の強度のずれに対する補償性を示す。1.0 に近い数値を示すほど補償性は良いことになるが、 π パルスを用いて作成したシーケンスよりも本発表のシーケンスのほうがオフセットと rf 磁場の 強度のずれに対する補償性が良いことがわかる。

¹⁵N·N-acetylalanine を用い、 $\theta = 68.3$ °で 10.0kHz の OMAS のもとで実験を行った。 rf 磁場はは $\sigma^{iso} = 125$ ppm に照射した。rf 強度を理論値の 1.0 倍および 0.95 倍に設定して観測を 行った実験スペクトルを Fig4 に示す。本来 3 つの singularity が現れるはずであるが、rf 強度に 理論値を用いたスペクトル(Fig.4(a,b))をみると singularity は 3 つしか現れていない。これはも っとも小さな σ_2 を持つ singularity はパルスの不完全性によりかき消されてしまったためである。 平行四辺形はこの二つの singularity からだけで決定でき、CSA テンソルの 3 つの主値を (64,85,226) ppm と決定した。0.95 倍の rf 強度を用いると従来の手法で設計したシーケンスでは (Fig.4(c))singularity の位置がずれてしまうのに対して、新しいシーケンスで繊測したスペクトル では singularity の位置はほとんどずれなかった(Fig.4(d))。このように計算スペクトルで予想さ れたように従来の手法で作成したシーケンスよりも本発表のシーケンスが rf 強度のずれに対して 補償性が良いことがわかる。

Figure.4 40 MHz ¹⁵N 2D $\sigma_2/\overline{\sigma}$ spectrum for ¹⁵N-N-acetylalanine observed by the $R14_6^5$ sequences constructed by the conventional method with a element of a π pulse (a, c) and by the new method with $b_{81}=0.15$ rad. and $g_{81}=0.067$ rad (b, d). A spinning frequency of 10.0 kHz was used. These spectra were observed with a rf-field strength identical to the theoretical values (a, b) and 5% weaker than those (c, d).

まとめ

symmetry principle を満たす $\beta_{\rm rf}(t)$ および $\gamma_{\rm rf}(t)$ をあらかじめ設定することにより Hamiltonian の望む項を recoupling/decoupling する modulated rf-field を得た。同じ average Hamiltonian を与える多様な rf-field がパラメーターを変化させるだけで得られる。この自由度 を利用して実験のエラーの補償性が良いパルスシーケンスを作成できることが期待できる。また、 RN_n^{ν} だけでなく CN_n^{ν} の対称性を持つ symmetry-based sequence に対しても同様に拡張するこ とができる。

参考文献

 M. H. Levitt, "Symmetry-Based Pulse Sequences in Magic-Angle Spinning Solid-State NMR" in "Encyclopedia of Nuclear Magnetic Resonance: Supplementary Volume" edited by D. M. Grant and R. K. Harris (Wiley, Chichester, England, 2002), pp. 165-196.

[2] Y. Ishii, and T. Terao, J. Chem. Phys. 109 (1998) 1366-1374.

[3] Y. Nishiyama, A. Kubo, and T. Terao, J. Chem. Phys. 119 (2003) 3297-3308.

1 P26

14N オーバートーン照射による 近接 13C の線幅増大を利用した ポリペプチド構造解析

(京大院理) 〇深澤 隼、竹腰清乃理、寺尾武彦

Polypeptide structure analysis using ¹³C NMR spectrum line broadening due to overtone NMR irradiation to neighboring ¹⁴N

Department of Chemistry, Graduate School of Science, Kyoto University OJun Fukazawa, K. Takegoshi, and Takehiko Terao

To exploit the possibility of using ¹⁴N NMR in solids for structural study of polypeptides, we have developed a technique to observe ¹⁴N overtone NMR via ¹³C spectra under magic angle spinning (MAS) [1]. Here we applied the technique to a few polypeptides whose structures are known. Observed ¹⁴N quadrupole coupling constants were analyzed by using Gaussian98 [2].

窒素はポリペプチドの主鎖を構成しており、その構造を知る上で重要な手掛かりを与える分子で ある。その窒素の同位体 ¹⁴Nはその天然存在比が 99.63%と高いにもかかわらず、その四重極相互 作用が数MHzと大きく、高分解能測定が非常に困難なためそのNMRは殆ど利用されていなかっ た。この問題を克服するために¹⁴Nの|+1>と|-1>の状態間の遷移、すなわち overtone 遷移を観測す る手法が開発された[3]。¹⁴Nの overtone 遷移の共鳴周波数は四重極相互作用の1次のシフトの影 響を受けず、それより一般に小さい2次の影響を受ける。そのため、四重極相互作用の1次のシフ トの影響を受けるΔm=1の遷移に比べ高分解能のスペクトルが得られることが期待される。 Stewart らは、単結晶のペプチドの¹⁴N overtone NMRスペクトルを測定することによって主鎖の 二面角に対する知見を得ることを提案している[4]が、overtone の遷移確率は小さいため、一般に 粉末試料の¹⁴N overtone NMRスペクトルを直接測定するのは困難である。本発表では我々が 開発した、粉末試料に ¹⁴N overtone 照射をすることによってMAS下において平均化されている ¹³C-¹⁴N相互作用を復活させる手法をペプチド試料に応用することを試みる。つまり、¹⁴N overtone 照射のもとで¹³C高分解能NMR測定を行い、照射周波数と復活する¹⁴N-¹³C双極子相互作用の 大きさ、具体的には ¹³Cの線幅の増大などとの関係を調べることにより間接的に ¹⁴N overtone スペ クトルを得て、構造の知見を得ることを行った。まず構造が既知であるAla-Gly-Gly, N-Ac-Val-LeuおよびN-Ac-Pro-Glv-Phe試料において線幅の増大の様子をシミュレーション と比較し、ab initio 計算などを用いて "Nの四重極カップリングがどのような分子構造情報に影響さ

キーワード: ¹⁴N、オーバートーン、線幅増大、四重極カップリング、構造解析

ふかざわじゅん、たけごしきよのり、てらおたけひこ

れるかを検討する。

¹Hと ¹³Cの共鳴周波数はそれぞれ 300.45MHzおよび 75.556MHz、MAS回転速度は4kHzで 測定を行った。Figure 1 に ¹⁴N overtone(~43.5MHz)を照射したとき、そこから少しずれた波長を 照射したとき、照射しないときの ¹³Cスペクトルを示す。これを見ると、直接結合した ¹⁴Nの overtone 周波数で照射すると線幅が大きく増大する(c)こと、および、周波数がずれると線幅が変化しない(b) ことがわかる。この線幅の変化を、照射周波数を細かく変えながらとり、プロットしてやると、¹⁴N overtone スペクトルが得られることになる。そのスペクトルの例を Figure 2 に示す(¹Hと ¹³Cの共鳴 周波数はそれぞれ 400.28MHzおよび 100.66MHz)。これを Figure 3 のシミュレーションによって 得たスペクトルと比較すると、よい一致が得られていることがわかる。

また、構造を解析する上で、観測する¹⁴Nの四重極カップリング定数を求める必要があるが、それには Gaussian98 [2] を用いる。Figure 4 は基底を増やして計算の精度を上げた際の計算結果の収束の様子を示す。これにより、およそ 6-31G**程度の基底で十分な結果が得られることが示唆された。

その他詳細はポスターで発表する見込である。

Figure 1. The 13 C NMR spectra of L-alanylglycylglycine without irradiation (a), and under the 14 N overtone irradiation at 43.650 kHz (b) and 43.500 kHz (c).

Figure 2. The relation between ${}^{\rm HN}$ overtone irradiation frequency and C_a line width of L-alanylglycylglycine(AG₁G₂).

Figure 3. The simulated ¹⁴N overtone NMR spectra of L-alanylglycylglycine (AG₁G₂). ¹⁴N of G₁: ν_q =3.29MHz, η =0.70. ¹⁴N of G₂: ν_q =3.15MHz, η =0.68.

Figure 4. The quadrupole asymmetric parameter η of ¹⁴N of alanine calculated by Gaussian98 using various base sets.

References

[1]K. Takegoshi, T. Yano, K. Takeda, and T. Terao, J. Am. Chem. Soc. 123, 10786(2001).

[2]Gaussian 98, Revision A.11.1,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2001. [3]R. Tycko and S. J. Opella, J. Chem. Phys. 86, 1761(1987).

[4]P. L. Stewart, R. Tycko, and S. J. Opella, J. Chem. Soc., Faraday Trans. 1, 84(11), 3803(1988).

新しい強度変調 CP 法の開発

(京大院理)〇福地 将志、竹腰 清乃理、寺尾 武彦

Development of a new cross-polarization scheme

(Department of Chemistry, Graduate School of Science, Kyoto University) O M.Fukuchi, K.Takegoshi, T.Terao

Abstract

We propose a new variable-amplitude heteronuclear cross-polarization (CP) scheme operative under fast magic angle spinning (~ 20 kHz). It has an apparent advantage of broad optimal conditions for amplitude modulation. The sensitivity of the new CP scheme to chemical shift offsets, variation of the spinning speed and inhomogeneity of RF fields is similar to that of the conventional Variable-Amplitude CP scheme.

Heteronuclear cross-polarization (CP) is a pre-requisite technique for solid state NMR of low- γ nuclei, however, CP becomes difficult at high-speed magic-angle spinning (MAS) because of the narrowing of the width of the CP (Hartmann-Hahn) matching condition. It is thus difficult to satisfy the condition when RF field inhomogeneity and chemical shift offsets exist. To remove this difficulty, Variable-Amplitude Cross-Polarization (VACP) [1] with a linear amplitude encompassing over the matching condition has been widely used. We present a new amplitude-modulation scheme which has a broad optimal modulation condition.

Fig.1 shows the new pulse sequence. It combines two linear rotor-synchronized amplitude modulation schemes. The two series of variable amplitude are switched at each half rotor period. We examined this pulse sequence under fast MAS ($\nu_r = 20$ kHz) using adamantine as a sample with the following conditions: $\omega_{11} = 48$ kHz, $\overline{\omega}_{15} = 68$ kHz and the contact time 2.05 ms. Δ_1 and Δ_2 represent the two offset amplitudes from $\overline{\omega}_{15}$, respectively. Note that the conventional VACP corresponds to $\Delta_1 = -\Delta_2$. The experiments were performed on a 400 MHz CMX Infinity NMR spectrometer using a Chemagnetics 3.2 mm MAS probe.

Firstly, by changing Δ_1 between 0 kHz and 15 kHz and Δ_2 between -15 kHz and 15 kHz, we observed the signal amplitudes as plotted in Fig.2. It is notable for the conventional VACP, which corresponds to the data on the straight dotted line in Fig.2, the region whose signal intensity is larger than 1 is limited. On the other hand, the new scheme en-

References

[1] Peersen O. B., Wu X. L., Kustanovich I. and Smith S. O., J.Magn.Reson.A 104,334 (1993).

キーワード: 固体 NMR、CP、VACP

著者ふりがな ふくち まさし、たけごし きよのり、てらお たけひこ

ables us to choose the wide region where the signal intensity is over 1. In other words, for the conventional VACP, the modulation amplitude should be carefully chosen, while for the new scheme, the optimal condition is rather wide. Fig.2 shows that effective polarization transfer occurred where the slopes of two linear sweep are inverted asymmetrically. Secondary, we examined the signal intensity at the condition designated by $rac{1}{3}$ ($\Delta_1 = 1.5$ kHz, $\Delta_2 = 4.5$ kHz) in Fig.2 and $\bigcirc (\Delta_1 = -\Delta_2 = 1.5$ kHz) in Fig.2 which corresponds to VACP, at various $\overline{\omega}_{15}$. The results are shown in Fig.3, which indicates slight but appreciable broadening of the Hartmann-Hahn matching condition in the new scheme.

Fig.1: Pulse sequence for new cross polarization. τ_r presents the MAS period. The Hartmann-Hahn matching is satisfied on the sideband condition. $\omega_{11} = \overline{\omega}_{18} \pm \omega_r$. Δ_1 and Δ_2 are the offset amplitude.

Fig.3: Dependence of the signal intensity obtained at $\stackrel{\leftrightarrow}{\rightarrowtail}$ in Fig.2 and the conventional VACP (\bigcirc in Fig.2) on the ¹³C rf power ($\overline{\omega}_{1S}$). 絹セリシンおよびそのモデルペプチドの構造と ダイナミクスに関する研究

(農工大工¹、生物資源研²) ○嘉数あや¹、亀田恒徳¹、山本俊雄²、朝倉哲郎¹

Structure and Dynamics Study of Silk Sericin and Its model peptide Aya Kakazu¹, Tsunenori Kameda¹, Toshio Yamamoto², and Tetsuo Asakura¹ ¹Department of Biotechnoloty, Tokyo University of Agriculture and Technology ²National Institute of Agrobiological Science

There are two kinds of silk protein, silk fibroin and silk sericin. In this study, the structure and dynamics of silk sericin was studied with solid state NMR. The large conformational change in the silk sericin from Nd-s did not observe between before and after spinings, which is in contrast to the case of *B.mori* and *S.c.ricini* silkworms. The ¹³C and ²H labelings of the silk sericin were performed by feeding the isotope-labeled amino acids (Ser, Ala and Gly) and ²H₂O to Nd-s.

The ¹³C labeled model peptide (38-mer) was also synthesized. According to the Ala C α , Ala C β , Ser C α and Ser C β chemical shifts in the ¹³C CP MAS spectra of silk sericin and the model peptide, the whole structure of sericin was supposed to be random coil with significant amounts of β -sheet structure. The ²H NMR spectra showed the mobilities of the Ser and Gly residues were very slow.

【緒言】 家蚕の作る絹は、フィブロインとセリシンの2種類のタンパク質からなる。繊維 を形成するフィブロインは、吐糸前後で、type II β-turn構造からβ-sheet構造を含む不均一構 造に変化する¹⁺¹。また、その優れた物性は衣料方面のみならず、様々な分野で応用されよ うとしている。一方、セリシンは、繭を精練する際に除去されることから、古くからフィ ブロインほど着目されてこなかった。しかしながら、セリシンは抗酸化能や皮膚への親和

性が高いことが明らかとなり、現在、様々な 方面にわたり応用研究がなされつつある³⁰。 一次構造に関しては1997年、Fig.1に示したよ うに、その主成分であるSer 1(A-D)が決定さ れ、Ser 1A-Dにわたって38残基のアミノ酸配 列が繰り返し、高頻度に出現することが報告 された⁴⁰。そこで、本研究ではこれまで家蚕 および、野蚕フィブロインの構造解析に用い てきた固体NMR法を駆使し、セリシンおよ びそのモデル化合物の分子構造およびダイナ ミクスの解析を行うことを目的とした。

SYSSSSSSSILSEDSSEVDIDLGNLGWW	WN] 621
SDNKAQRAAGGATKSEASSSTQATTVSGADDSADSYTWW	WN amino acide
PRRSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	LGJ
TVSSTGSTSNTDSSSKSAGSRTSGGTSTYGYSSSHRGG	1
SVSSTGSSSNTDSSTKNAGSSTSGGTSTYGYSSSHRGG	
SVSSTGSSSNTDSSTKNAGSSTSGGTSTYGYSSRHRGG	454 amina
SVSSTGSS	454 annio
	delus
SSTYGYSSHSRDG	(Tepeleu
SVSSTGSSSNTDASTDLTGSSTSGGSSTYGYSSHSRDG	region)
SVSSTGSSSNTDASTDLAGSSTSGGSSTYGYSSSNRDG	
SVSATGSSSNTDASTTEESTTSAGSSTEGYSSSSHDG	<u>}</u>
SVTSTDGSSTSGGASSSSASTAKSDAASSEDGFWWWNRR	KS]141
GSGHKSATVQSSTTDKTSTDSASSTDST	 Jamino acids

Fig.1 Primary structure of Ser 1B6).

【実験】 セリシン蚕(セリシンホープ)は、セリシンのみを高純度(98.5%)で産出する品種で ある。4令まで通常飼育後、5令1日目は絶食、2日目より、'H₂O、[2-¹⁵C]Ala、[3-¹⁵C]Ala、'H₅-Gly、[3,3-³H]Serを各々経口投与し、安定同位体ラベルを施したセリシン繭を得た。セリシ ンフィルムは、吐糸直前の絹糸腺より取り出し、シャーレに展開・乾燥させて作成した。 セリシンのアミノ酸配列に繰り返し出現する38残基の繰り返し配列SVSSTGSSSNTDSNSNS AGSSTSGGSSTYGYSSNSRDGは、F-moc固相合成法により作成し、9M LiBrに溶解後、透析 ・凍結乾燥を行った。また、必要に応じて、安定同位体ラベルを行った。固体NMR測定は Chemagnetics社製 CMX infinity400NMR分光器を用いた。³Hスペクトルのシミュレーション は、MXQETを用いて行った。

キーワード 絹タンパク質 安定同位体ラベル 固体NMR 構造解析 ダイナミクス

かかずあや、かめだつねのり、やまもととしお、あさくらてつお

【結果・考察】

(1) ¹³C CP/MAS NMR; Fig.2に各々のセリ シン試料の"C CP/MASスペクトルを示し た。溶液状態を反映していると考えられ るフィルム(a)と繭(d)のスペクトルはほぼ 一致したことから、吐糸前後において、 セリシンはほとんど構造変化を起こさな いこと、主成分のSer残基(30%)の化学シフ ト値より、全体構造として概ねランダム コイルであることがわかる。Gly、Alaが主 成分である家蚕ならびに野蚕フィブロイ ンの場合、吐糸前後で著しい構造変化を 起こし、繭ではβ-sheet構造を主成分とする 不均一構造に変化することと対照的であ る。さらに、セリシン中では含有割合の 低いAla残基(4.4%)の取り得る構造を検討 するために、そのCa、CBの[™]Cラベルを行 った(b,c)。ランダムコイルの方が多いが、 一部、B-sheet構造も含まれることがわかっ た(e,f)。また、モデル化合物を合成し、 Gly、Alaのラベル部位の化学シフト値から β-sheet構造を35%含むことがわかった (Fig.3).

(2) ²H NMR; Fig.4に経口投与によりラベ ルを施したセリシン繭の、Hスペクトル を示した。Ser CB、Gly Ca位の²Hは、それ ぞれ117kHzの分裂幅を示した(a,d)。Serに ついては2axis 3siteモデル(Qcc = 157Hz、回 転・ライブレーション速度:10°Hz、ライブ レーション角度:0°)、Glyについては1axis 2siteモデル(Qcc = 167Hz、回転ライブレー ション速度:10³Hz、ライブレーション角度 :0°)でシミュレーションしたスペクトルと ほぼ一致し、1つの運動成分のみ存在する と考えられる。これは2成分の運動が存在 するフィブロイン(b,c)とは対照的である。 これらのデータから、セリシンの場合、 Ser OH基の関与する水素結合サイトが多 く、主鎖の運動が強く抑制されていると 考えられる。

参考文献

- Asakura T., Ashida J., Yamane T., Kameda T., Nakazawa Y., Ohgo K. and Komatsu K., *J. Mol. Biol.*, **306**, 291-305, (2001).
- 2) Asakura T., Sugino R., Yao J., Takashima H. and Kishore R., *Biochemistry*, **41**, 4415-4424, (2002).
- 3) Asakura T., Yao J., Yamane T., Umemura K., and Ulrich A.S., J. Am. Chem. Soc., **124**, 8794-8795, (2002).
- 4) Asakura T., and Yao J., Protein Sci., 11, 2706-2713, (2002).
- 5) Zhang Y., Biotecnol Adv, 20, 91-100 (2002).
- Garel A., Deleage G., and Prudhomme J.C., *Insect Biochem.*, *Molec*, 27, 469-477 (1997).

[3,3-2H]Ser-	component	rate (Hz)	libration (deg)	
sericin	-	1×10^{3}	0	
B.mori fibroin	fast (25%)	1 x 10 ⁶	0	
	slow (75%)	5 x 10 ³	15	
S.c.ricini fibroin	fast (22%)	1 x 10°	0	
	slow (78%)	5 x 10 ³	15	

1 P29

高磁場勾配 NMR 法による尿素アダクトチャンネル中の

n-パラフィン鎖の拡散過程の研究 (¹東工大院理工・²高分子センター)

○金善美¹, 黒木重樹^{1,2}, 安藤 勲^{1,2}

A study of the diffusional behavior of n-paraffins in urea adduct channels by high field-gradient ¹H NMR

Sunmi Kim¹, Shigeki Kuroki^{1, 2} and Isao Ando^{1, 2}

¹Department of Chemistry and Materials Science, Tokyo Institute of Technology ²International Research Center of Macromolecular Science, Tokyo Institute of Technology

The self-diffusion coefficients (*D*) of n-paraffins in long channels of deuterated urea-d₄/n-C_nH_{2n+2} (n=8, 12, 21, 26, 28, 32, 44) adducts have been successfully measured at 25 °C by means of high field-gradient spin-echo ¹H NMR method, in order to clarify diffusional behavior of the n-paraffins. From these experimental results, it is found that n-C_nH_{2n+2} molecules are diffusing in long urea channels of urea adduct and have two diffusion components such as the fast diffusion component ($D\approx10^{-6}$ cm²/s) and the slow diffusion component ($D\approx10^{-7}$ cm²/s), and that n-C_nH_{2n+2} molecules in the outside region of the channel and the inner region in long channels of urea adduct contribute to the fast diffusion component and the slow diffusion component, respectively. In addition to these results, as the number of carbons (C_n) for n-paraffins becomes larger from 8 to 44, the diffusion coefficient *D* is decreased and after passing the minimum is increased.

【緒言】

近年、尿素アダクトはナノスケールの空間をもって、その中に特定のゲスト分子を選択的 に包接し、新しい分子を合成することができるという特徴から注目を集め、あらゆる研究が活 発に行われている。包接されることによりまったく違う物性をもつ新しいものになる包接化合 物は、医療や工業分野などさまざまな分野で利用するために、分子レベルの構造解析や、 運動性、熱力学的な安定性、反応特性に関する研究が要求された。しかし、従来の主な研 究はX線回折及び固体NMR 法による結晶構造の情報が多く、チャンネル中にある動的な n-パラフィンに関する情報は少ない。しかし、n-パラフィン分子がチャンネル中で拡散してい るのか、していないのかの情報は与えてない。もし、チャンネル中での拡散情報が計測でき れば、結晶内に存在するナノスケールサイズのチャンネル場およびチャンネル場とプローブ 物質の間の特異相互作用を解明できることになる。

回転相、尿素アダクト、磁場勾配 NMR、 拡散係数、n-パラフィン

きむそんみ、くろきしげき、あんどう いさお

そこで、本研究では、拡散運動に関する直接的な情報が得られる磁場勾配 ¹H NMR 法を 用いて、尿素チャンネル中の n-パラフィン (n-C_nH_{2n+2} (n=8, 12, 21, 26, 28, 32, 44))の拡散係 数 D を測定し、チャンネル中の n-パラフィンの拡散過程を理解した上、チャンネルとの相互 作用を明らかにすることを目的とした。

【実験】

5g の重水素化した尿素 (purity: >98%) と 20g のメタノールの溶液に 1g の n-パラフィン (n-C₈H₁₈、n-C₁₂H₂₆、n-C₂₁H₄₄、n-C₂₆H₅₄、n-C₂₈H₅₆、n-C₃₂H₆₆ 及び n-C₄₄H₉₀ (purity: > 98%)) を溶かした後、溶媒の除去によって六方系の伸長結晶の尿素アダクトを調製した。NMR 測 定は BRUKER DSX-300 NMR 分光器を用い、磁場勾配(PFGSE) ¹H NMR 法を用いて測 定を行った。測定温度は室温で、 Δ =5*ms*、 δ =1*ms* で磁場勾配の強さ(*g*: 0~1000 G/cm)を変 化させながら測定した。得られたエコー信号の強度と磁場勾配パラメータと次なような式(1) から尿素アダクト中の n-パラフィンの拡散係数 Dを決定した。

$$A(g)/A(0) = f_1 \exp[-D_1 K_1] + f_1 \exp[-D_1 K_2]$$
(1)
$$K = \gamma^2 g^2 \delta^2 (\Delta - \delta/3)$$

ここで、A(0)は g=0 の時のエコー信号強度で δ , g また Δ はそれぞれ磁場勾配パルスの 幅、強度およびパルス間の間隔である。yは核磁気回転比、 $f_1 \ge f_2$ は拡散係数が $D_1 \ge D_2$ 有 する 2 つの拡散成分分率である。ただし $f_1 + f_2 = 1$ である。

Fig.1 Typical pulse field-gradient spin-echo ¹H NMR spectra of $n-C_8H_{18}$ in urea adduct at 25°C as a function of pulse field strength(g)

1.尿素/n-C₈H₁₈アダクト中のn-C₈H₁₈の拡散係数

磁場勾配 NMR 法を用いて25°Cにおける尿素/ n-C₈H₁₈ アダクト中の n-C₈H₁₈の拡散係数 を測定した。Fig.1に磁場勾配とともに減衰する n-C₈H₁₈の¹Hスペクトルを示した。また、Fig.2 に尿素アダクト中の n-C₈H₁₈の信号の減衰 A(g)/A(0)を $K (=y^2g^2\delta^2(\Delta-\delta/3))$ に対してプロットし たものを示す。尿素チャンネル中の n-C₈H₁₈ は 2 成分以上の拡散成分が存在し、それは純 n-C₈H₁₈ とは異なる拡散過程を表すことがわかった。そこで本研究では、速い拡散成分 D_{fast} と遅い拡散成分 D_{slow} の 2 成分に解析を行い、それぞれの拡散係数 7.34×10⁻⁶ cm²/s と 8.96×10⁻⁷ cm²/s が得られた。さらに、各拡散成分比は $f_1: f_2=0.75:0.25$ であり、この結果から それぞれの速いおよび遅い拡散成分は尿素チャンネル中における中央部分と外側の部分 に位置する n-C₈H₁₈ 分子に由来することが考えた。その模式図を Fig.3 に示す。また、 n-C₈H₁₈ (2.17Å)は尿素チャンネル(直径 5.5Å)中に all trans-zigzag コンフォメーションで取り 込まれ、隣接するパラフィン分子との相互作用がなくなり、孤立した分子と見なすことができ る。したがって、尿素チャンネル中における n-C₈H₁₈ 分子はチャンネル軸に沿って拡散運動 することがわかる。さらに、チャンネルとパラフィン分子のサイズからパラフィン分子はチャン ネル中でお互いに追い越すことできないシングルーファイル拡散を行っていることがわか る。

Fig.3 Schematic representation of the crystal structure of urea adduct. n-paraffin molecules at the two external regions near the ends of the channel and the inner region in one of long channels of urea adduct contribute to the fast diffusion component and the slow diffusion component, respectively.

2. 尿素アダクト中の n-パラフィンの鎖長と拡散係数

尿素アダクト中の n-パラフィン鎖の長さを変えながら拡散係数 Dを測定した。すべての n-パラフィンに対して 2 成分の拡散成分が得られ、それぞれの速い拡散成分と遅い拡散成分を炭素数(C_n)と拡散係数(D)に対してプロットした結果を Fig.4 と Fig.5 に示す。この結果は n-パラフィン鎖の長さとともに拡散係数の値が減衰する純 n-パラフィンの場合とは異なって、尿素アダクト中の n-パラフィンの拡散係数 D は炭素数が 8 から 26 まで大きくなるにつれ、遅い及び速い成分の拡散係数は徐々に小さくなり、Cn=26 付近で D は極小値を取り、炭素が 26 以上になるとD は大きくなることが観測された。この結果から、まずチャンネル中の n-パラフィンの拡散係数が炭素数が大きくなるにつれて小さくなることは分子鎖が長くなることに起因することが考えられる。また、炭素数が 26 以上でD が大きくなるのは n-パラフィン鎖が長くなると n-パラフィン分子間の空間が大きくなり、n-パラフィンの移動が速くなることに由来することと推論される。

Fig.4 Plots of diffusion coefficients of fast diffusion components against the number of carbons for n-paraffins(with carbon number from 8 to 44) in urea adduct at $25^{\circ}C$

<参考文献>

- (1) A. Muller, Proc. R. Soc. London, Ser. A 138, 514(1962)
- (2) S. Kim, H. Kimura, S. Kuroki and I. Ando, Chem. Phys. Lett., 367, 581-585(2003)
- (3) V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer, L. V. C. Rees, S. Schunk, K. D. Unger and J. Kärger, Science, 272, 702-704(1996)

1 P30

³¹P CP/MAS NMR による InP の間接核スピン-スピン結合の研究 (物質・材料研究機構¹、JST CREST²) ○飯島隆広¹、端健二郎¹、後藤 敦¹、清水 禎¹、大木 忍²

Indirect Nuclear Spin-Spin Coupling in InP Studied by ${}^{31}\mathrm{P}$ CP/MAS NMR

Takahiro Iijima¹, Kenjiro Hashi¹, Atsushi Goto¹, Tadashi Shimizu¹, and Shinobu Ohki² ¹National Institute for Materials Science ²CREST, Japan Science and Technology

The ³¹P CP/MAS NMR spectra are reported for undoped and Fe-doped InP semiconductors. The isotropic contribution of the electron-coupled nuclear spin-spin coupling of neighbouring ^{113,115}In-³¹P in the InP semiconductors is obtained as $|{}^{1}J({}^{113,115}\text{In},{}^{31}\text{P})| = 224 \pm 5$ Hz. We find no dependence of the ${}^{1}J({}^{113,115}\text{In},{}^{31}\text{P})$ value on the carrier density in the range of 10^{7} - 10^{15} cm⁻³.

間接核スピン-スピン結合 [1] は、固体の電子構造に関する情報が得られる点から、これまで金属に対し多くの研究がされてきた。III-V 族半導体については固体 NMR スペクトルの測定から間接核スピン-スピン結合はいくつか求められてきた。特に Tomaselli ら [2] は undoped InP 半導体に対し ³¹P CP/MAS NMR スペクトルにより、最近接の ^{113,115}In-³¹P 間の等方的間接核スピン-スピン結合を正確に決定した。一方、PbTe 半導体において間接核スピン結合が $\mathbf{k} \cdot \boldsymbol{\pi}$ 摂動法により計算され、結合定数や間接核スピン結合に寄与する超微細相互作用の支配的な項は半導体の不純物の種類に依存することが報告された [3]。しかし、このことは実験により確かめられてはいない。そこで、本研究では InP 半導体を試料とし、異種核間の間接核スピン-スピン結合のキャリヤ 濃度依存性を ³¹P CP/MAS NMR スペクトルにより求める。*A*-*X* スピン-スピン結合定数 *X*(*A*, *X*) を用いて *J*(*A*, *X*) = *K*(*A*, *X*) γ(*A*) γ(*X*) と書ける。磁気回転比の比は γ (¹¹³In) γ (¹¹⁵In) = 0.998 であるため、本研究では最近接の ¹¹³In-³¹P 及び ¹¹⁵In-³¹P の間接核スピン-結合定数は等しいと仮定した。

本研究で用いた試料は undoped $(n = 4.6 \times 10^{15} \text{ cm}^{-3}, \rho = 3.7 \times 10^{-1} \Omega \text{ cm})$ 及び Fe-doped $(n = 7.1 \times 10^7 \text{ cm}^{-3}, \rho = 3.2 \times 10^7 \Omega \text{ cm})$ の InP である。Fig. 1(a) に undoped 及び Fe-doped InP 粉末試料における ³¹P MAS NMR スペクトルを示す。¹¹⁵In $(S = 9/2, N_A = 95.8 \%)$ から ³¹P $(I = 1/2, N_A = 100 \%)$ への CP を用い、観測時のデカップリングは行っていない。NMR スペクトル は Tecmag 社製 APOLLO 分光器を用い、11.7 T の静磁場下で Varian Chemagnetics 4 mm MAS プローブにより測定した。共鳴周波数は ν_0 (³¹P) = 202.435 MHz, ν_0 (¹¹⁵In) = 109.683 MHz で あり、MAS 速度は $\nu_r = 10 \text{ kHz}$ であった。得られたスペクトルは幅広で特徴がなく、undoped 及 び Fe-doped InP に対しそれぞれ半値全幅 $\nu_{1/2}$ が 3.19 ± 0.3 及び $3.20 \pm 0.3 \text{ kHz}$ のガウシアンで フィッティングできた。スペクトルの $\nu_{1/2}$ の値は MAS 速度 $\nu_r = 18 \text{ kHz}$ までほぼ同じ値であり、 スペクトルへの同種核間 (³¹P-³¹P) 及び異種核間 (¹¹⁵In-³¹P, ¹¹³In-³¹P) の直接及び間接スピン-ス

indirect spin-spin coupling, InP, ³¹P NMR, CP/MAS

いいじまたかひろ、はしけんじろう、ごとうあつし、しみずただし、おおきしのぶ

ピン結合の異方性部分は MAS により消去されていると考えられる。³¹P-³¹P は結合を少なくとも 2 つ含んでおり、また ¹¹³In (S = 9/2, $N_A = 4.2$ %) は希薄であるため、間接スピン-スピン結合 の等方性部分について ³¹P-³¹P 及び ¹¹³In-³¹P からの寄与は ¹¹⁵In-³¹P からの寄与よりも小さいと 考えられる。2 次モーメント (M_2) が、³¹P と最近接の 4 つの ¹¹⁵In との間の等方的間接核スピン-スピン結合によると仮定することにより、結合定数 |¹J(^{113,115}In,³¹P)| は undoped 及び Fe-doped InP についてそれぞれ 240 ± 20 及び 242 ± 20 Hz と見積もられた。

Fig. 1(b) に ¹¹³In \rightarrow ³¹P の CP を用いた ³¹P MAS NMR スペクトルを示す。共鳴周波数 は ν_0 (¹¹³In) = 109.433 MHz であった。この場合においても直接及び間接核間相互作用の異 方性部分は MAS により消去されている。更に、¹¹⁵In-³¹P の間接核間相互作用の等方性部分は

観測時の¹¹⁵In デカップリングにより取り 除かれている。従って等間隔の10本のピー クは³¹P と最近接の¹¹³In の間の等方的間 接核スピン-スピン結合に帰属でき、結合定 数 $|{}^{1}J({}^{113,115}In,{}^{31}P)|$ は undoped 及び Fedoped InP についてそれぞれ 223 ± 4 及び 225 ± 4 Hz と見積もられた。中央のピーク は小さな結合定数をもつ第 2 近接の 12 個 の³¹P スピンとの等方的間接スピン結合に よると考えられる。10本のピーク強度は、 ¹¹³In のスピン状態が±9/2 に対応する外側 のピークから±1/2 の内側のピークに向け て徐々に小さくなった。これは、より高い スピン状態ほど lifetime が長いためと考え られる。

 ${}^{1}J({}^{113,115}In,{}^{31}P)$ 値は Fig. 1(b) で直接 的に得られた値の方が Fig. 1(a) で間接的 に得られた値よりも正確であると考えられ る。直接的に得られた値は undoped 及び Fe-doped InP で実験誤差範囲内で同一で ある。従って $|{}^{1}J({}^{113,115}In,{}^{31}P)|$ 値は、undoped 及び Fe-doped InP の両方について 224 ± 5 Hz と見積もられ、10⁷-10¹⁵ cm⁻³ の領域ではキャリヤ濃度依存性がないこと が分かった。

尚、本研究は新エネルギー・産業技術総 合開発機構 (NEDO)「平成15年度産業技術 研究助成事業」の一部として行った。

Fig. 1: 202.435-MHz ³¹P CP/MAS NMR spectra of the powder sample of undoped (left) and Fe-doped (right) InP. The MAS speed was $\nu_r = 10$ kHz. The solid line in (a) shows the spectrum obtained by CP of ${}^{115}In \rightarrow {}^{31}P$ with the contact time of 0.5 ms at the Hartmann-Hahn condition of ν_1 (³¹P) = ν_1 (¹¹⁵In) = 27 kHz, and by no decoupling during the acquisition time. The broken line shows the Gaussian fit with $\nu_{1/2}$ (full width at half height) of 3.19 and 3.20 kHz for undoped and Fe-doped InP, respectively. (b) shows the spectrum obtained by CP of $^{113}In \rightarrow {}^{31}P$ with the contact time of 0.8 ms at the matching condition of ν_1 $(^{31}P) = \nu_1 (^{113}In) = 33$ kHz, and by the cw decoupling of ¹¹⁵In at ν_1 (¹¹⁵In) = 40 kHz during the acquisition time. The FID signal was acquired after z-filter of ³¹P magnetization which follows the CP of 113 In $\rightarrow {}^{31}$ P in order to obtain the pure phase spectrum.

《参考文献》

- [1] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
- [2] M. Tomaselli, D. deGraw, J. L. Yarger, M. P. Augustine, and A. Pines, Phys. Rev. B 58, 8627 (1998).
- [3] R. C. Patnaik, R. L. Hota, and G. S. Tripathi, Phys. Rev. B 58, 3924 (1998).

1 P31

バクテリオロドプシンの 高速 MAS 固体高分解能 NMR スペクトルの解析 (¹横浜国立大院・工、²姫路工大院・理) 〇 川村 出¹、山口 悟²、西村 勝之¹ 辻 暁²、斎藤 肇²、内藤 晶¹

Analysis of solid-state NMR spectra of bacteriorhodopsin by fast Magic Angle Spinning ¹Graduate School of Engineering, Yokohama National University, ²Graduate School of Science, Himeji Institute of Technology

Izuru Kawamura¹, Satoru Yamaguchi², Katsuyuki Nishimura¹, Satoru Tuzi², Hazime Saitô², Akira Naito¹

Fast magic angle spinning ¹³C NMR spectra were examined for [3-¹³C] Ala labeled bacteriorhodopsin (bR) in *Halobacterium salinarum* that is one of retinal proteins. In the CP-MAS measurements, pronounced signal reduction was observed under a normal Hartmann-Hahn condition because of the modulation of cross relaxation rate. In this case, RAMP CP-MAS experiments greatly improve the signal intensity. It was also observed that temperature of the sample increased by 20°C at the spinning frequency of 12 kHz. In the DD-MAS ¹³C NMR spectra, the signal appeared at 16.6 ppm at a spinning frequency longer than 10 kHz. This signal did not appear at the corresponding temperature arising in the fast spinning experiment. This signal was considered to decreasing of interference of ¹H decoupling field with the frequency of motion because structural change around the moiety by fast MAS condition causes the increasing of molecular motion. We therefore assign the signal to the Ala residue that is located near a retinal pocket.

序論 バクテリオロドプシンは高度好塩菌 Halobacterium salinarumの紫膜中に存在する膜 タンパク質であり、レチナールの光異性化反応により誘起されるプロトンポンプ活性を示す。 バクテリオロドプシンは他の膜たんぱく質に比べ例外的に大量発現が可能で、また G タンパ ク質共役型受容体と共通の 7 本の膜貫通へリックス構造をもつので膜タンパク質の信号伝達 を明らかにするスタンダードな系としてこれまで研究されてきた。バクテリオロドプシンの Ala 残基の信号に関して固体 NMR を用いて 60%ほどがすでに帰属されている。¹¹本研究では 残基レベルで分離した Ala の信号の知見¹⁰を生かし、bR の部位特異的な局所運動と構造の解 析を行ったのでこの点について報告する。また高速 MAS(Magic Angle Spinning)測定によっ て得られる膜たんぱく質のスペクトルの特徴と問題点についても併せて報告する。

固体高分解能 NMR、高速 MAS、交差分極、バクテリオロドプシン、膜タンパク質

かわむら いずる ¹、やまぐち さとる ²、にしむら かつゆき ¹、つじ さとる ²、さいとう は じめ ²、ないとう あきら ¹

実験

[3-13C] Ala で同位体標識した高度好塩菌を高速遠心分離で紫膜を精製した。10 mM NaCl,5 mM HEPES,0.025% NaN₃ で懸濁し、ペレットにして NMR 試料とした。NMR 測定は Chemagnetics 社製 CMX infinity-400 FT-NMR 分光器を使用し、設定温度は 20°C、試料管 は 4 mm ϕ を使用した。交差分極(CP)と ¹H 高出力デカップリング(DD)にマジックアングル スピニング(MAS)を組み合わせた CP-MAS と 90° パルスによる励起と DD と MAS を組み合 わせた DD-MAS により ¹³C NMR 測定を行った。

結果と考察

1.MAS 測定におけるサンプルの温度上昇

MAS 周波数の上昇とともに摩擦熱によるサンプルの温度上昇が考えられる。本測定システムにおいて温度に対してその化学シフト値が敏感にシフトする硝酸鉛²⁰を用いてPbの化学シフト値から MAS 周波数に対する温度上昇を見積もった。MAS 12 kHz の測定では約 20 度のサンプル温度上昇が観測された。

Fig.1 Plot of ²⁰⁷Pb chemical shift variation versus temperatures (left panel). Magic angle spinning frequency was set to 2.0 kHz though the measurements. Plot of temperature variation versus magic angle spinning frequencies (right panel). Temperatures was calibrated using the relation of ²⁰⁷Pb chemical shifts against temperatures,(0.656 ppm / $^{\circ}$ C)

2.高速 MAS 下での CP-MAS 信号強度変化

MAS 周波数の上昇に伴い信号強度が大幅に減少した。この現象は試料回転によって交差緩 和速度が変調を受けることによって通常の Hartmann-Hahn 条件(ω₁c=ω_{1H})では CP 効率が著 しく減少するためである。強度の損失を補うために RAMP-CP を用いて信号強度の回復を行 った。また回転数の上昇によりその信号パターンが変化している。このことは主に温度上昇 による変化に対応することがわかった。さらに膜外へリックスの信号は温度変化に対して不 可逆的な変化を示すことが観測された。

Fig.2 ¹³C CP-MAS NMR spectra of [3-¹³C] Ala labeled bR at various magic angle spinning frequencies (left panel). CP-MAS and RAMP CP-MAS spectra of [3-¹³C] Ala labeled bR at the spinning frequency of 12kHz (right panel).

3.高速 MAS 下での DD-MAS 信号強度変化

DD-MAS では高速回転によって信号強度に大きな影響は出ていないが、膜外へリックスの 信号は温度上昇に対応する低磁場シフト ³⁰を示した。さらに MAS の回転数が 10 および 12 kHz のとき、16.6 ppm に新たな信号が観測された。これは二次構造と等方化学シフト値の相 関から膜貫通α-ヘリックス部位であり、DD の干渉周波数帯から逃れて現れた信号と思われ る。

-182 -

まとめ

高速 MAS 測定において回転数に依存する温度上 昇が観測された。このため試料温度は設定温度より 上昇していることを考慮する必要がある。また通常 の Hartmann-Hahn 条件では信号強度が大幅に減 少するので CP-MAS の信号強度を回復するために RAMP-CP を有効に使用することが重要である。

高速回転によって現れた[3-¹³C] Ala-bR の DD-MAS の信号(16.6 ppm)は温度上昇によっては 現れなかった。またレチナールが欠損したバクテリ オオプシンではこの信号⁴⁾が存在することから16.6 ppm の信号はレチナール近傍に位置する Ala の信 号の可能性が考えられる。この信号について現在帰 属を進めており、また最適な CP 条件の検討も行っ ていく予定である。

Fig.3 ¹³C DD-MAS NMR spectra of [3-¹³C] Ala labeled bR at various magic angle spinning frequencies.

文献

1) H.Saitô, S.Tuzi, M.Tanio, A.Naito. Annu. Rep. NMR Spectrosc. (2002) 47,39-108.

2) A.Bielecki and D.P.Burum. J.Magn.Reson. series A, (1995) 116,215-220.

3) S.Yamaguchi, K.Yonebayashi, H.Konishi, S.Tuzi, A.Naito, J.K.Lanyi, R.Needleman, and H.Saitô. Eur.J.Biochem. (2001) <u>268</u>,1-12.

4) S. Yamaguchi, S. Tuzi, M. Tanio, A. Naito, J.K. Lanyi, R. Needleman, and H. Saitô. J. Biochem. (2000) 127,861-869.

1 P32

¹H→¹⁹F CP/MAS NMR 法を用いた 全芳香族ポリイミドの分子間パッキング様式の推定

東工大院理工 〇相見敬太郎、安藤慎治

Analysis of inter-chain packing of fully aromatic polyimide using solid state ¹H→¹⁹F CP/MAS NMR Department of Organic and Polymeric Materials, Tokyo Institute of Technology Keitaro Aimi and Shinji Ando

Solid state ¹⁹F MAS and ¹H \rightarrow ¹⁹F cross-polarization (CP)/magic angle spinning (MAS) NMR has been performed to estimate the internuclear distances between ¹H and ¹⁹F nuclei for investigating of the inter-chain packing of fluoro-containing aromatic polyimides (P2FDA/DMDB, P3FDA/DMDB, and P6FDA/DMDB). The oscillation behaviors observed for polyimides in their ¹H \rightarrow ¹⁹F CP curves were analyzed, and the effective distances between ¹H and ¹⁹F nuclei were estimated from the fitting of oscillations. After annealing at 340°C for 4 h, the effective distances increased for all samples, while the contributions of the magnetization transfer from the distant protons, which exhibit no oscillation behavior, are reduced. In contrast, no change in the spectral shapes and chemical shifts were observed after annealing. These facts strongly suggest that the ordered structure was increased by annealing for each sample.

[緒言] 芳香族ポリイミドは、繰り返し単位の分子構造が酸無水物部分(電子受容体)とジアミン部分 (電子供与体)からなるため、分子内及び分子間に電荷移動相互作用の存在が示唆されている。このた め光学用途には、その主鎖骨格にフッ素基を導入するなどして電荷移動を低減したポリイミドが用いら れている。非晶性フッ素化ポリイミドについて電子状態の解析から分子鎖のパッキング構造について酸 無水物同士あるいは酸無水物とジアミンが近接する2つのモデルが提唱されているが、どちらが支配的 であるかは実験的な決着を見ていない。本研究では、このパッキング構造の解明を目指し、固体 ¹H→¹⁹F CP/MAS NMR法を用いて、CP曲線の解析から酸無水物部分にフッ素基を導入した含フッ素全 芳香族ポリイミドにおけるH-F間の有効核間距離を算出し、分子鎖間パッキングの評価を行った。

[実験] 試料には、Scheme 1 に示す3種のポリイミド(PI)、 P2FDA/DMDB (I), P3FDA/DMDB (II), P6FDA/DMDB (III) のフィルム(膜厚8~10 µm)を用いた。固体¹⁹F MAS NMR及 び¹H→¹⁹F CP/MAS NMR測定は、室温で、Chemagnetics 社製H-F二重共鳴CP/MASプローブを用いて、¹H共鳴周波数 300.4 MHz (JEOL EXデータシステム)、¹H 90°パルス幅 3.0 µs及び¹⁹F 90°パルス幅 2.4 µs (sideband matching条 件: $\omega_{1H} = \omega_{1F} - \omega_r = 83$ kHz)、積算回数 32 回、MAS回転数 $\omega_r = 16$ kHzの条件で行った。化学シフト基準はC₆F₆(-163.6 ppm)を外部基準に用いた。

Scheme 1 Structure of polyimides.

[結果と考察] 図1に3種のポリイミドの¹H→¹⁹F CP MAS NMR スペクトルを示す。PI-(I)は線幅が広いが、結晶性モデル化合物(P2FDA/m-toluidine)では鋭いピークが観測されたことから、これは秩序性が低いためと考えられる。PI-(II)及び PI-(III)には2本のピークが観測された。これは、イミド化が完全に進行しておらず、peak 2 は閉環していない酸無水物部分に由来すると考えられる。図2に3種のポリイミドの¹H→¹⁹F CP 曲線を示す。いずれの試料についても CP 曲線の初期段階に磁化交換によるオシレーションが観測された。オシレーション挙動を含む CP 曲線のフィッティングには以下の式を用いた¹⁾。

キーワード: ¹⁹F CP/MAS NMR、CP ダイナミクス、芳香族ポリイミド、核間距離、分子間パッキング あいみ けいたろう、あんどう しんじ

$$S_{CP}(t) = M_{CP}[xS_{osc}(t) + (1-x)S_{net}(t)]$$

$$S_{osc}(t) = \frac{1}{2} \left(\exp(-t/T_{1\rho}^{*}) - \exp(-t/T_{HP}) g_{\pm 1}(t) \right) \qquad S_{net}(t) = \frac{\exp(-t/T_{1\rho}^{*}) - \exp(-t/T_{HP}^{*})}{1 - (T_{HF}^{*}/T_{1\rho}^{*})}$$
$$g_{\pm 1}(t) = \frac{1}{2} \int_{0}^{\pi} \cos\left(\frac{\pi Dt}{\sqrt{2}}\sin(2\theta)\right) \sin\theta \, d\theta \cong J_{0}\left(\frac{\pi Dt}{\sqrt{2}}\right) + 2\sum_{k=1}^{\infty} \frac{1}{1 - 4(2k)^{2}} J_{2k}\left(\frac{\pi Dt}{\sqrt{2}}\right)$$

ここで $S_{ose}(t)$ は最近接核間、 $S_{net}(t)$ は双極子相互作用の弱い離れた¹H からの寄与となる。 $g_{\pm 1}(t)$ は±1 sideband matching におけるオシレー ション挙動を記述する。CP 曲線のフィッティングにより、双極子カップ リング定数 Dを算出し、有効核間距離を見積もった(表1)。

得られた r_{HF} は2.4~2.9Åであり、量子化学計算から見積もった分子内の最近接 H-F 間距離 4.6Å (PI-(II)の場合)よりもかなり短いため、分子間の CP が支配的であると考えられる。また PI-(II), PI-(III)は PI-(I)よりも r_{HF} が長い。これは CF₃基の回転により双極子相互作用が部分的に平均化されたためと考えられる。PI-(II)と PI-(III)を比較すると、 r_{HF} には差がみられないが、PI-(III)では S_{osc} の割合 x が低く、 S_{net} の立ち上がりの時定数 T_{HF} が短い。このことは、PI-(III)では酸無水物部分とジアミン部分が PI-(II)よりも近接していることを示唆する。

ポリイミドは熱処理によって凝集状態が変化することが蛍光測定から報告されている²⁾。そこで、基板から剥離後の3種のポリイミドについて 340°Cで 4 時間熱処理を行い、¹H→¹⁹F CP MAS 測定を行った。スペクトルの線形及び化学シフトには、熱処理前後で違いはみられなかった。また、スピンー格子緩和時間 T_1^F も熱処理前後で有意な差はみられなかった(Pl-(l): 1.3 s→1.1 s, Pl-(ll):1.1 s→1.1 s, Pl-(ll):0.52 s→0.55 s)。CP 曲線のフィッティングから得られたパラメータを表1に示す。いずれの試料についても熱処理によって $r_{\rm HF}$ が長くなった。X線回折や量子化学計算から、ポリイミドは酸無水物同士のスタッキング(PLP)構造が安定であるという報告が多く、 $r_{\rm HF}$ の増大は熱処理による秩序構造の形成と矛盾しない。また $S_{\rm osc}$ の割合xが熱処理後に高くなっていることからも、熱処理により秩序性が向上したことが示唆される。

		Before annealing			After a	nnealing (3	40°C 4h)
Sample	Peak	x	$T_{\rm HF}^{*}$ / ms	r _{HF} / Å	x	$T_{\rm HF}^*$ / ms	r _{HF} / Å
PI-(I)		0.60	0.84	2.26	0.70	0.57	2.43
PI-(II)	1	0.72	0.51	2.84	0.85	0.81	2.90
	2	0.75	0.46	2.59	0.84	0.73	2.65
PI-(III)	1	0.60	0.33	2.88	0.75	0.54	2.96
-	2	0.63	0.31	2.59	0.77	0.59	2.69

Table 1 Estimated ratios of $S_{ose}(x)$, T_{HF} , and effective ${}^{1}H{-}^{19}F$ distances for fluorinated polyimides before and after annealing.

References

- C.A. Fyfe, D.H. Brouwer, A.R. Lewis, J.M. Chézeau J. Am. Chem. Soc. 123 (2001) 6882
- 2) E.D. Wachsman and C.W. Frank, Polymer, 29 (1988) 1191

Fig.1 ${}^{1}H \rightarrow {}^{19}F$ CP/MAS NMR spectra of (a) PI-(I), (b) PI-(II), and (c) PI-(III). The contact time is 1 ms for each spectra.

Fig. 2 ${}^{1}H \rightarrow {}^{19}F$ CP curve for (a) PI-(I) and (b) PI-(II) and PI-(III) before annealing.

¹H MAS NMR 法を用いたペンタクロロフェノール塩の 水素結合の研究 (横市大院・総合理) 〇本多 尚

¹H MAS NMR Studies of Pentachlorophenol-Amine Hydrogen-Bonded Complexes Hisashi Honda (*Graduate School of Integrated Science*)

It was reported that Solid-state ¹H MAS NMR line-shapes of piperidinium and pyrrolidinium *p*-chlorobenzoate were changed by partial deuteration of hydrogen atoms forming hydrogen bonding. In this study, pentachlorophenol-amine complexes were employed to detect amine's pK_a dependent of ¹H line-shape change and chemical shift. The observed spectrum showed the proton transfer equilibrium, O-H…N \longrightarrow O⁻…H-N⁺ in 4-methylamine ($pK_a = 6.03$) salts as displayed in Fig. 1. The pK_a dependent of ¹H chemical shift of hydrogen atoms forming hydrogen bonding were shown in Figure 2. H/D isotope effects on ¹H NMR line-shape were observed in a pK_a range of 3.51-7.38 as displayed in Fig. 3.

当研究室ではこれまで p-クロロ安息香酸のピロリジン塩で、水素結合を形成している水素 を重水素置換すると、分子中のすべての水素のケミカルシフトが大きく変化することを示し た[1]。この塩の単結晶X線測定を行ったところ、この線形変化は、軽水素が重水素置換され ることにより N-H 距離が 6 pm 変化したことが要因であることが分かった。しかし、水素 結合を有する物質の多くが非対称ポテンシャルを持つことを考慮すると、NMR 線形の H/D 同位体効果がほとんどの化合物で観測されると考えられる。線形の H/D 同位体効果があまり 報告されていないことから、ポテンシャルの非対称性だけではなく、その他の要因が関係し ていると考えられる。そこで、本研究では ¹H NMR スペクトルの H/D 同位体効果がどのよ うなポテンシャル下で観測されるのか調べた。本研究を行うには、酸と塩基の間のポテンシ ャルを連続的に変えられる物質が必要である。そこで、広範囲の pK。を持つ化合物と水素結 合を形成することが知られているペンタクロロフェノール(便宜上酸と記す)を用い、系統的に スペクトルの変化を調べた。ペンタクロロフェノールは、水素結合の水素以外、水素を持っ ていないので、塩基に関する水素の同位体シフトのみ観測することができる。

ペンタクロロフェノールは、環境ホルモン物質に分類されており、以前は除草剤などに使用されていた。ペンタクロロフェノール塩は、35CI NQR 周波数測定が行われており、アミンの pK_と NQR 周波数の平均値の間に相関があることが明らかにされている[2]。

用いたアミンの pK。値は 0.65~11 で、軽水塩はアセトニトリルを用いて結晶化させ、その後、同溶媒で再結晶した。水素結合を形成している水素のみ重水素置換した重水塩を得るために以下の手順を行った。まず、ペンタクロロフェノールを体積比 4:1 の NaOH 水溶液 ーエタノール混合溶媒に加え、Na 塩を得た。この Na 塩を窒素雰囲気下で体積比 4:1 の重 水ーエタノールー d 混合溶媒に溶かした後 DCI を当モル加え、ペンタクロロフェノールー d 結 る得た。アセトニトリルを用い、得た結晶とモル比が 1:1 になるように各塩基を混合し重 水塩を得た。NMR 測定には Bruker 社の Avance600 を用いた。測定周波数は 600 13 MHz で、MAS の回転速度は 30 kHz、ケミカルシフトの外部標準はアダマンタンを用いた。 また、試料温度は Pb(NO₃)20²⁰⁷Pb ケミカルシフトから算出した。

キーワード:¹H MAS NMR、 水素結合、 量子化学計算

著者ふりがな ほんだ ひさし

得られた¹H HS-MAS NMR スペクトルを図 1 に示す。図中の数値はアミンの pKa である。 なお、紙面の都合上、スペクトルは測定した14 種の塩の中から5つのみ載せた。スペクトルの帰 属は、塩基のみのスペクトル測定および量子化学 計算から行った。図中の 10 ppm 以上に見られ るピークが OH もしくは NH⁺の信号である。図2 に水素結合を形成している水素のケミカルシフ トおよび報告されている³⁵CI NQR 周波数[2]の pK。依存性を示す。NQR 周波数は pK。が 5~7 の範囲でのみ変化するのに対し、ケミカルシフト は pK。依存性が全範囲でみられ、水素結合状態 を感度よく検出していることが分かる。また、図 1 に示すように 4-メチルピリジンで水素結合を 形成している水素のピークが 2 つ観測された。 この結晶で水素結合は 1 種類しかないことから O-H…N == O⁻…H-N⁺の平衡状態が観測され ていると考えられる。 これら 2 つのピークの面 積は温度変化し、O-H 結合に帰属できる 12 ppm の面積は温度上昇に伴い減少した。ピーク 面積の温度依存性から O-H…N と O----H-N・の ポテンシャルエネルギー差が4kJmol⁻¹と求まった。

Fig. 1 ¹H MAS NMR Spectra of pentachlorophenol complexes with amines. The numerical values written in the right side of the spectrum are pK_a of amines.

図 3 に重水素置換によるスペクトル変化を示す。ペンタクロロフェノール(pKa = 5.26) と pKa が近い塩基(3.51-7.38)を用いた場合、線形が変化する傾向が観測された。

Fig. 2 pK_a dependent of ¹H NMR chemical shift (\bullet) and ³⁵Cl NQR frequency(O)[2] of pentachlorophenol-amine complexes

[1] 分子構造総合討論会 2003 要旨 3Aa02 [2] E. Grech, J. Kalenik, and L. Sobczyk, *J. Chem. Soc. Faraday*, **75**, 1587(1979).

Fig. 3 H/D isotope effects on ¹H NMR line shape of pentachlorophenol complexes with pyrazine (PYR), 2-amino-3-methylpyridine (2A3MP), 4-methylpyridine (4MP), and 4-acetylpyridine (4AP). 1 P34

固体高分解能 NMR による放線菌由来ポリ(ε-リジン)

およびその誘導体の分子構造解析

(福井大工¹, 金沢大院²)

前田史郎¹, 〇森貴志¹, 武藤勝紀¹, 佐々木千鶴², 国本浩喜²

Molecular structural analysis of microbial poly (ε-L-lysine) by using solid-state high-resolution NMR Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Fukui University, Fukui, 910-8507, Japan Department of Chemistry and Chemical Engineering, Faculty of Engineering, Kanazawa University, Kanazawa, 920-1154, Japan Shiro Maeda¹, <u>Takashi Mori</u>¹, Katunori Muto¹, Chizuru Sasaki² and Ko-Ki Kunimoto²

The molecular structure and conformation of microbial poly (ε -L-Lysine) (ε -PL) produced by a variant of *Streptomyces albulus* and its derivatives, in which azo dye was attached to the side chain α -amino group of ε -PL, were studied by high-resolution solid state ¹³C and ¹⁵N NMR spectroscopy. ¹³C spin-lattice relaxation times (T₁) measured by method of Torchia (T1CP experiments) exhibited two kinds of values, which shows existence of two components. These components were assigned to a crystalline and an amorphous component and their spectra were able to be obtained separately. All peaks of aliphatic parts of amorphous component were broad because of the heterogeneity of the molecular conformation and γ -gauche effect.

[はじめに] 近年,環境に対する負荷の少ない 材料として生分解性高分子への関心が高まっ ている[1].ポリ(ε-L-リジン)(ε-PL)は,放線菌 *Streptomyces albulus*により分泌生産されるバイ オポリマーであり,必須アミノ酸のL-リジンが α-カルボキシル基と ε-アミノ基でアミド結合し

 $- \left(-NH - CH_2 - CH_2$

Figure 1 Poly (E-L-lysine)

た直鎖状の構造を持つ塩基性ポリアミノ酸である. ε-PL は水溶性で生分解性を有し, 抗菌性・凝 集性など多様で有用な特性を持つ. すでに溶液状態で食品保存料として実用化されており, 固体 状態での利用, そしてさらなる機能を付加させた機能性材料としての利用が期待される. 本研究 では側鎖 ε-アミノ基に種々のアゾ系色素を化学修飾させた誘導体を用いている. ε-PL[2]および ε-PL/HCl, ε-PL 誘導体の分子構造を明らかにするために, ¹³C および ¹⁵N スペクトル測定とスピン -格子緩和時間測定 (T1CP) を行ったが本稿では, 主として ¹⁵N スペクトルについて議論する.

[試料] 試料は ε-PL とその塩酸塩 (ε-PL/HCl), ε-PL 誘導体として側鎖 α-アミノ基に t-butoxycarbonyl, Methyl Orange, Dabsyl Chloride を化学修飾した誘導体を用いた. 誘導体を, そ れぞれ ε-PL-BOC, ε-PL/MO, ε-PL/DC とする. ε-PL の重合度は約 32 である.

キーワード: solid-state NMR・Poly (ϵ -L-lysine)・ 13 C CP/MAS・ 15 N CP/MAS・T1CP まえだしろう,もりたかし,むとうかつのり,ささきちづる,くにもとこうき

	ε-NHCO	α -NHSO ₂	a-NHCO	α	-NH3 ⁺	a-NH ₂	-N(CH ₃) ₂
				free	ion-complex		· .
ε-PL	117			-		26.6	· .
/HCl	123			44.0			
-BOC	120		92.2				
/мо	115				34.1		59.9
/DC	121, 113	102			32.1		61.6

Table 1¹⁵N chemical shifts of ε-PL and its derivatives

[装置] 固体高分解能 ¹³C および ¹⁵N NMR 測定は Chemagnetics CMX Infinity 300 を用いて, それぞれ 75.56 MHz と 30.45 MHz で測定した. ¹³C 化学シフトは HMB のメチル炭素を TMS から 17.35 ppm, ¹⁵N 化学シフトは Glycine を NH₃ (liq.) から 32.50 ppm とした.

[結果と考察]

Table 1 にそれぞれの ¹⁵N 化学シフトを示す. ε-PL/HCl の側鎖アミノ基は α -NH₃⁺であり ε-PL と比較して低磁場シフトした. Fig. 2 に ε-PL/DC の ¹⁵N スペクトルを示す. 110-130 ppm の ε-NHCO のピークは 2 つのピークに 分けることができる. 121 ppm のピークは, DC が側鎖 α -NH₂ と共有結合しているときの ε-NHCO であり, ε-PL-BOC と一致する. そ して, 113 ppm のピークは試料調製中に DC

の一部が MO になって, ε-PL/MO と同様のイオンコンプレックスを 形成しているときの ε-NHCO であ り ε-PL/MO と一致する. 102 ppm のピークは DC と共有結合してい る側鎖アミノ基-NHSO2-のピーク

Scheme 1 Resonance structure of the amide linkage in the protonated form

である. Scheme 1 に ϵ -PL アミド基部分の共鳴構造式を示す. アミド NH の化学シフトはカルボニ ル基への水素結合や側鎖 α -アミノ基への化学修飾により著しい影響を受ける. 共有結合している ϵ -PL/DC の場合に比べて, ϵ -PL/MO では ϵ -NHCO が高磁場に現れている. 側鎖 α -NH₂基がプロト ン化して NH₃⁺になり, MO がイオンコンプレックスとして結合している ϵ -PL/MO では, II, III の寄与が小さくなるために高磁場シフトして 113 ppm に現れていると考えることができる.

[引用文献]

1. 前田・森・国本・佐々木,「放線菌由来ポリ(ε-リジン)の分子構造解析」,高分子加工,印刷中 2. S. Maeda, K. Kunimoto, C. Sasaki, A. Kuwae, and K. Hanai, J. Mol. Struct., 655, 149-155 (2003). イオン交換型ゼオライトに対するキセノンの吸着挙動の 高圧¹²⁹Xe NMR による研究

(阪大院理1、阪大博物館2)〇前澤国芳¹、上田貴洋^{1,2} 宮久保圭祐¹、 江口太郎^{1,2}

Hight-pressure ¹²⁹XeNMR Study of Xenon Absorption into Ion-Exchange Y-Zeolites Kuniyoshi Maezawa,¹Takahiro Ueda,^{1,2} Keisuke Miyakubo,¹Taro Eguchi^{1,2} ¹Department of Chemistry ,Graduate School of Science ,Osaka University,

²The Museum of Osaka University

Ion-exchange of zeolite using alkaline and/or alkaline-earth metal cations leads to the modification of the pore size and the electric field in the pore, and affects the adsorption behavior of guest molecules and the catalytic properties of host compounds. In the present study, we examine the effect of the ion-exchange of Y-zeolites (NaY, KY, and RbY) on the pore size and the dynamical behavior of the adsorbed xenon atoms by means of high-pressure ¹²⁹Xe NMR measurements. At pressures below 1 MPa, the pressure dependence of ¹²⁹Xe chemical shift for adsorbed xenon can be interpreted by the Langmuir type adsorption behavior. In the pressure range from 1MPa to 6 MPa, the observed chemical shift values decrease and then increase above 6 MPa with increasing the pressure. This behavior indicates the chemical exchange between free and adsorbed xenon.

【序】ゼオライトは、沸石水を含む含水アルミノケイ酸塩であり、このカチオンのアルカリまた はアルカリ土類金属は比較的容易にイオン交換する。イオン交換によりゼオライト結晶の細孔径 や静電場などを変調でき、吸着特性や触媒特性などが系統的に変化することが知られている。1 価のカチオンによる置換は、細孔内の静電磁場にはほとんど影響しないが、サイズの違いによる 細孔径の変化が期待できる。このような、微視的細孔構造の変化は、エネルギー的に準安定な吸 着サイトの生成や、吸着分子の交換プロセスなどに影響を及ぼすと考えられる。高圧¹²⁹Xe NMR は、高圧条件下で測定を行うため、細孔内でのキセノンどうしの相互作用を詳細に調べることが できる。そこで、今回、アルカリ金属置換によって得られたY型ゼオライト(NaY、KY、RbY) について、高圧¹²⁹XeNMR 測定を行い、イオン交換がゼオライトの細孔構造へ及ぼす影響につい て検討した。

【実験】NaY ゼオライト(東ソー)を出発物質として、アルカリイオンによる交換を行った。イオン交換の有無は、粉末 X 線回析、IR、FIR を用いて確かめた。400℃で真空加熱脱水処理した粉末試料について、自作の圧力可変プローブを装着した Bruker MSL 分光計により圧力範囲 0.01 - 9 MPa、温度 298K で¹²⁹XeNMR スペクトル(共鳴周波数 55.6MHz)を *in-situ* 測定した。

【結果と考察】0.1MPa 以下の圧力では、¹²⁹XeNMR スペクトルには自由なキセノンガスに対応 する共鳴線とゼオライト細孔内に吸着されたキセノンに対応する2本の共鳴線が、それぞれ Oppm 付近と 50·120ppm 付近に分離して観測された。Fig. 1 (a). (b). (c)は、それぞれ NaY、KY、 RbY ゼオライトの細孔内に吸着したキセノンと、共存する自由なキセノンガスの¹²⁹Xe 化学シフ ト値の圧力依存性を示す。いずれの試料においても 0.01·1MPa の圧力範囲では、Langmuir タイ プの吸着挙動を示し、式(1)で¹²⁹Xe化学シフト値の圧力依存性を説明できる。

Fig 1. Pressure dependence of ¹²⁹Xe chemical shift values for free Xe gas (\blacktriangle) and Xe (\blacklozenge) confined in NaY (a), KY(b), RbY(c) zeolite

(1)

ここで、 δ_s は、キセノンと細孔壁の衝突による 寄与、 $\delta_{Xe:Xe}$ は、キセノンどうしの衝突による寄 与、*K*は、[吸着速度]/[脱離速度]である。 δ_s は、 ゼオライトの細孔径に反比例する。(1)式から δ_s を求めると、NaY ゼオライトでは $\delta_s = 51$ ppm、KY ゼオライトでは $\delta_s = 81$ ppm、RbY ゼ オライトでは $\delta_s = 107$ ppm という値になる。こ の δ_s の増加は、ゼオライト内に存在するカチオ ンのイオン半径の増加(Na⁺=95pm、K⁺=133pm、 R b⁺=148pm)がもたらす細孔径の減少を示唆し ている。

Fig.1 において、キセノンガスのピークの化学 シフト値は、6MPa 付近でキセノンの超臨界流 体(臨界圧 P=5.8MPa)への転移のために急激 に低磁場シフトしている。細孔内に吸着したキセ ノンの化学シフト値は、1MPa 以上の圧力では 圧力の増加とともに高磁場シフトする。これは、 ゼオライト細孔内に吸着したキセノンと粉末試 料の粒界近傍に存在するキセノンガスとの交換 によるものと考えられ、圧力の増加とともに細孔 内外のキセノンの交換速度が増加することを示 している。また、高磁場シフトの程度が NaY > KY、RbY であり、細孔径の最も大きな NaY で 細孔内キセノンの化学シフト値に、キセノンガス の影響が最も顕著に現れる。一方、超臨界圧より 高い圧力では、逆に低磁場シフトが見られる。こ れは、超臨界流体にあるキセノンと細孔内のキセ ノンとの交換が見かけ上遅くなることを示して いる。

キーワード:高圧 129XeNMR、イオン交換型ゼオライト、吸着挙動、化学シフト、圧力依存 まえざわ くによし、うえだ たかひろ、みやくぼ けいすけ、えぐち たろう

固体 NMR によるモンモリロナイトの水和挙動の解析 (東工大原子炉研¹、新日鐵先端研²) ○大窪貴洋¹ 金橋康二² 齋藤公児² 池田泰久¹

Studies of hydration process of montmorillonite by solid state NMR <u>Takahiro Ohkubo¹</u>, Koji Kanehashi², Koji Saito², Yasuhisa Ikeda¹ Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology ¹, Nippon Steel Corporation, Advanced Technology Research Laboratory ²

Analyses of solid state NMR in Na- K- Cs- and Ca-montmorillonites have been investigated. A dry and hydrated states with various water contents were analyzed to examine hydration processes. The ²³Na triple quantum (3Q)MAS NMR experiments of Na-montmorillonite with dry and various water contents were performed to estimate the quadrupolar product (P_Q) and the isotropic chemical shift (δ_{iso}) of ²³Na. The P_Q values were found to be dependent on water contents *i.e.*, the P_Q value has a maximum one in 11.1 wt% water contents and decreases with increasing water content. Consequently, it is suggested that Na cation in the interlayer of dry Na-montmorillonite has more symmetrical electric charge distribution than Na-montmorillonite with 11.1 wt% water content and that in systems with contents more than 11.1 wt% Na cation have more symmetrical structures.

諸言

モンモリロナイトは、SiO4 を中心とする四面体シートおよび AIO₆ を中心とする八面体シートが 2:1 で積み 重なった層状化合物である。モンモリロナイトの層間には、水分子をともなった種々のイオンが入り、これに 関連して膨潤能や有機複合体および層間イオンの交換反応等の特異な性質を示す。このような性質は、層間に 導入されたイオン種、層間水および骨格を形成する層との分子間相互作用、およびこれに関連した分子構造と 密接な関係がある。これまでに、層間イオンとして Na が飽和した Na 型モンモリロナイトの構造解析を²⁷AI および ²³Na MQMAS により解析し、四面体層の Si と置換した AI のサイトが、層間の水分子の有無に起因し た二つのサイトとして存在する事を明らかにした。また、²³Na3QMAS により脱水状態での層間に分布した構 造から含水により単一サイトへ変化することをを報告した。今回の研究では、層間イオンを Cs、K、および Ca に交換した試料について、²⁷AI、²⁹Si および層間イオン(²³Na、³⁹K および ¹³³Cs)のスペクトルを取得し、含水 による層構造および層間カチオンの挙動について検討したので報告する。

実験

層間イオンを K、Cs および Cs で置換した試料 (K、Cs および Ca 型モンモリロナイト)の作製は、以下の手順で行った。(1)Na 型モンモリロナイト (日本粘土協会 JCSS 3101) と 0.5N の電解質溶液 (KNO3、CsNO3 および Ca(NO3)2) を 1:20 でそれぞれ混合、(2)1 時間撹拌した後に遠心分離機により固液を分離、(3) モンモリロナイトの回収。(1)-(3)の手順を 5 回程繰り返し、完全に目的のイオンで飽和させた。最後に水洗いにより硝酸イオンを完全に除去し K 型、Cs 型および Ca 型モンモリロナイトを得た。作製した試料を蛍光 X 線により元素分析を行い、目的のイオンで飽和していることを確認した。

測定した試料は、150℃ で加熱し脱水した試料および任意の含水率に調整するために純粋を加えた試料によ り行った。測定中の高速回転による試料の含水量の変化を防ぐために、ポリビニリデンクロライドシートで包 んで測定を行った。含水率の同定は、NMR 測定後に、熱分析による重量変化により決定した。NMR 測定は、 CMX300(7.05T) でスピン測定 16kH で測定を行った。MQMAS による測定は、z-filter 型 3 パルスシーケンス を用いた。

結果および考察

key words: 水和、 層状化合物、 MQMAS、 Quadrupolar Product

おおくぼ たかひろ、かねはし こうじ、 さいとうこうじ、 いけだやすひさ

Table 1 に含水率の異なる Na 型モンモリロナイトの²³NaMAS および²³Na3QMASの結果を示す。 MAS スペクトルのケミカルシフト(δ_{cg})は、含水率の増加により徐々に低磁場シフトし半値幅が減少する。それに対し、3QMASで得られた等方ケミカルシフト値(δ_{iso})は、脱水状態のみが大きく高磁場側にシフトし、11.1wt%以上の含水率で徐々に低磁場シフトする。このような²³NaMAS と 3QMASの結果の違いは、二次の四極子相互作用に由来する。従来、MAS スペクトルの半値幅から、 δ_{iso} や四極子パラメータが求められていたが、モンモリロナイトのような結晶性の悪い試料の解析は、半値幅に構造の乱れや様々な相互作用の影響を含むために正確な評価が難しい。しかし、3QMAS に

Table 1. Peak positions, δ_{cg} (ppm), and full width at half maximum, FWHM (ppm), in ²³Na MAS of Na-montmorillonite with various water content (wt%), isotropic chemical shift, δ_{iso} (ppm), and quadrupolar product, P_Q (MHz), in ²³Na 3QMAS.

water contents	δ_{cg}	FWHM	$\delta_{ m iso}$	PQ
dry	-20.6	34.8	-13.7	9.34
11.1	-16.3	21.3	-3.27	23.7
16.2	-8.13	11.2	-2.46	17.5
25.6	-3.15	4.87	-1.84	3.06
43.7	-2.13	2.91	-1.64	0.775

よる解析は、実験的手法のみで四極子ハラメータを決定できるため、非常に有効な手法である。

脱水試料と含水試料の δ_{iso} は、層間での Na イオンの水和構造を反映して大きく異なる。このような傾向 は、層間での Na カチオンの水和イオン半径が、増大していることに起因していると考えられる。さらに Quadrupolar pruducts [$P_Q = 2\pi C_Q (1 + \eta^2/3)$]は、含水率 11.1wt%の状態で極大値を示し、含水率の増加ととも に徐々に減少する。 P_Q は、最近接原子の対称性に強く依存する。よって水和構造を形成していない脱水状態 の P_Q が小さいことは、脱水状態の Na カチオンが、四面体層の底面酸素によって形成されている空孔に存在 することを示唆している。

次に含水率の異なる Cs 型モンモリロナイトの ¹³³CsMAS を測定した。¹³³Cs は、四極子モーメン トが非常に小さい (-0.003×10⁻²⁸ m²) ため MAS スペクトルによる解析が十分可能である。Figure 1 に示す含水率の異なる Cs 型モンモリロナイトの ¹³³Cs MAS スペクトルは、含水率の増加に従い低 磁場側ヒークが消失し、高磁場側ヒークが低磁場 シフトする。このような傾向から、低磁場側ビー クは、水和していな Cs に起因すると考えられ、乾 燥状態での Cs イオンは、四面体層表面に接して吸 着している層 (Stern 層) と水和した層 (拡散層) に 分布して存在することが証明された。Cs が Stern 層と拡散層にはっきりと分配して存在するのに対 し、Na 型モンモリロナイト中の Na カチオンは、 はっきりとした分配を示さない。このような層間 カチオン種による水和挙動の違いは、層間イオン の水和イオンエネルギーに起因すると考えられる。 ¹³³Cs MAS の測定により、Stern 層と拡散層に分布 した Cs を同定することは、層間での水和のメカニ ズムを解明する上で重要な知見を与える。当日は、 ³⁹K のスペクトルについても報告する。

参考文献

T. Ohkubo, K Kanehashi, K. Saito, and Y. Ikeda, *Clays Clay Miner.*, **51**, 513-518, 2003 H. Koller and G. Engelhardt, *J. Phys. Chem.*, **98**, 1544-1551, 1994
 固体 NMR によるバクテリオクロロフィル cモデル系の構造解析
 ○秋庭健吾¹、江川文子¹、柿谷吉則²、高橋大樹¹、小山泰²

 藤原敏道¹、阿久津秀雄¹
 阪大・蛋白研¹、関西学院大・理工²

Structure analysis of bacteriochlorophyll c model systems by solid-state NMR

 Kengo Akiba¹, Ayako Egawa¹, Yoshinori Kakitani², Hiroki Takahashi¹, Yasushi Koyama², Toshimichi Fujiwara¹, Hideo Akutsu¹
 ¹Institute for Protein Research, Osaka University
 ²Faculty of Science and Technology, Kwansei Gakuin University

The photosynthetic system of green bacteria has a unique antenna complex called chlorosomes. Chlorosomes contain bacteriochlorophyll(BChl) c as the major component. The arrangement of BChl c molecules in the chlorosomes, are highly similar to that in the aggregates. Thus, we studied BChl c aggregates as a model system of chlorosomes. First, we assigned ¹³C signals with 2D ¹³C correlation experiments using RFDR and DQ dipolar recoupling sequences. We made 2D ¹³C-¹³C and ¹H-¹H spin diffusion experiments to obtain distance information. We have discriminated between intra- and intermolecular correlations by using a mixture of fully labeled and natural abundance BChl c molecules. These ¹³C-¹³C and ¹H-¹H correlation indicated that BChl c forms dimer structures that constitute column structure.

<u>序論</u>

生物のエネルギーの源は太陽光であり、このエネルギーが生体内でシステマティックに効率よ く変換される。例えば緑色光合成細菌のアンテナ複合体クロロゾームは光エネルギーを集めて一 重項エネルギーとして光合成反応中心に送って化学エネルギーに変換する。クロロゾームは細胞 質膜の細胞質側に結合している袋状の構造物であり、巨大な分子集合体である。天然クロロゾー ムで光捕集を行うのは、バクテリオクロロフィル c (BChl のからなるロッド状の構造体である。 そこでクロロゾームのモデル系として BChl c の自己会合体の構造解析を行った。このモデル系も 分子運動が制限されている巨大な構造であり、直接構造情報を得るためには固体 NMR が有効で ある。

キーワード 固体 NMR、スピン拡散法、均一同位体標識試料、バクテリオクロロフィル c

あきばけんご、えがわあやこ、かきたによしのり、たかはしひろき、こやまやすし ふじわらとしみち、あくつひでお 現在までにモデル系 BChl c の自己集合体について二つの異なる構造が提唱されている。一つ目 は parallel chain と呼ばれる平行に階段状に積み重なった構造が提案されている。これは単量体 が基本構造となっており、monomer based stacking という。二つ目は piggy-back dimer と呼ば れる上の分子が 180°回転して、反平行型に重なった 2 分子が積み重なった構造で二量体が基本 構造となっている。これを dimer based stacking という。そしてそれらがシリンダー状に会合 した構造(column 構造)をとっていると考えられている。(Fig. 2)どちらの構造なのかを解明するこ とが本研究の目的である。

Fig1. Structure of BChl c

実験

¹³C 安定同位体標識をした培地を用いて培養した *Chlorobium limicola* のクロマトフォアから メタノール、アセトンで色素を抽出し、その中からカロテノイドと BChl aをn-ヘキサンで溶出 除去した。次に HPLC を用いて BChl c を単離精製し、それをジクロロメタンに溶解させヘキサ ンで析出したものを固体 NMR の試料とした。その試料を使用して高分解能スペクトルをとるた めにマジック角試料回転(MAS)下で固体 2 次元 NMR スペクトルを測定した。全ての実験におい て試料回転周波数 12.5 kHz、¹H の共鳴周波数 499.96 MHz で Chemagnetics Infinity-plus 500 を用いて行った。信号検出には 3.2 mm 径スピナーと二重共鳴コイルを持つプローブを用いた。

<u>結果</u>

(1) 帰属、¹³C-¹³C 相関の解析

まず、共有結合している ¹³C-¹³C 相関のみを交差ピークとして観測するために短い混合時間で RFDR 法を使用し測定した。この測定法は MAS 条件下において試料回転周期に同期した 180° パルスを繰り返し照射することにより、ゼロ量子双極子相互作用を復活させる。これにより同種 核双極子結合した ¹³C 間で磁化移動が起こるので、この測定法は共有結合した同種核の帰属に有 効である。このスペクトルを用いて帰属を行ったがクロリン環の側鎖とファルネシルの帰属はピ ークが重なってしまい困難だったため、SPC・5 法を用いて完全に帰属した。この測定法は二量子 双極子相互作用を用いているので共有結合で1つ離れたスピンは負のシグナル、共有結合で2つ 離れたスピンは正のシグナルとして観測できる。その結果、部分的に重なっていたピークの符号 の違いによりスペクトル上で分離できるため、ファルネシルの帰属ができた。 次に比較的長い距離の¹³C-¹³C相関が交差ピークとして観測できる¹H駆動スピン拡散法を混合時間,0,5,10,25,50,100,250,400 ms について測定した。

しかし、¹³C 完全標識の BChl *c* ではスピン拡散法を用いて測定した場合、分子内(intra)、分子間(inter)の相関を区別できない。そこで本研究では ¹³C 均一ラベルした BChl*c* とノンラベルの BChl*c* をモル比で1:1にして混合した会合体(50%ラベル体)を使うことにより、分子間相関が分子内相関のシグナルより減少することを利用して2つの相関を区別した。

その結果、下に示すスペクトル(Fig. 3)のようにフルラベル体と、50%ラベル体でスペクトルを 比べてみると、丸および四角で示したところが 50%ラベル体のほうはフルラベル体に比べてピー ク強度が落ちていることが分かり、その部分が分子間の相関であると考えられる。また、四角で 囲った部分、例えば 1/3^1, 2/6, 2^1/7, 2^1/7^1, 7/20^1 などは 5, 10, 25 ms といった短い混合時 間でもピークが観測されており、このことから直接の双極子-双極子を通して磁化が移動したと考 えられる。 これらの分子間相関に当てはまるようなモデルを考えてみると dimer を基本とした 構造をとっていると推測できる。具体的な構造についてはクロスピーク強度の混合時間依存性を 解析することを通して明らかにしていく予定である。

Fig. 3 Comparison of ${}^{13}C-{}^{13}C$ spin diffusion spectra of 50% labeled BChl c and fully labeled BChl c at the mixing time of 100 ms

(2) ¹H 間スピン拡散を用いた ¹³C 観測 ¹H-¹H 相関の解析

(1)のスピン拡散法では単純に C-C 間の磁化移動を見ていたが、この LG-CP 法を用いた ¹H 間 スピン拡散法の測定では ¹³C から ¹H に磁化を移動させるときに ¹H-¹H 双極子結合をデカップリ ングして ¹H 間で混合が起こらないようにして ¹H-¹H 間の磁化の移動を観測している。そのこと によって ¹H 間の相関をそれらと共有結合している C-C 間の相関として観測する。(参考 第 42 回 NMR 討論会ポスター番号 2P34 高橋大樹ら) BChl cは ¹H のついている部位があまり多くないの で解析しやすいスペクトルが測定でき、構造解析に役立てることができる。

Fig. 4 Comparison of ${}^{1}\text{H}{-}{}^{1}\text{H}$ spin diffusion spectra at τ_{mix} =160 µs and 320 µs

Fig. 4 が LG-CP 法を用いた ¹H-¹H スピン拡散法で測定したスペクトルである。Fig. 3 に比べ、 著しくピークの数が減少しているのがわかる。今回の短い混合時間では長距離の磁化移動は起こ らない。混合時間≦200us なら 4~7Å程度の距離まで磁化移動すると考えられる。そのためピー クが検出されたところは比較的近い状態にあると考えられる。例えば 3^1/3^2 のクロスピークは 2.5~3.1Åの距離である。

まとめ

¹³C-¹³C スピン拡散法による C-C 間距離からの結果からスペクトルから読み取れるクロスピー クを分子内、分子間の区別をつけることができたため BChl c 会合体は dimer が層状になり積み 重なっていると推測できた。

¹H-¹H スピン拡散法による H-H 間距離測定からは ¹H が共有結合している C-C 間の相関を見ることができるためクロスピークの数が少なく解析がしやすかった。

この結果を元に距離計算をし、それに基づきより正確な構造モデルを検討する予定である。

1 P38

酸素-17 ラベル化技術を用いた、ガラスネットワーク構造 変化高感度解析法の開発

(新日鐵先端研¹、日本電子²) ○金橋康二¹、下池田勇一²、齋藤公児¹

The Development of High-Sensitive Analysis for the Process of Network Formation in Glass using ¹⁷O-labeled Techniques of Inorganic Compounds

Nippon Steel Corporation, Advanced Technology Research Laboratories¹, JEOL Ltd.² OKoji Kanehashi¹, Yuichi Shimoikeda², Koji Saito¹

Solid-state ¹⁷O NMR is very useful and powerful tools for the structural analysis of oxygen in various inorganic materials. However, there are mainly two difficulties for the its application; quite low sensitivity and large second-order quadrupolar effect. In the present study, we synthesized each ¹⁷O-labeld starting materials such as Ca(OH)₂ (*C), Al₂O₃ (*A) and SiO₂ (*S) in order to overcome low sensitivity. Using these materials, the formation of the calcium aluminosilicate (CAS) glass network was investigated at 1273 to 1673 K by MQMAS techniques at high magnetic field (16.4 T) that average the second-order quadrupolar interaction. The process of network formation of oxygen in CAS glass could be observed by means of ¹⁷O full-labeled (*C-*A-*S) materials at each temperature. Moreover, ¹⁷O NMR of selective-labeled (C-*A-S and C-A-*S) materials became possible to assign each peak in spectra of full-labeled materials. ²⁷Al \rightarrow ¹⁷O CP/MAS methods were applied in order to make the connectivity clear. Although low sensitivity was considerable disadvantage in MQMAS techniques as a result of lower efficiency of multi-quantum excitation, FAM-based pulse trains accomplished signal enhancement in MQMAS spectra by a factor of over 2.

【はじめに】

酸素は地球表層を構成する元素の中で最も多く存在している元素であり、無機材料の分野では 天然鉱物、触媒、ガラス等、多くの無機酸化物材料が産業上利用されている。無機酸化物材料の 物性とその3次元構造には密接な関係があり、骨格の中心を担っている酸素の構造を明らかにす ることは、実用材料の利用価値を高める上で非常に意義深い。実用材料の中には結晶性の低いも のも多く、X線では有用な構造情報が得にくいことから、固体 NMR が有力なツールとなりうる。 しかしながら、測定対象核である¹⁷0 は四極子核(I=2/5) 且つ低感度(天然存在比 0.037%)で あり、従来固体 NMR による構造解析は困難であった。前者の課題については、NMR 装置の高磁 場化及び MQMAS 法を適用することによって、その問題を克服することができ、我々は四極子核 を含む実用無機材料への適用を行っている[1,2]。後者の¹⁷0の測定感度を向上させることも、¹⁷0 NMR を実用的に利用するために不可欠な課題であり、高磁場化はもちろんのこと、材料中の酸 素を¹⁷0 でラベルする方法が有効である。しかし、¹⁷0 ラベル化に関しては有機化合物のラベル 化ほど一般的ではなく、数少ない報告例の中では SiO2の ¹⁷O ラベルがほとんどであり、他の無機 酸化物に関しての報告例は極端に少ないのが現状である。今回、我々はラベル化技術を取り入れ るのと同時に、FAM2 (Fast Amplitude Modulation) シーケンスを適用することによって高感度化を 試みた。さらに、無機酸化物材料の¹⁷0 ラベル化を単に感度向上のみに利用するのではなく、原 料のフルラベル化及びある特定の酸化物原料をラベル化(選択ラベル)をうまく使い分けること によって、酸素の化学構造決定に対するラベル化技術の有効性について検討したので報告する。

MQMAS、CP/MAS、酸素-17 ラベル化技術、高感度化、ガラス

かねはしこうじ、しもいけだゆういち、さいとうこうじ

【実験】

¹⁷O ラベルした原料は以下の手順にて合成した。 Ca(*OH)₂はグローブボックス中にてKOHをH₂*O(¹⁷O: 20 wt%)に溶解させ、この水溶液を氷浴下でCaCl₂と反応さ せて得られた沈殿物を蒸留水で洗浄、乾燥して得られた。 Al₂*O₃は AlO(OH)を H₂*O 共存下、密閉容器内にて 105[°]C で 7 日間反応させて Al*O(*OH)を得た後、大気中 1200[°]C で 1時間焼成することによって得た。Si*O₂はAr 雰囲気下、 無水 diethyl ether に溶解させた SiCl₄溶液を氷浴しながら H₂*O を少量ずつ滴下し、沈殿物を蒸留水で洗浄後、乾燥 して得られた。これらの合成原料が試薬と同等の構造を 有していることを XRD にて確認した。¹⁷O ラベルした CAS ガラス試料は、フルラベル(*C*A*S)、選択ラベル

(*CAS, C*AS, CA*S)を用い、51.1 Ca(OH)₂-9.5 Al₂O₃-39.4 SiO₂の組成となるように秤量し、1000~1400℃で 30 分保 持した後、銅板上で急冷することによって得た。

NMR スペクトル測定には、JEOL ECA-700 (¹⁷O; 94.9 MHz, ²⁷AI; 182.4 MHz)を使用した。¹⁷O MAS 及び MQMAS の測定には、4mm ϕ JEOL 製 ²⁷AI 及び ¹⁷O シングルチュー ナブルプローブを用い、試料回転速度は 20 kHz とした。 ³⁷AI → ¹⁷O CP/MAS 測定においては、4mm ϕ DOTY 製 3 核 プローブを用い、試料回転速度を 20 kHz とした。MQMAS バルスシーケンスは Fig. 1 に示すように z-filter 型[3]、 FAM2 型[4]及び split-t₁ + FAM2 型[5]を用いた。また、CS

(Chemical Shift) 軸の傾きが 1 になるように F1 軸方向の スケーリング処理を行った。¹⁷O NMR スペクトルの化学 シフト基準は $H_2O \ge 0$ ppm とした。

【結果・考察】

まず、CaO-Al₂O₃-SiO₂の3元系状態図から判断すると melt している温度である 1400℃焼成したフルラベル試料 の¹⁷O MAS スペクトルを Fig. 2 (a)に示す。今回のガラス 組成では BO 及び NBO が存在していると考えられるが、 これらを同定するために²⁷Al → ¹⁷O CP/MAS 測定を実施 した。四極子核の spin locking 条件を最適化することによ って良好なスペクトルが得られ(Fig.2(b))、高磁場側の ビークのみを選択的に観測したことから、高磁場側のピ ークが BO(Si-O-Al)、低磁場側が NBO(Si-O-Ca)で あると結論づけた。さらにこの試料の¹⁷0 3QMAS を測定 すると、BOにはメインビークの他にもう一つのピークが 存在していることが明らかとなった(Fig. 3)、今回のガ ラス組成を考えた場合、BO には Si-O-Al と Si-O-Si の 2 つのタイプが存在すると考えられることから、(1) 式に 示されるような核四極子結合定数(Co)と M-O 結合の ionic character (I) の経験的関係を用いて 2 つの BO の同 定を試みた[6]。

- 1º99 -

Fig. 3 ¹⁷O 3QMAS spectrum of full-labeled CAS glass.

 $C_Q = -0.203 I (\%) + 14.78$ I (%) = 100 * [EN (O) - EN (M)] / EN (O)where EN are the Pauling electronegativity value

(1) 式から求められた C_Q の値は、Si-O-Si のほうが Si-O-Al よりも大きくなっていることから(Table I)、 今回の 2 つの BO は Fig. 3 のように同定することがで きた。

次に、同試料の¹⁷O 5QMAS スペクトル測定を実施し た。最初に z-filter 型のシーケンスを用いたところ、測 定感度の低下が激しく、解析可能なスペクトルを得る のが困難であった。そこで、近年提案された FAM2 ベ ースのシーケンスを用いて 5QMAS スペクトル測定を 試みた。5QMAS スペクトルの MAS 軸方向の projection を比較したものを Fig. 4 に示す。同じ測定時間(85 h) にかかわらず、z-filter 型と比較して格段に S/N を向上 させることに成功した。また、5QMAS によって分解能 が向上し、3QMAS スペクトルの Si-O-Al に由来するピ ーク位置に 2 つのピークが存在していることが明らか となった(Fig. 5)、現在のところこれらのピークは未 同定であるが、過去の知見等から推測すると[7]、5 配 位 Al と結合した BO あるいは tricluster に由来するピー

 Table 1
 Comparison of CQ value from ¹⁷O 3QMAS spectrum with that from ionic character of each atom.

	C Q from MQMAS / MHz	C o . from ionic character / MHz
Si-O-Al	3.8	4.1
Si-O-Si	7.2	4.9
Si-OCa	2.5	2.6

Fig. 4 S/N comparisons of various pulse sequences.

Fig. 5 17O 5QMAS spectrum of full-labeled CAS glass.

クである可能性が考えられる。このように、FAM2 シーケンスの適用によって、週末程度の時間 で良好な¹⁷O 5QMAS スペクトルを取得することができるようになり、その結果新たなサイトの 存在を発見することが可能となった。

続いて、フルラベル試料を用いてガラスネットワーク構造の形成過程における酸素構造の変化 について検討した。まず 1400℃焼成試料における、各ラベル試料の¹⁷O MAS スペクトルを測定 したところ、フルラベルした試料、network modifier (Ca(OH)₂)をラベルした試料、network former (SiO₂)をラベルした試料のスペクトルの線形はほとんど同じであり、BO/NBO (= 42/58)の比 も一定であったことから、この温度では CAS ガラスが完全に熱平衡状態に達しており、十分な熱 拡散によって均一な化学構造を有しているといえる。即ち、ガラス試料の溶融状態の酸素構造を 決定するには、いずれかの原料を¹⁷O ラベルすれば良いことがわかる。次にフルラベル試料を用 いて、原料から熱平衡状態に到達するまでの酸素ネットワーク構造の変化を追跡した。Fig. 6 に その結果を示す。原料では Ca(OH)。及び SiO₂に由来するピークが重なっており (SiO₂)、高磁場側、
Ca(OH)₂;低磁場側)、70 ppm 付近に Al₂O₃に帰属されるビー クが存在する。1000℃になると、Ca(OH)₂は脱水し CaO とな っており、110-140 ppm の NBO 領域に CaO 由来の新たなピー クが観測されている。一方、SiO₂ 及び Al₂O₃ のビークは変化 していないことから、この温度では 3 者間の原料同士の化学 反応は始まっていない。1300~1320℃になると、かなりの酸 素構造の多様化が見られていることから、原料間の反応が進 行して安定な鉱物相が析出しているものと考えられる。Melt の初期段階である 1320℃になると、SiO₂ のピークもほぼ消失 しており、1350℃でガラス構造をとっていることがわかった。

フルラベル試料で観測された各ピークが、どの原料由来の ピークであるかを特定するために、選択ラベルを用いた実験 を実施した。Fig. 7に1300℃におけるフルラベル及び選択ラ ベル試料の¹⁷O MAS スペクトルを示す。Fig. 7の結果から、 この温度で見られる多様な酸素構造は主に CaO と SiO₂の反 応によって生じたものであり、Al₂O₃は未だ反応にはほとんど 関与していないことが明らかとなった。

【まとめ】

今回、無機材料の構造の中心をなす酸素原子に着目し、高 感度で酸素の化学構造を解析するための手法について検討し た。まず、高磁場下(16.4 T)での MQMAS 法の適用によっ て、¹⁷Oの四極子相互作用の影響を消去し、高分解能スペク トルを得ることができた。また、もう一つの¹⁷O NMR 解析の 大きな欠点であった極端な低感度については、¹⁷O ラベルし た無機材料を合成し、FAM (Fast Amplitude Modulation)をベ ースとしたパルスシーケンスを用いることによって、この間 題を克服した。さらにこの¹⁷O ラベル技術を、感度向上のみ に留まらず、材料中の酸素構造、特にガラスのネットワーク が形成する過程での構造変化を捉えるために適用した、その 結果、フルラベルガラスを用いることによって、各焼成温度 において材料中の全ての酸素構造を抽出することができるの

Fig. 6 Process of network formation of fulllabeled CAS glass. (a) r.t.. (b) 1000° C. (c) 1320° C. (d) 1350° C.

Fig. 7 17 O MAS spectra of CAS glass at 1300 °C. (a) full-label. (b) SiO₂ label. (c) Al₂O₃ label.

に対し、選択ラベルを用いれば、ネットワーク形成過程における各酸素ビークの同定が可能となることを見出した。今回の実験結果から、【高分解能(高磁場 MQMAS)】+【高感度(高磁場、FAM、¹⁷O ラベル)】+【¹⁷O フルラベル及び選択ラベル技術】+【他元素との結合連鎖構造解析】 を組み合わせることによって、初めて無機酸化物材料の詳細な構造解析が可能となると考えられる。この組み合わせは、多様な無機酸化物材料(触媒、セラミックス等)への適用が可能であり、 実用材料の構造解析や新規材料設計に有効な手段になるものと期待される。

【文献】

[1] K. Kanehashi and K. Saito, Tetsu-to-Hagane, 88 (2002) 28.

[2] K. Kanehashi and K. Saito, Energy & Fuels, submitted.

- [3] J. P. Amoureux, C. Fernandez and S. Steuernagel, J. Magn. Reson., A123 (1996) 116.
- [4] A. Goldbourt, P. K. Madhu and S. Vega, Chem. Phys. Lett., 320 (2000) 448.

[5] A. Goldbourt and S. Vega, J. Magn. Reson., 154 (2002) 280.

- [6] S. Schramm and E. Oldfield, J. Am. Chem. Soc., 106 (1984) 2502.
- [7] J. F. Stebbins and Z. Xu, Nature, 390 (1997) 60.

1 P39

¹H・および ¹³C・NMR スピン格子緩和時間に基づく非晶質医薬品に対する PVP の安 定化機構の解析

(国立衛研) 〇阿曽幸男、吉岡澄江、小嶋茂雄

¹H and ¹³C spin-lattice relaxation time measurements for analyzing the stabilization mechanism of amorphous nifedipine by PVP

(National Institute of Health Sciences) Yukio Aso, Sumie Yoshioka and Shigeo Kojima

 T_1 and $T_{1\rho}$ of protons in nifedipine PVP solid dispersions were averaged by spin diffusion. Observed T_1 and $T_{1\rho}$ values were larger than those calculated by assuming that molecular mobility of each component in the solid dispersions is the same as that in the pure system. Difference between the observed value and the calculated value showed maximum at PVP content of 25%, at which molecular ratio of nifedipine and PVP monomer unit is 1:1. This suggests that nifedipine is stabilized by interaction with PVP in the solid dispersions.

<u>はじめに</u>

ニフェジピンおよびフェノバルビタールは水に溶けにくく、その溶解性を改善するため非晶質 化される。非晶質化した医薬品はエネルギー的に不安定なために、保存中に結晶化しやすいが、 10%程度の少量の PVP を添加することにより、結晶化が抑制され安定化されることが知られている。 また、非晶質ショ糖においても、少量の PVP が結晶化を抑制すること、さらに、ラマンスペクト ルによる検討により、安定化には PVP のカルボニル基とショ糖の水酸基の水素結合による相互作 用が関連することが報告されている。ニフェジピンおよびフェノバルビタールの PVP による安定 化もショ糖と同様の相互作用が関与していると考えられるが、ニフェジピン、フェノバルビター ルおよび PVP は何れもカルボニル基を有するため、ラマンスペクトル、IR によって相互作用を 確認することは困難と考えられる。NMR 緩和時間は分子運動に依存するため、相互作用による 運動性の変化が緩和時間に反映されものと期待される。そこで、本研究では非晶質医薬品と高分 子との相互作用を明らかにすることを目的として、ニフェジピンと PVP の固体分散体について1H、 および ¹³C·NMR の T₁、T₁,測定を行った。

<u>実験</u>

ニフェジピンと PVP の固体分散体は熔融急冷法により調製した。薬物と PVP をメタノールに 溶解し、ロータリーエバポレーターを用い、メタノールを留去した。得られた粉末を約 180℃で 熔融した後、液体窒素に入れ急冷した。固体分散体のプロトンの緩和時間はパルス NMR (JEOL DATUM、25MHz)を用いて測定した。T₁は Inversion recovery 法で測定した。T₁₀は 10 ガウス

緩和時間、結晶化、非晶質

あそゆきお、よしおかすみえ、こじましげお

Fig. 1 T_1 and T_{10} of protons in nifedipine PVP solid dispersions.

のロッキング磁場強度で測定した。固体分散体の¹³Cの緩和時間は固体高分解能 NMR (Varian、 400MHz)を用いて測定した。

結果および考察

(1) ¹H·NMR 緩和時間

ニフェジピン-PVP 固体分散体の実験室系および回転系における緩和過程は何れの PVP 含量のニフェジピン固体分散体においても、1 つの指数関数によって表すことができ、スピン拡散により緩和時間が平均化されていることが明らかとなった。Fig.1に固体分散体のプロトンの T₁および T₁の PVP 含量依存性を示す。図の実線は分散体中のニフェジピンと PVP の運動性が、単独の場合と変わらないと仮定して、計算した緩和時間の計算値である。緩和時間の実測値と計算値は一致せず、PVP 含量が 25%付近で最も乖離が大き

くなった。25%の PVP 含量は PVP モノマーユニット とニフェジピンのモル比が 1:1 に相当することから、 ニフェジピンの NH 基と PVP のカルボニル基との水素 結合による相互作用の存在が示唆される。

(2) ¹³C-NMR 緩和時間

ニフェジピン固体分散体における PVP カルボニル炭 素の T₁の PVP 含量依存性を示す。PVP カルボニル炭 素の T₁は PVP 含量が低いほど、すなわちニフェジピ ンの含量が高いほど大きかった。カルボニル炭素の T₁ はピロリドン環の回転運動の速さに依存すると考えら れ、T₁の変化からピロリドン環の回転運動がニフェジ ピンの存在により遅くなっていることが示唆される。 これはプロトンの T₁ および T₁₀の結果を支持するもの と思われる。

Fig. 2 T_1 of carbonyl carbon of PVP in nifedipine-PVP solid dispersions.

-203 -

各種 Recoupling 技術を用いた絹モデルペプチドの精密立体構造の決定

(農工大工¹・バリアンテクノロジーズジャパン²)
 〇中澤靖元¹、亀田恒徳¹、芦田淳²、朝倉哲郎¹

Determination of the Precise Structure of Silk Fibroin Model Peptide studied with Solid-State NMR Yasumoto Nakazawa, Tsunenori Kameda, Jun Ashida and Tetsuo Asakura Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Tel: 042-383-7733 Fax: 042-383-7733 e-mail: yasumoto@cc.tuat.ac.jp

The precise structure of silk fibroin from *Bombyx mori* before spinning was clarified by several recoupling techniques of solid-state NMR. The primary structure of the silk fibroin from *Bombyx mori* is considered to be a repeating sequence of Ala and Gly residues, $(Ala-Gly)_n$. The torsion angles of Ala and Gly residues in the model peptides, $(AG)_{15}$ which is a typical repeated sequence of the crystalline domain of *B. mori* silk fibroin, were determined by the conformation-dependent ¹³C chemical shifts, 2D spin-diffusion NMR and REDOR methods. Moreover, in order to determine the whole structure of the peptide and protein by solid-state NMR, we measured the ¹³C-¹H dipolar-assisted rotational resonance. In this study, four kind of solid-state NMR methods were applied to determination of the precise structure of the model peptide of *B. mori* silk fibroin.

[Introduction]

本研究では、固体 NMR 法を用いたペプチドおよびタンパク質の立体構造を決定することを目的とし、 主に固体 NMR の Recoupling 法を用いた局所的な構造解析を行ない、絹フィブロインなどの繊維タン パク質に応用してきた¹⁻³。さらに本研究では、目的タンパク質の全体構造を決定する方法についても 組み合わせ、体系的な生体高分子の立体構造決定法を確立することを目的とする。

現在,溶液 NMR 法を用いたタンパク質の構造解析では,NOESY を中心とした構造解析手法が確立 している。一方,固体 NMR 法に関しては,最近,タンパク質の構造決定が試みられているものの,体 系的な構造決定手法が確立されていない⁴。そこで,種々の双極子-双極子相互作用測定法と化学シフ トを組み合わせた,タンパク質精密構造解析手法の体系化を目指し,絹タンパク質に応用する。本研 究では、タンパク質精密構造解析の基礎的な知見を得るため,[U-¹³C]Ala,[U-¹³C]Gly,および,各種 安定同位体ラベルを施した家蚕モデルペプチド(AG)₁₅を合成し,化学シフト,二次元スピン拡散 NMR 法,¹³C-¹⁵N 及び¹³C-²H REDOR 法,竹腰らが開発してきた¹³C-¹H dipolar-assisted rotational resonance(DARR)法⁵を用いて構造解析を行った。

[Materials and Methods]

エリ蚕絹モデルペプチド、(AG)15 は Fmoc 固相合成法により合成した。モデルペプチドは必要に応じて安定同位体ラベルを施した。

¹³C-¹H dipolar-assisted rotational resonance(DARR)法は, CMX Infinity400NMR 分光計(Chemagnetics 社 製) を用い, 試料回転速度 22KHz, 室温で測定を行った。プローブは 3.2mm ϕ T-3 HX/MAS プローブを 用い, tm 間の CW 照射は 22kHz になるよう調整を行った。ミキシングタイムは 0~1500ms まで行った。DARR 測定試料は, [U-¹³C]Ala, [U-¹³C]Gly のアミノ酸と, 局所的に安定同位体ラベルを施した家 蚕 絹 フィブロインモデルペプチド, (AG)₆ [1-¹³C]A₁₃[1-¹³C]G₁₄ (AG)₈ および, (AG)₆ A[U-¹³C]G₁₄AG[U-¹³C]A₁₇G (AG)₆ の 4 試料を用いて行った。

固体 NMR、絹モデルペプチド、REDOR、スピン拡散、立体構造 なかざわやすもと、かめだつねのり、あしだじゅん、あさくらてつお

[Results and Discussion]

これまでに当研究室では, 家蚕絹フィブロイン繊維化 前(Silk I 型)構造を「くり返 し β ターンタイプ II 型構造」 であることを明らかにした¹。 Figure 1 には我々が提案した Silk I 型構造を示す。本研究 ではさらに、¹³C-²H REDOR 法を用いて、安定同位体ラベ ル部位の原子間距離を決定、 その構造を確認した。すな わち, ¹³C-²H REDOR⁶法にお いては、各¹³C,²H ラベル試 料の原子間距離、B、C、D

を測定したところ、予想値との極めて良い一 致が得られた(Figure 1B-D)。我々は既に分子 内水素結合の存在から予想される 13 C- 15 N 核 間距離 (Figure 1A) を 13 C- 15 N REDOR 法に よって測定, Figure 1 の構造から予想される 距離 4.0Å と一致することを確認している¹。

本研究ではさらに、DARR 法を用いた家 蚕絹フィブロインモデルペプチドの解析を 行った。Figure 2 には、家蚕網フィブロイン モデルペプチド、(AG)₆A[U-¹³C]G₁₄AG [U-¹³C]A₁₇G(AG)₆の DARR スペクトルを示 す。このサンプルは Silk I 型構造を形成する ことによって空間的に接近すると考えられ る Gly₁₄ と Ala₁₇の炭素核が全てラベルされ ている。Mixing time の増加に伴い、残基内 相関ピークとともに、残基間の相関ピークが 現れ、Figure 1 の構造モデルにおいて、E~G の距離に対応した相関ピーク強度の増加が 観測された。この結果は、E~G の距離に対 応した炭素核が空間的に近く、全ての

Figure 1 A repeated β -turn type II structure as a model for silk I. The inter-atomic distance, B, between the ¹³C=O of the (i-2)th Gly and C α H of (i+1)th Ala residues was determined with ¹³C-²H REDOR⁶. Similarly, the distances, C (¹³C α of (i)th Gly---C α H of (i-1)th Ala) and D(¹³C=O of the (i)th Gly---C α H of (i+1)th Ala) were determined with ¹³C-²H REDOR

Figure 2 ¹³C-¹H dipolar-assisted rotational resonance (DARR) spectra of the model peptide from *B. mori* silk fibroin, (AG)₆ $A[U^{-13}C]G_{14}AG[U^{-13}C]A_{17}G(AG)_6$. The mixing time(τ_m) were 400ms (A and C) and 1500ms(B and D).

REDOR 測定の結果を満足するものであり,提案した家蚕絹フィブロインモデルペプチド(AG)₁₅における繊維化前構造が確かにくり返し β ターン構造を形成していることを示した。 最後に, ¹³C-²H REDOR の測定に関して共同研究を行った West Virginia University の Prof. Terry Gullion に深く感謝致します。

[References]

(1) Asakura, T.; Ashida, J.; Yamane, T.; Kameda, T.; Nakazawa, Y.; Ohgo, K.; Komatsu, K. J. Mol. Biol. 2001, 306, 291-305.,
 (2) Nakazawa, Y.; Asakura, T. JAm Chem Soc 2003, 125, 7230-7237.,
 (3) Nakazawa, Y.; Bamba, M.; Nishio, S.; Asakura, T. Protein Sci. 2003, 12, 666-671.,
 (4) Castellani, F.; van Rossum, B.; Diehl, A.; Schubert, M.; Rehbein, K.; Oschkinat, H. Nature 2002, 420, 98-102.,
 (5) Takegoshi, K.; Nakamura, S.; Terao, T. J Chem Phys 2003, 118, 2325-2341.
 (6) Gullion, T.; Asakura, T.; Kishore, R. J. Am. Chem. Soc. 2003, 125, 7510-7511.

固体二次元 MAS NMR による結晶性キチンの構造解析

ブルカーバイオスピン株式会社 〇甲野 裕之

Structural Analysis of Chitin Crystals by Two-dimensional MAS NMR Spectroscopies

Hiroyuki Kono

Bruker BioSpin Company, Ltd., Tsukuba, Ibaraki 305-0051, Japan e-mail address: hiroyuki.kono@bruker-biospin.jp

Abstract: ¹³C Homonuclear through-bond correlations of α - and β -chitin were determined by using the two-dimensional refocused CP INADEQUATE spectra of the chitin allomorphs purified from crab shell and squid pen, respectively. The obtained 2D ¹³C-¹³C correlation spectra where two directly bonded carbons share the common frequency in the DQ dimension enabled us to assign all ring carbon resonances of the chitin allomorphs for the first time. Following the assignment of ring carbons, ¹H chemical shift of proton(s) attached to each carbon nuclei composing chitin allomorphs were assigned by the MAS-J-HMQC experiment of the samples that provides pure in-phase chemical shift correlations between a pair of bonded proton and carbon nuclei. Finally, through-space ¹H-¹³C correlations in the chitin allomorphs were determined by the dipolar-driven FSLG-HETCOR spectra of the chitins, which provided ¹H chemical shift of NH group in the chitin allomorphs. In addition, conformational difference between acetamide group in α -chitin and that in β -chitin were strongly suggested by comparing long-range ¹³C-¹H correlations observed in the FSLG-HETCOR spectra of α -chitin with those of β -chitin.

1. 緒言: キチンは昆虫・蟹など甲殻生物に所在し、天然に二種類の結晶多形 (α 、 β) が存在することが 知られている。キチン・セルロースといった構造多糖類は単結晶を得られず、繊維 X 線回折に基づいてその 結晶構造モデルが提案されている。それら構造モデルによると、 α キチンはメチロール基が 2 パターンの水 素結合様式を持ち、それらコンフォメーションの存在比が 1:1、さらに単位胞が空間群 $P_{2,2,2_1}$ に属する逆平 行鎖構造⁽¹⁾であるとされている。一方、 β キチンは構成する全ての N- アセチルグルコサミン残基が立体的に 等価であり、並行鎖構造⁽²⁾と考えられてきた。CPMAS ¹³C NMR もまた有力な構造解析手法であるが、 α 、 β と もに各炭素原子が一重線であるため、 α キチンの構造モデルにおける二種類の残基の存在を説明できなかっ た。さらに、CPMAS ¹³C NMR では α 、 β 間でC3、C5 シフトが僅かに異なるが、他の共鳴線の化学シフト、線形 は完全に一致するため、ごく限られた情報しか得られていない。本研究では固体 2D ¹³C - ¹³C、¹H - ¹C 相関 MAS NMR 実験でキチンの二つの結晶構造の違いを評価、検討したので報告する。

2. 実験: α 、 β - キチン測定試料は蟹甲羅、イカ剣からそれぞれ精製したキチンを用いた。NMR 測定は Bruker AV300WB(7.1T)分光計を用い室温で行った。2D Refocused CP-INADEQUATE (${}^{13}C-{}^{13}C$ 相関)⁽³⁾、2D MAS-*J*-HMQC (${}^{13}C-{}^{14}H$ 相関)実験⁽³⁾により、 α -、 β -キチンの ${}^{13}C$ 、 ${}^{14}H$ 共鳴線帰属を行い、2D FSLG-HETCOR 実験に よってロングレンジの ${}^{13}C-{}^{14}H$ 相関を決定した。

3. 結果と考察: INADEQUATE 実験によって決定された各炭素原子の共鳴線帰属結果を表 - 1 に示す。1D スペクトルでは、 β -キチンの C3, C5 共鳴線は完全に重なっていたが、2D スペクトルの二量子遷移軸方向で 明瞭に分離することができた。 α - 、 β - キチンともに天然セルロースに見られるような ¹³C 共鳴線の分裂 ⁽⁴⁾ は確認されず、全ての炭素原子がそれぞれ 1 本の共鳴線であることが確認できる。

 $\alpha - \zeta \beta - \mp \mp \gamma on {}^{13}C^{-1}H$ 相関スペクトルを図 - 1、2にそれぞれ示す。MAS-J-HMQC スペクトル(図-1a、2a) では直接結合した one-bond の ${}^{13}C^{-1}H$ 核間の相関を示すことから、OH、NH を除く H 共鳴線の帰属が可能となった。比較的短い混合時間(20 μ s) で HETCOR スペクトルを測定した結果、2-ないし 3-bond の相関が得られた(図-1b、2b)。 α 、 β キチン両方のスペクトルにおいて約 9ppm 付近に C2、C3 と NH の相関が確認され、NH プロトンが帰属できる。OH プロトンとリングカーボンの相関は図-1b、2b の点線で示すように約 4-6ppm 付近に現れているが、MAS-J-HMQC スペクトルで観測された one-bond の ${}^{13}C^{-1}H$ 相関と重なり合っているために、今回の実験では正確な帰属は得られていない。本実験で帰属されたリング、NH プロトン共に共鳴線の分裂は全く観測されないことから、 α -キチンのX線回折結果 ${}^{(0)}$ で示唆された 2 種類のコンフォメーションの存在は支持できない。

Keyword: キチン、INADEQUATE、HMQC、HETCOR、固体二次元

こうの ひろゆき

Table 1. ¹³C and ¹H Chemical Shifts of α - and β -chitin

	¹³ C Chemical Shifts / ppm (¹ H Chemical Shifts / ppm)								
Allomorph	C1 (H1)	C2 (H2)	C3 (H3)	C4 (H4)	C5(H5)	C6 (H6)	CH ₃	C=0	"NH
α-Chitin	104.0 (4.3)	54.8 (3.5)	73.1 (3.3)	82.9 (3.0)	75.6 (3.2)	60.6 (3.7)	22.6 (1.3)	173.0	(8.9)
β-Chitin	104.1 (3.6)	55.4 (3.2)	75.1 (3.0)	83.9 (3.0)	74.0 (3.0)	61.0 (2.9)	22.8 (1.3)	174.0	(9.3)

次に混合時間 100 μ s で HETCOR 実験を行った(図-1c、2c)結果、 αキチンでは NH から C2, C3, C5 への 相関が得られたのに対して、 β キチンでは C2, C3, C4 への相関が見られ、C5 – NH 間の相関は観測されない。こ の結果は NH の水素原子は αキチンでは C4 より C5 の近傍に、 β キチンでは C5 よりも C4 の近傍に位置してい ることを示している。また図-1c 中の矢印で示すように、αキチンではメチル炭素と C6 に直接結合した水素 原子との相関が観測されたのに対し、 β キチンではそのような相関は得られなかった。これら結果は α-、 β キチンにおけるアセトアミド基のコンフォメーションの違いを明確に示していると考えられる。

以上の NMR 測定結果より、α、βキチンはそれぞれ単一のコンフォメーションからなる ルアセチルグ ルコサミン残基から構成されることが明らかになった。分子鎖配列に関する情報は現在ところまだ得られて いないが、残基レベルでのα、βの大きな違いはアセトアミド基のコンフォメーションにあり、NH が関与す る水素結合様式の違いを顕著に示していると予想している。

《参考文献》

(1) Minke, R. and Blackwell, J. J. Mol. Biol. 1978, 120, 167 181. (2) Gardner, K. H. and Blackwell, J. Biopolymers 1975, 14, 1581 1595. (3) Kono, H., Erata, T., and Takai, M. Macromolecules 2003, 36, 5131 5138. (4) Kono, H., Yunoki, S., Shikano, T., Fujiwara, M., Erata, T., Takai, M. J. Am. Chem. Soc. 2002, 124, 7507 7511.

スポーツ選手用コンパクト MRI の開発

 (筑波大学物理工学系¹, ㈱エム・アール・テクノロジー², 筑波大学臨床医学系³)
 ○栗本岳明¹、白猪 9⁻¹、富羽貞範¹、松田善正⁻¹、宇津澤 慎²、 拝師智之²、巨瀬勝美¹、吉岡 大³、新津 守³

Development of a Compact MRI for Athletes

Institute of Applied Physics, University of Tsukuba¹, MR Technology Inc.², Institute of Clinical Medicine, University of Tsukuba³ T. Kurimoto¹, T. Shirai¹, S.Tomiha¹, Y. Matsuda¹, S. Utsuzawa², T. Haishi²,K. Kose¹, H. Yoshioka³,M.Niitsu³

MRI is very useful for diagnosis of sports injuries because it can visualize anatomical structure and, often, physiological status of bones, joints, and tendons. For sports injuries, compact MRI systems can play an important role because about 80% of them take place at limbs. In the present study, we have developed a compact MRI system for limbs and obtained MR images of several sports injuries such as knee injuries of soccer players.

【はじめに】

スポーツ傷害は、プロ選手にとっては職を失う恐れもある深刻な問題である.一般の選手にとっても楽 しみを失う、もしくは一生その痛みと付き合わなくてはならない重大な問題である.しかもスポーツ傷害は、 治療を行っても完全に回復するという保証は無い.そのため、予防が非常に重要となってくる.ところが、 現状では手軽かつ日常的に診断できる装置は存在しない.全身用 MRI 装置は、大病院にしかなく、検 査コストも高いため、日常的な診断に用いるのは困難である.現在多くの医療施設で使われている X 線 診断装置は、放射線被曝のため、日常的に使用するのは不可能であり、関節などの描出能がMRIに比 べ劣っている.

さらに近年,様々な社会環境の変化に伴い,スポーツに対する関心が高まり,スポーツの実施人口が 増加するとともに,その実施目的,実施内容も多様化している.そのため,今後スポーツ傷害に悩まされ る人は増加するであろう.

そこで当研究室では,手軽かつ日常的な診断に使用できる,スポーツ選手用コンパクトMRI装置の開発を行った.¹⁾

【システム】

Fig.1 に,本研究で開発を行った,スポーツ選手用コンパクト MRI システムの全体像を示す.また, Fig.2 に撮像中の様子を示す.本システムにおいては,スポーツ傷害の中で四肢の傷害が占める割合が 極めて多い,という点を踏まえ,四肢専用のシステムとする事により,非常にコンパクトな装置とする事が 可能となった.

本システムは,

(1)静磁場強度 0.2 T,均一領域 40 ppm over 150 mm dsv, ギャップ 250 mm, サイズは前面から見て, 幅 700 mm,高さ 1040 mm,奥行き 600 mm,総重量は 1250 kg の永久磁石磁気回路,

(2)3 軸方向に勾配磁場を作り出す勾配磁場コイル(効率は X 軸方向が 0.050G/cm/A, Y 軸方向が 0.048G/cm/A, Z 軸方向が 0.070G/cm/A),

(3) 高周波磁場を送信し, また信号を受信する内径 190mm の RF プローブ,

(4)パルス系列, 画像再構成, 高周波発信器など, システム全体を制御し, 処理をするコンパクト MRI コ ンソール、²⁾

(5)外来ノイズを遮断するための,幅160 cm×高さ213 cm×奥行き241 cm の銅メッシュ製のシールド ルーム.

から構成されている.

コンパクトMRI,スポーツ障害,永久磁石磁気回路,診断用,人体用

くりもとたけあき、しらいとおる、とみはさだのり、まつだよしまさ、うつざわしん、はいしともゆき、こせかつみ、よしおかひろし、 にいつまもる

Fig.1. System overview

Fig.2. Knee imaging

RF プローブの写真を Fig.3, Fig.4 に示す. RF プローブは, RF シールドと, タンク回路から構成され る. RF シールドは, RF の干渉や外来ノイズを遮断するためのアルミチャネルと, 厚さ 0.3 mm の真鍮板 からなる. タンク回路は, 高周波を撮像試料へ送信, 撮像試料からの NMR 信号を受信する RF コイルと, RF コイルのチューニングと 50 Ωマッチングを取るための, チューニングキャパシタ, およびマッチングキ ャパシタで構成されている. RF プローブの内径は 190mm である.

Fig.3. RF probe box

Fig.4. RF coil

【撮像結果】

上記の装置を用いて, 膝に傷害を持つサッカー選手の膝の撮像を行った. 撮像シーケンスは 3D の勾配エコー法, TR/TE = 80 ms/16 ms, 画素数(128)³, voxel size (1.3 mm)³, 画像取得時間は約 20 分である. Fig.5 は膝の Sagittal 像, Fig.6 は膝の Axial 像である. Fig.5 においては後十字靭帯が確認できる. また, Fig.7 は半月板損傷の有る被験者の膝の画像であるが, この画像から放射線科医より半月板損傷の所見が得られた.

Fig.5. Sagittal image

Fig.6. Axial image

Fig.7. Meniscus injuries

Fig.8, Fig.9 は 3D 勾配エコー法, TR/TE = 80 ms/16 ms, 画素数(128)³, voxel size (1.3mm)³ で 撮像した画像であるが, Fig.8 は臥位で, Fig.9 は立位でそれぞれ撮像した画像である. このように本装 置はオープン型のマグネットを使用しているため, 立位で荷重のかかった状態での膝の撮像などを行う事 ができる. Fig.10 は立位での撮像の様子である.

Fig.8. Lying pose

Fig.9. Standing pose

Fig.10. Standing pose acquisition

Fig.11 は掌を 2D スピンエコー法, TR/TE = 100 ms/24 ms, 画素数(256)², pixel size (1mm)²で撮像した画像である. 10 秒程度で, このような画像も取得可能であり, 撮像位置までのアクセスが短いことから, 運動負荷をかけながらの撮像なども容易である.

Fig.11. 2D image of palm

【むすび】

本研究では、手軽かつ日常的な診断に使用できる、スポーツ選手用コンパクトMRIの開発を行った. スポーツ傷害の代表例として、膝に傷害を持つ被験者の撮像を行い、その結果、半月板の傷害を診断す る事ができた.しかし、現状のハードウェアでは分解能の不足と、T2 強調画像が取得できなかったため、 半月板と並び傷害の頻度が高い、靱帯の傷害や、その他の部位の所見は得られなかった.

今後,四肢の各部位に最適化した RF プローブの作製,勾配磁場系の強化,高速スピンエコー法による撮像の高速化,そしてそれにともない可能となる, T₂ 強調画像の取得,などを実現して,実用化に向けてさらに研究を進めて行く予定である.

【参考文献】

 1) 栗本岳明,白猪亨,松永吉晴,松田善正,拝師智之,宇津澤慎,巨瀬勝美,吉岡大 「第 41 回 NMR 討論会講演要旨集」P382,P383 (2002)
 2) THis is The sector of the sector

2) T.Haishi, T.Uematsu, Y.Matsuda, K.Kose: Magnetic Resonance Imaging, 19, 875 (2001)

マウス用コンパクト MRI の開発

(筑波大学物理工学系,*㈱エム・アール・テクノロジー) 〇白猪亨,松田善正,拝師智之*,宇津澤慎*,巨瀬勝美,

Development of a Compact MRI for Mouse

Institute of Applied Physics, University of Tsukuba, ^{*}MR Technology Inc., OT. Shirai, Y. Matsuda, T. Haishi^{*}, S. Utsuzawa^{*}, K. Kose

Many biologists want to use an MRI for mice in their own laboratories, which can be used as a complementary imaging tool against the other measurement modalities; an optical microscope, micro-PET, or micro-CT. However, existing MRI systems developed for mice or small animals are very large (installation space; $\sim 20 \text{ m}^2$) and expensive. In the present study, we developed a compact MRI using a yokeless permanent magnet for adult mice and acquired images of live and chemically fixed adult mice.

1. 研究の背景

ポストゲノム時代を迎えた現在、実験動物の代表であるマウスに遺伝子操作を施し、その機能 発現を解析しようとする研究が行われている。この研究が進められると、ゲノム創薬や疾病遺伝 子の単離などによって、癌や先天的な病気、不治の病などの治療に役立つといわれている。こう いった流れの中で、MRIを用いて遺伝子操作されたマウスの内部構造を観察したいという要求が ある。従来は、4.7Tや7Tなどの超伝導磁石を用いたシステムが使われていたが、設置面積が広 く(~20m²)、非常に高価(~2億円)であるため、研究室レベルでの購入・使用は難しく、広い 普及には至っていないのが現状である。また特別なマウスを飼育している施設は、生物学的に閉 鎖されていることが多いため、その環境下に設置できる小型の MRI も望まれている。そこで、永 人磁石(1T)を用いた、安価で設置面積が小さい(~2m²)マウス用 MRI の開発を目的として研 究を行った。

2. システム

Fig.1 に示すように、PC・デジタル制御系・トランシーバー・3CH 勾配磁場電源・RF トラン スミッターが一つのラックに入ったコンソール(54 cm(幅)×77cm(高さ)×60cm(奥行))と、1T

Fig.1 System overview (left), Gradient coil set (upper-right), 1T permanent magnet (bottom-right)

MRI, コンパクト MRI, 永久磁石, マウス

しらいとおる、まつだよしまさ、はいしともゆき、うつざわしん、こせかつみ

永久磁石(57.5 cm(幅)×52cm(高さ)×48cm(奥行)、ギャップ9 cm、重量 980 kg)、勾配コイル、 RF プローブなどを組み合わせたシステムを構築した。勾配コイルは、0.5mmの被覆銅線で25 ターン巻いた Maxwell ペアと平行四線コイルを用いた。システム全体は 1m×2m のスペースに 設置可能である。

また、Fig.2 に示すように、マウス頭部が均一に励起されるような RF コイル (直径 30mm、長 さ約 45mm)を作成した。コイルは、幅 5mm、厚さ 100μm の銅箔を 8 ターン、2mm 間隔で巻 いた。

Fig.2 Probe box : external view (left), internal view (middle), RF coil (right)

3. 撮像実験

<化学固定マウスの撮像>

Fig.3 に示したようなブアン固定された 8 週齢のマウス用いて撮像を行った(Fig.4)。用いたパ ルスシーケンスは、3D 勾配エコー法で、TR=100 ms、TE=5 ms とした。なお、ボクセル数は 256 ×256×256、サンプリングレートは 20 μs、ピクセルあたりのバンド幅は、195 Hz とした。8 時 間の測定時間で、Fig.4 のように良好な SNR の画像が得られた。

Fig.3 Chemically fixed mouse using Bouin's solution (age : 8 weeks, length : about 15 cm)

Fig.4 2D slice selected from a 3D image dataset acquired with a 3D gradient echo sequence (TR = 100 ms, TE = 5 ms, FA=90°, 256 x 256 x 256 voxels, Voxel size : 150μm cube, NEX 4, Acquisition Time : 8 hours).

Sagittal (left), transverse (middle), coronal (right).

<Live マウスの撮像>

Fig.5 にあるようなコンプレッサーを用いて、8~10 週齢のマウスを円筒型のホルダーに入れ、 ガス麻酔を施して撮像を行った。ガス麻酔は、イソフルランを用い、流速を 500 ml / min、濃度 をおよそ 1.5 %とした。Fig.6 に 3D·スピンエコー法による Tı 強調画像、T₂ 強調画像、3D·勾配エ コー法(FLASH)による T1 強調画像の撮像結果を示す。

T₁WI, SE, TR=500 ms, TE=15 ms, 256 x 128 x 32 dataset, NEX 1 Voxel size : 200µm x 200µm x 2mm Acquisition Time : 37min.

256 x 128 x 32 dataset, NEX 1 Voxel size : 200µm x 200µm x 2mm Voxel size : 200µm x 200µm x 2mm Acquisition Time : 88 min.

T₂WI, SE, TR=1200 ms, TE=60 ms, T₁WI, FLASH, TR=30 ms, TE=5 ms,

FA=70°, 256 x 128 x 32 dataset, NEX 2 Acquisition Time : 4.2min.

Fig.6 Live mouse images

次に 10 週齢のオスのマウスに 0.8%の MnCl2水溶液 (20mg / kg) を両脇から皮下注射し、8 日 後のマウスを撮像した。用いたパルスシーケンスは FLASH で、TR=30 ms、TE=5 ms、フリッ プアングルを 80°とし、ボクセル数を 256×128×128、ボクセルサイズを (200μm)³ 、NEX 8 と した。Fig.7にこの撮像結果を3軸方向でそれぞれ示す。

2D slices selected from a 3D image dataset acquired with a FLASH sequence (TR=30 ms, TE=5 ms, FA=80°, 256 x 128 x 128 data set, NEX 8, Voxel size : 200µm cube, Acquisition Time : 76 min).

> Mouse images subcutaneous of MnCl₂ Fig.7

4. 考察

化学固定されたマウスでは、8時間で150µm 立方の画素の良好なSNRの画像を得ることがで きた。このように化学固定された試料では特に撮像時間に制限されないため、3D 撮像法を用いて、 できるだけ小さい画素サイズで撮像する手法が望ましい。一方、Live マウスにおいては、1 時間

程度の撮像時間内に、多数のスライスの T₁ 強調画像と T₂ 強調画像を取得しなければならない。 このような画像を得る方法としては、マルチスライス法と 3D 撮像法があるが、NMR ロックとの 組合せと、ハードウェア上の簡単さの点で 3D 撮像法が有利である。ただし、撮像時間の制限の ため、T₁強調画像としては 3D-FLASH 法、T₂ 強調画像としては 3D 高速 SE 法が望ましいと思 われる。このような手法を用いることにより、256×128×32 の T₁強調画像と T₂ 強調画像を 30 分程度で取得することも可能である。

5. むすび

永久磁石を用いたマウス用コンパクト MRI を開発し、化学固定されたマウスの高分解能 3D 画 像を取得した。また、Live マウスの撮像を行い、3D-SE 法による T₁ 強調画像、T₂ 強調画像、 3D-FLASH 法による T₁ 強調画像を取得し、 $MnCl_2$ 水溶液を皮下注射したマウスにおいて、通常 のマウスよりも脳の信号が強調された画像を得た。そして、高速 3D-SE 法、3D-FLASH 法を用 いて、30 分程度で T₁ 強調画像、T₂ 強調画像を取得できる可能性を示した。

今後は脳腫瘍のあるマウスを撮像する他に、トランスジェニックマウスやノックアウトマウス の撮像を行い、controlマウスとの比較・検証を行っていく予定である。また、マウスだけでなく ラットの脳においても同様な撮像を行っていく予定である。

References

[1] Akio Nakanishi, *The Transactions of the Institute of Electrical Engineers of Japan*, D121, 715 (2001).

[2] Tomoyuki Haishi, Takaaki Uematsu, Yoshimasa Matsuda, Katsumi Kose, *Magnetic Resonance Imaging* 19, 875-880 (2001).

[3] Takashi Watanabe, Oliver Natt, Susann Boretius, Jens Frahm, Thomas Michaelis, Magnetic Resonance in Medicine 48, 852-859 (2002). 1 P44

理研GSCにおけるNMR施設・装置・測定法・ 解析法の高度化

(理研GSC) 〇廣田 洋、前田秀明、山崎俊夫、武藤 裕、 木川隆則、白水美香子、田仲昭子、Peter Guentert、

品中秀樹、林文晶、好田真由美、横山茂之

Development of NMR Facility, Instruments, Measurement Methodology, and Analysis Methodology at RIKEN Genomic Sciences Center

(RIKEN) OHiroshi Hirota, Hideaki Maeda, Toshio Yamazaki, Yutaka Muto,

Takanori Kigawa, Mikako Shirouzu, Akiko Tanaka, Peter Guentert,

Hideki Hatanaka, Fumiaki Hayashi, Mayumi Yoshida, and Shigeyuki Yokoyama

Last fiscal year, construction of a new NMR building called Central NMR Building at RIKEN Yokohama Institute has been completed and more than ten additional new NMR instruments have been installed. At present almost forty NMR instruments are under operation mainly for "Protein 3000" project. A 900 MHz NMR instrument and five 600 MHz NMR instruments with cryoprobe are included. We are to report the NMR data obtained from these high performance NMR instruments together with the 920 MHz NMR instrument installed at National Institute for Material Science (Tsukuba). We are also to report the present status of the NMR facilities, sensitivity and resolution of these NMR instruments, and development of new methodologies on NMR measurements and analyses, and the prospect for future advance.

理研 GSC においては、2000 年春に横浜市鶴見区に 600-900MHz 級の NMR 装置 20 台を設置できる NMR 施設(現在の西 NMR 棟)を完成させ、その後約 20 台の NMR 装置の導入ついで稼働を進めてきた。一方、欧米との競争下に効率的なタンパク質 基本構造解析・機能研究を推進するため、新たな NMR 施設(中央 NMR 棟)の建 設が計画された。また、文部科学省において昨年度(平成 14 年度)から開始され た"タンパク3000プロジェクト"のうちの『タンパク質基本構造の網羅的解析

キーワード:大規模NMR施設、高感度プローブ、高磁場、構造ゲノム科学、 タンパク質の構造・機能

ひろた ひろし、まえだ ひであき、やまざき としお、むとう ゆたか、きがわ たかのり、 しろうず みかこ、たなか あきこ、Guentert Peter、はたなか ひでき、はやし ふみあき、 よしだ まゆみ、よこやま しげゆき プログラム』を、RSGI (RIKEN Structural Genomics/Proteomics Initiative) として遂 行することとなった。これらの状況下において 2002 年末に中央 NMR 棟建設が完 了し、引き続き NMR 装置の導入が行われてきた。その結果、2003 年 9 月時点で 西および中央の両 NMR 棟合わせて、900MHz 装置が 1 台、800MHz 装置が 9 台、 700MHz 装置が 6 台、600MHz 装置が 21 台、500MHz 装置等が 2 台、合計 39 台 の NMR 装置が順調に稼働する状況になった。600MHz 装置のうちの現時点で 5 台にはクライオプローブが装着されている。これらの装置は、試料調製スクリー ニングや機能解析測定等も含め、主に前記の"タンパク3000プロジェクト" を遂行するために現在フル稼働している。

一方、日本電子(株)の協力を得て、つくば市にある物質・材料研究機構(物 材機構)との共同研究として、物材機構の所有する NMR としては世界最高磁場 の 920MHz NMR 装置をタンパク質の構造解析に適用するべく、その準備を 2002 年から進めてきた。最近この装置がほぼ完成し、タンパク質試料測定への適用を 開始した。すなわち、高感度・高分解能の利点を活かすべく¹³C-edited および ¹⁵N-edited NOESY 測定を中心に"タンパク3000プロジェクト"への実践投 入を開始する(本討論会 3P1 参照)とともに、磁場強度依存性情報の抽出等の検 討も開始している。

これらNMR施設・装置の紹介のみならず、現状でのNMR装置の感度・分解 能の限界、"タンパク3000プロジェクト"遂行のためを中心とした新たなN MR測定法・解析法の開発状況、今後のNMR測定法・解析法の見通し等につい て概観的に紹介する。理研 GSC からの個別報告は本討論会で多数あるので、そ れらも参照していただきたい。 1 P45

生成条件の最適化を行った超偏極¹²⁹Xe ガス自動生成装置の開発 (東横化学(株)¹、新日本製鐵(株)先端研²、産業技術総合研究所 光技術研究部門³、東工大原子炉研⁴) 〇田中亮¹、大竹紀夫¹、齋藤公児²、服部峰之³、大窪貴洋⁴

Development of Automatic Generator for Hyperpolarized ¹²⁹Xe and Optimization of Experimental Conditions Toyoko Kagaku Corporation, Research & Development DEPT¹

Nippon Steel Corporation, Advanced Technology Research Lab² Photonics Research Institute,

National Institute of Advanced Industrial Science and Technology³ Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology⁴ ORyo Tanaka¹, Norio Ohtake¹, Koji Saito², Mineyuki Hattori³, Takahiro Ohkubo⁴

Automatic generator of hyperpolarized ¹²⁹Xe for NMR experiments has been developed. This apparatus has mainly three advantages, (1) integration of pumping cell and ¹²⁹Xe gas and laser (2) easy operation (3) large cell volume (300ml), *i.e.* researchers can apply it to various NMR experiments. Polarization was affected by pumping cell temperature and magnetic field strength, thus optimizations for experimental conditions such as pumping cell temperature and magnetic field strength were examined in respect of signal enhancement. From the result, it was found to give higher nuclear spin polarization at 393K and 120G.

1. 緒言

熱平衡 ¹²⁹Xe NMR 測定は、感度の低さのために非常に長い積算時間を必要とする。よって超偏極 ¹²⁹Xe を 用いた高感度化の研究及び応用は非常に注目される分野となっている。超偏極 ¹²⁹Xe の生成は、Rb 等のアル カリ金属原子の持つ外殻電子のスピンを偏極状態にし、¹²⁹Xe と混合することにより、電子スピンを ¹²⁹Xe の 核スピンに移動させる手法である(光ポンピング法)。この超偏極 ¹²⁹Xe を用いた ¹²⁹Xe NMR 測定は、熱平衡 状態の ¹²⁹Xe と比較して数万倍の感度の向上が報告されている[1]。しかし、超偏極 ¹²⁹Xe の生成は、研究者が 独自の手法で行っていたため、安定供給、大量生成、励起セル内の Rb 原子の寿命、そして作業効率等に問題 があった。今回、我々は半導体ガス配管技術を活用した対話式の超偏極 ¹²⁹Xe 自動生成装置を開発し、高い偏 極率を得るための最適な実験条件の検討を行ったので結果を報告する。

2. 装置概要

Fig.1 に超偏極 ¹²⁸Xe 自動生成装置 と励起用 Rb 封入パイレックスセルの 外観を示す。(a)は、新日本製鐵(株)先 端研に設置された 400MHz(9.4T)の超 伝導マグネット、(b)は、波長 795nm のレーザーを円偏光させるλ/4 板、(c) は、温調用のジャケットヒーターを装 着した励起用セル、(d)は、対話型の操 作パネル、(e)は、Xe:98%、N2:2%の アルミ製混合ガスボンベ及びガス供 給用配管、(f)は、励起用セルの温度制 御システムである。また、励起用セル

は、 660×100mm (300mL) の円筒状のもので、原料の Xe/N2 混合ガスの入口(B)及び超偏極 ¹²⁹Xe 取出口(C) の部分にバルブを装着している。また、セルの内壁面には偏極用 Rb を真空蒸着している(A)。この励起用セルは、Rb の消耗や劣化等で使用不能になった場合、容易に交換できるような構造になっている。

超偏極、¹²⁹Xe、高感度化、半導体ガス配管技術、自動生成装置

たなかりょう、おおたけのりお、さいとうこうじ、はっとりみねゆき、おおくぼたかひろ

3. 最適化の検討

(a)実験

¹²⁹Xe NMR 測定は、日本電子製α-400WB 型分光計と今回開発した超偏極 ¹²⁹Xe 自動生成装置を用いて行った。測定周波数は 110.60MHz で、測定温度は室温で実施した。偏極用半導体レーザーは、COHERENT 社製の Ga-Al-As ダイオードレーザー(波長 795nm、30W)を用い、λ/4 板を通して円偏光を得た。励起セル の設置磁場は、超伝導マグネットの漏洩磁場を利用した。超偏極 ¹²⁹Xe は、励起セルからシリンジで 10mL 取出し、予め真空引きしてある WILMAD 社製スクリューキャップ付サンプル管に導入した。また、超偏極 ¹²⁹Xe の偏極率を計算するため、同体積の熱平衡 ¹²⁹Xe の NMR 測定を行い、S/N 比を評価した。実験条件は、 1. 励起用セルの温度可変(373K、393K、413K)、2. 励起セルの設置磁場強度(50G、120G、160G)と設定し、 各々の条件下で超偏極 ¹²⁹Xe NMR スペクトルを取得し、S/N 比から偏極率に換算して評価した。

(b)結果

超偏極及び熱平衡状態での¹²⁹Xe NMR 測定の結果を Fig.2 に示す。熱平衡及び超偏極¹²⁹Xe NMR 測定は、積算回数約 4000回及び1回でそれぞれ測定し、S/N 比を求めた。これよ り、偏極時の信号強度は、熱平衡時と比較して、1回の測定あ たり約2500倍の信号強度の増加が確認された。この結果を偏 極率に換算すると約2.5%である。熱平衡時の

¹²⁸Xe を用いた NMR 測定が、長い積算時間を要するのに対 し、超偏極¹²⁹Xe では、非常に短時間でスペクトルを取得する ことができる。この結果、高い時間分解能での超偏極¹²⁹Xe NMR 測定が可能となり、非定常状態での¹²⁹Xe の研究や、経 時変化する動的な系に適用できると考えられる。

次に、本研究で使用した装置での高い偏極率を得るため、 超編極 ¹²⁹Xe 生成条件の最適化について検討した。 Table 1 は、半導体レーザーの照射時間及び励起セルの温度を変化さ せた際の偏極率の結果である。励起セルの温度による偏極率 の変化は、373K で著しく低い値を示し、393K 及び 413K で はほぼ等しい。高い温度条件では励起セル内の Rb 蒸気圧が上 昇するため、Xe と Rb の衝突頻度が増加し、偏極率の上昇が 予想されるが、393K と 413K での顕著な違いは見られなかっ た。373K での低い偏極率は、十分な温度に達していないため だと考えられる。よって、励起セルの使用温度条件は、 393K から 413K 程度の範囲が適当と思われる。

更に、励起セルの磁場強度の最適化を検討した。磁場は、超

	Area	S/N =	50.6	للمستحد	ر افغانی	herma	l equi m, abc	libriun 11 400	1 ^{, 12°} Xe Ni 0 scáns	MR
, ú.	\$⁄N	2037			l Typer spectru	polari m,siny	red 120 tle sca	Xe NN	ÍR	
)	30	20	10	0 ppni	-10	-20	-30	-40		
-		-		• 1	29				· . •.	

Fig. 2. Polarized ¹²⁵Xe gas spectrum obtained with (buttom) and without (top) laser polarization. The bottom spectrum reflects a ¹²⁹Xe NMR signal enhancement of 2500 given at 9.4 T.

Table 1. Dependance of polarization on laser irradiation time and various cell temperature.

irradiation time (min.)	. 373K	393K	413K
30	0.19	0.60	0.53
60	0.27	0.74	0.76
90	0.24	0.67	0.81

電導マグネットの漏洩磁場を利用している。そこで、励起セルの設置場所を変えることで、磁場強度と偏極 率の関係を調べた。磁場強度は、ガウスメータ(F.W.BELL製)で評価した。磁場強度の違いによる偏極率の変 化は、120G で最も高い偏極率を示し、50G 及び 160G では、著しく減少した。偏極率は、磁場強度に影響を 受けるため、励起セルの設置場所を十分に考慮する必要がある。

4. 結言

今回の実験から、偏極率は励起セルの温度、磁場強度に強く依存することが判明し、最適化の検討を行うこ とで使用条件を決定した。今後は、より高い偏極率で安定的に超偏極¹²⁹Xeを生成するため、励起セル中の Rbの寿命、温度分布等について検討を行いたいと考えている。

【参考文献】

[1] T.Pietra β and H.C.Gaede, Adv. Mat. 7, 826-838(1995)

ハロゲン架橋一次元錯体[NiBr(chxn)]Br,における Spin-Peierls 転移 (筑波大化、物材機構*)〇藤部康弘、高石慎也、北川宏、池田龍一、後藤軟*、 清水禎*

A Spin-Peierls Transition in a Halogen-Bridged One-Dimensional MX-Chain Complex, [NiBr(chxn)₂]Br₂

(Univ. of Tsukuba, NIMS*) Yasuhiro Tobu, Shinya Takaishi, Hiroshi Kitagawa, Ryuichi Ikeda, Atsushi Goto*, Tadashi Shimizu*

The first observation of a spin-Peierls transition in transition metal complexes in which pure d-electrons contribute the magnetism was succeeded in a halogen-bridged one-dimensional MX complex [NiBr(chxn)₂]Br₂ (chxn : 1R, 2R- cyclohexanediamine) by the ⁸¹Br NQR measurement. A single ⁸¹Br NQR frequency observed at 300 K agreed with the reported structure of this complex to be a Mott-Hubbard insulator. The resonance signal was disappeared below 130 K, while, below 40 K, symmetrically split two lines were observed indicating the formation of two nonequivalent bridging Br sites. This result together with the decrease in the magnetic susceptibility below 50 K and a ¹H NMR T_1 minimum at ca 40 K was explained well by the occurrence of a transition into a spin-Peierls state in a range 40-130 K.

<序>

通常の三次元構造を持つ結晶に比べて、低次元構造の分子・結晶 はその構造のために特殊な性質を持つことが注目され、研究が行わ れてきた。一次元鎖状構造を持ち特異な磁性、伝導などを持つ物質 としてハロゲン架橋一次元錯体は古くから注目され、構造が異なる 数百種類の錯体が合成され盛んに研究されてきた。ハロゲン架橋-次元錯体(MX 錯体)の構造を模式的に Fig.1 に示す。中心金属の M(=Ni, Pd, Pt, etc.)、配位子の AA (=Etylenediamine(en), 1R,2R-cyclohexanediamine (chxn), Trimethylen-diamine(tn), etc.)、架橋 ハロゲンの X(=Cl, Br, I)、カウンターイオンの Y(=ClO₄, NO₃, X, etc.) によって構成されている。MX 錯体は強い電子格子相互作用を持ち、 中心金属の電荷は金属原子、周囲の配位子、架橋ハロゲン、カウン ターイオンを変えることで制御することができる。

通常 MX 錯体はその中心金属の電荷が-X・・・M²⁺・・・X-M⁴⁺-X・・・のように交互に並ぶ電荷密度波(CDW)状態を持ち特異な光 学的挙動やスピンソリトンなどのスピンダイナミクスを示す。しか Fig.1 A model of hydrogen-

し、今回の [NiBr(chxn),]Br, は新しいタイプの MX 錯体であり、-

bridged metal complexes.

Br-Ni³⁺-Br-Ni³⁺-Br-で表される平均原子価状態を持ち、金属間の強い磁気的相互作用、さら には大きな誘電特性を持つ。このような平均原子価状態は Mott-Hubbard 絶縁体として位置づけら れるが、この状態と混合原子価状態のどちらの構造を取るかはオンサイトクーロン反発エネルギ

キーワード NQR、一次元錯体、MX錯体、spin-Peierls 転移

とうぶやすひろ、たかいししんや、きたがわひろし、いけだりゅういち、ごとうあつし、しみず ただし

ーUと電子格子相互作用のSの関係によって決まり、S>UであればCDW状態が基底状態、U>S であればMott-Hubbard状態を取ることが理論的に示されている。[NiBr(chxn)₂]Br₂のNi³⁺原子は大きなU(=5eV)のために3d₂軌道に強く局在化されている孤立電子(S=1/2)を持ち、一次元鎖に沿って架橋臭素の4p₂軌道を通じて近傍のNi原子間に非常に強力な反強磁性的相互作用(μ | ≈ 3600 K)を示すと予想されている。このような大きなJ値はすでに報告されている代表的な一次元電子系Sr₂CuO₃のJ値より大きい。Sr₂CuO₃では5KでNéel転移をおこすことが磁気的研究で明らかにされている。しかしながら[NiBr(chxn)₂]Br₂についてはオーダーしていない状態は観測されているものの、基底状態の存在は明らかにされていない。

最近、良質な結晶による磁化率測定がおこなわれ磁気的な異常が 100 K 以下にあり何らかの転移が示唆された。このことから我々はこの転移についてさらに明らかにするために Br NQR 共鳴 周波数、¹H NMR スピン格子緩和時間の測定を行った。NQR は共鳴核周囲の電場勾配つまりは電子分布に鋭敏であることから、架橋 Br 原子の測定を行うことで転移を検出することを試みた。

<結果・考察>

⁸¹Br NQR 共鳴周波数は 300 K において 137.07, ±0.005 MHz で観測された。3.8 K では二本観測さ れ 130.874±0.01、147.786±0.01 MHz となった。も う一方の共鳴核 ⁷⁹Br では 300 K で 164.091±0.005 MHz (300 K)、3.8 K で 156.656±0.01、176.904 ±0.01 MHz (3.8 K)となり、同位体周波数比は報告値 (⁷⁹Br/⁸¹Br: 1.1969)とよい一致を示した。

⁸¹Br NOR 共鳴周波数の温度依存を詳細に測定し た結果を Fig.2 に示す。温度の下降とともに徐々に 共鳴周波数が上昇し、一度 130 K あたりで消失し た後に、40Kあたりで離れた周波数に二本の共鳴 線が見られた。この二本は平均すると、高温の共 鳴周波数を Bayer 理論によって低温まで補外した 値と一致することから、高温の共鳴周波数が分裂 したと考えられる。このような二本の共鳴線が見 られるような一次元鎖上の電子状態について考察 すると Fig.3 に示した(a)、(b)のような Mott-Hubbard やCDW 状態では二種類の Br を説明することがで きないことから、隣接する Ni のスピンが打ち消し あう(c)の spin-Peierls 状態であると考えられる。こ の状態では Ni 位置が移動し挟み込まれる Br と、 Niから離れる Brが存在するために二種類の Brが 一次元鎖上に存在することになる。このような状 態を取るための spin-Peierls 転移が信号の消失して いた 40-130 K の間に起こっていると予想される。

この系は spin-Peierls 転移が遷移金属錯体におい て見出された最初の例である。

Fig.2 A temperature dependence of 81 Br NQR frequency observed in [NiBr(chxn)₂]Br₂.

Fig.3 A schematic chain structure in (a) Mott-Hubbard, (b) CDW and (c) spin-Peierls state in $\{NiBr(chxn)_2\}Br_2$.

1 P47

アルキルフェノール類の LC-NMR による定量

産総研 計測標準研究部門 〇齋藤 剛,中家幸子,岩澤良子,衣笠晋一

Quantitative LC-NMR Measurement of Alkyl Phenol compounds

National Metrology Institute of Japan, AIST

Takeshi Saito, Sachiko Nakaie, Ryoko Iwasawa, Shinichi Kinugasa

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the unique analytical instruments because it does not need the calibration standards. The ratio of the areas gives the number of nuclei weighted mole ratio of compounds creating the signals. The combination of NMR with liquid chromatography (LC) can be an ideal tool to determine quantity of each component from a mixture solution since separation technique would take care signal overlap by similar compounds. Here we present the application of LC-NMR to mixtures of alkyl phenol compounds. The comparisons of results obtained with LC-NMR and ordinary quantitative NMR methods will be discussed.

はじめに

NMR は化学構造など情報を明確に与える、最も重要な分析機器であると言って過言でないであろう。 化学構造, 運動性などに関する研究は数多く行われているが, NMR の定量性の不確かさを評価した研 究はまださほど多くない. NMR 信号の積分強度はその信号に寄与する核の数に比例することは知られ ており, モル, すなわち SI 単位系を直接比較する事が可能な方法である. ピーク積分値を比較する上で は、類似した環境にある核同士を比較した方が、緩和時間などが類似している事が多く、したがって精 度の高い定量性が得られることが期待できる.一方で,定量しようとするピークが分離している必要性が あるが、似た環境にある核同士ではピークが重なってしまうことが多く、このため類似化合物の同士や、 同属体混合物の NMR での定量性検討は困難になる. アルキルフェノール類は界面活性剤原料などに 大量に利用される一方で,環境ホルモンとしての疑いがもたれている.これら同属類の混合物は,NMR のピークが重なってしまい精確な定量の妨げになるが、液体クロマトグラフィー(LC)と NMR をオンライ ンでつなぐ(LC-NMR)事で, LC の時間軸方向に各成分を分離することが可能なため NMR で成分間の ピークオーバーラップ無しに測定可能な, SI 単位系に直結した定量方法として期待ができる. 本研究で は、4 種類のアルキルフェノール化合物をそれぞれ同一の内標準物質を利用して行った通常の定量 NMR法から得られる、各試料間の相対モル比と試料の調製値、あらかじめアルキルフェノール4種を混 合した溶液を、LC-NMR を利用して定量測定を行いそのピーク面積強度から得られた試料間の相対モ ル比と混合溶液の調製値の比較検討を行い、定量 NMR の不確かさ評価と、LC-NMR の定量性につい て考察を行った.

キーワード:定量 NMR, LC-NMR, アルキルフェノール, 不確かさ, SI 単位系 さいとうたけし, なかいえさちこ, いわさわりょうこ, きぬがさしんいち

実験

NMR 装置は Varian UNITY INOVA600 で,通常測定には Indirect Detection プローブを,LC-NMR 測定には Interchangeable Flow Cellマイクロフロープローブ(60μ Lアクティブボリューム)を利用した.LC 装置は Varian ProStar シリーズを用い,カラムは化学物質評価研究機構の L-column ODS (250 x 4.6 mm i.d.)を用いた.実験に用いたアルキルフェノールは,Bisphenol A (BPA),4-t-Butylphenol (TBP),4-t-Octylphenol (TOP),と4-n-Nonylphenol (NNP)で,すべて和光純薬の標準品を用いた. 通常の NMR 測定は内標準物質にテトラメチルジシロキサン(信越化学)を用いた.通常の NMR 測定は 25℃で 90° パルス(6.45μ s), 60 秒間隔で繰り返し測定を行った.LC 移動層は 1 mL 毎分で,カラム オーブンは 40°Cに設定した.20%CD₃CN と 80%D₂O の組成を 30 分間で 100%CD₃CN にリニアグラ ジエントをかけたその後 10 分間 CD₃CN 100%とした.NMR 測定は 25℃で 45° パルス(3.8μ s), 3.6 秒間隔で繰り返し測定を行った.

結果と考察

4 種類のアルキルフェノール溶液を,通常の NMR 測定を行った際の再現性は,ピークの面積強度の ばらつきが最大で1.3%であった.また,内標準物質を基準にして,各試料の調整値とNMRの積分値か

ら得たモル比は、最大3.6% のずれを生じた、すべての 試料について分散分析を行 った結果、調製試料間や、 測定日間のばらつきが大き く、試料の調製・保存法など に改善する余地が伺えた。

一方, LC-NMR を利用した際に得ら れるピーク積分値の再現性は, ピーク の面積強度のばらつきが 3%以下であ った. LC への試料注入量を変化させた 際の NMR ピーク積分値の変化は試料 注入量に対して比例関係にあることが 確認された. 同一試料の標準物質を利 用した LC-NMR 測定では精確な定量 が可能¹だが, 1 回の LC-NMR 測定で 得た各試料の NMR ピーク積分値から BPA を基準にして相対モル比を比較し

Table 1 Analysis of variance table for TOP, the area integration of ¹H at ortho position to the alkyl chain.

要因	平方和	自由度	平均平方	F值	有意確率
調製試料間変動	2.121	2	1.061	0.582	0.587
日間変動	10.932	6	1.822	26.767	4.879E-08
日内変動	1.225	18	0.068		
総変動	14.278	26	0.549		

た結果, 最大 30%に及ぶずれが生じた. LC で分離したピーク形状が完全に一致し Figure 1 Calibration curves for the four alkyl pheno compounds.

せず、時間軸に対してのピークがブロードなピークほどNMRの信号検出限界以下の試料が多くなることで、NMRのピーク積分値に損失が大きい事がわかった.この関係について現在検討中である.

1 齋藤 剛, 岩澤良子, 井原俊英, 衣笠晋一, 野村明, 第41回 NMR 討論会講演要旨集, p138-139(2002).

ポスター発表要旨

第二日

11月27日(木)

日本電子のタンパク質溶液NMR測定技術開発への取り組み

○根本暢明¹、朝倉克夫¹、栗本智充¹、氣田佳喜¹、末松浩人¹、田中良二¹、 宮本哲雄¹、石川彦成¹、木田惇¹、高杉憲司¹、内海博明¹、藤井直之¹、阿部 敦¹、百名一男¹、松倉順一¹、山崎千春¹、佐藤浩三¹、John Malcolmson²、 Allan Weimer²、Trevor McKay²、Sseziwa Mukasa²、Ashok Krishnaswami²、 穴井孝弘¹、細野政美¹、栗原範明¹、日元徹¹、大塚紀一郎¹

'日本電子株式会社、²JEOL USA LTD.

Development of solution NMR technologies for proteins at JEOL

<u>Nobuaki Nemoto'</u>, Katsuo Asakura', Tomomitsu Kurimoto', Yoshiki Kida', Hiroto, Suematsu', Ryoji Tanaka', Tetsuo Miyiamoto', Hiroshige Ishikawa', Jun Kida', Kenji Takasugi', Hiroaki Utsumi', Naoyuki Fujii', Atsushi Abe', Kazuo Hyakuna', Junichi Matsukura', Chiharu Yamasaki', Kozo Sato', John Malcolmson², Allan Weimer², Trevor McKay², Sseziwa Mukasa², Ashok Krishnaswami², Takahiro Anai', Masami Hosono', Noriaki Kurihara', Tetsu Hinomoto' and Kiichiro Otsuka'

'JEOL LTD., 'JEOL USA LTD.

In 2001, we announced a new NMR spectrometer JNM-ECA series designed for measurement up to 1GHz. By now, we developed triple-resonance probes at various magnetic field, pulse program and parameter automatic determining tool for automatic experiments. In our new system, users can very easily execute multi dimensional triple resonance experiments. This is quite useful for the use in structure genomics.

分光計、プローブ、パルスシーケンス、自動化、開発

ねもと のぶあき、あさくら かつお、くりもと ともみつ、きだ よしき、すえまつ ひろ と、たなか りょうじ、みやもと てつお、いしかわ ひろしげ、きだ じゅん、たかすぎ け んじ、うつみ ひろあき、ふじい なおゆき、あべ あつし、ひゃくな かずお、まつくら じ ゅんいち、やまさき ちはる、さとう こうぞう、じょん まるこむそん、あらん わいまー、 とれぼー まっけい、せじわ むかさ、あしょっく くりしゅなすわみ、 あない たかひろ、 ほその まさみ、くりはら のりあき、ひのもと てつ、おおつか きいちろう 【序】 過去十数年、NMRの測定技術は爆発的に進歩した。2002年のWüthrichのノーベル化 学賞受賞に象徴されるように、生体高分子の溶液NMRがその牽引機関車であったと言 っても決して言い過ぎではない。また、2000年のヒトゲノムの概要読了の発表と相前 後して、構造生物学から構造ゲノム科学という新しい分野が生まれた。以前は、一構 造を決定するのに何年もかかっていたタンパク質の立体構造解析は、現在までに、も はやルーチンでマスプロダクトなものへと完全に変貌した。

他方、日本電子はタンパク質溶液測定の分野において困難な状況が長年続いたが、2001 年、1GHz-NMRまで対応可能なNMR分光計JNM-ECAシリーズを発表した。さらに発 表後現在までに、この分光計向けに各磁場強度用の3重共鳴プローブ、タンパク質溶 液の多核多次元測定用の基本的なパルスシーケンス、および自動測定に必要なパラメ ータ最適値の決定ルーチン群を完成させた。これらからなるシステムは、タンパク質 溶液の多核多次元測定を非常に平易に実行できることを念頭において開発した。 日 本電子は、既にJNM-ECA装置をタンパク質溶液NMR市場に投入し、さらに物質・材 料研究機構、理化学研究所と共同で920MHz NMRを開発した。今回は、これまで日 本電子が行ってきた、タンパク質溶液NMRの測定技術開発の取り組みに関し報告する。

【分光計】

JNM-ECA分光計は、複雑なタンパク質溶液の多核多次元測定に対応できるようにする ため、マルチシーケンサ方式を採用している。従来の分光計では、'H, ¹³C, ¹⁵Nといっ た各チャンネルの命令を、1台のシーケンサがすべてのチャンネルに対し指示してい たが、このマルチシーケンサ方式では、マスタシーケンサが、チャンネルの数だけ独 立に用意されたスレーブシーケンサの動作タイミングを統括し、各スレーブシーケン サがおのおのに割り当てられたチャンネルの動作を制御する。通常仕様の分光計にあ っては、3式のトランスミッタを標準とするが、タンパク質溶液測定仕様のマシンで は、最大実装の10式のトランスミッタを推奨している。マルチシーケンサのタンパク 質溶液測定への応用に関しては、本討論会発表2P2に詳細を述べる。

【プローブ】

600, 700, 800および920MHz用の5mmφ 'H観測¹³C,¹⁶N照射、Z軸方向磁場勾配コイ ル付き室温動作プローブを自社開発した。このプローブは通常の¹³C/¹⁵Nラベルタンパ ク質の溶液構造解析に対応することができる。また現在、低温動作のプローブを開発 中である。

【パルスシーケンス】

以下にあげる実験に関して、パルスプログラムを作成し、実際に測定を行いその動作 を確認した;

¹⁵N-¹H HSQC, ¹³C-¹H HSQC, HNCO, HN(CA)CO, HNCA, HN(CO)CA, HNCACB, CBCANH, CBCA(CO)NH, HBHA(CBCACO)NH, C(CO)NH, H(CCO)NH, HCCH-TOCSY(aliphatics and aromatics), HCCH-COSY(aliphatics and aromatics), ¹⁵N edited NOESY, ¹³C edited NOESY, ¹³C/¹⁵N simultaneous edited NOESY, HN(CO-CO TOCSY), CBCA(CO-CO TOCSY)NH, ¹⁵N T₁, T₂ and ¹H-¹⁵N NOE, IPAP.

ここに挙げたパルスプログラムは、装置定数である90°パルス長、出力パワーレベル や繰り返し時間といった、ごくわずかなパラメータを変更ないし最適化するだけで、 パルスプログラムの書き直しをすることなく、500MHz-920MHzまで対応することが できる。また、下記に述べる自動化にすべて対応している。

【自動化への挑戦】

マルチシーケンサ方式の採用により、キャリブレーションの必要なパラメータが90度 パルス幅などのごく限られたものになったため、ECAにおける測定の自動化は比較的 容易に実現することが可能である。我々はパラメータの最適化に独自の手法を開発し、 短時間で正確な最適値を決定することを可能とした。同時に自動測定システムとの統

合をおこなっており、そのプロトタイプは既にユーザーによる評価目的での試用に供 している。

詳細は本討論会1P1、1P2で述べる。

【ホストコンピュータとソフトウエア】

多次元フーリエ変換に対応できる高性能コンピューター(UNIXワークステーション、 LINUX-PC 等)と、JEOL-USAで開発したDelta-NMRソフトウエアの組み合わせによ り、簡単に短時間で多次元フーリエ変換ができる。またDelta-NMRソフトウェアには、 一般的に使われている多次元NMRスペクトル処理用ソフトウエアに実装されている機 能がすべて含まれている。またグラフィックスはすべてOpenGLライブラリを使用し て描画されており、3次元データのキューブ表示、拡大、回転などが非常に高速にお こなえる。この機能により、3次元スペクトルのベースラインや位相が適切であるか どうか、簡単に判別することができるようになった。また、Delta-NMRソフトウエア ではnmrPipe (Frank Delaglio氏開発)をはじめとする多様なデータ形式がサポート されており、NMRピーク帰属ソフトウエアなどのへのポーティングが可能となってい る。

【まとめ】

日本電子が開発したECA分光計および、Delta-NMRソフトウエアが備える高機能かつ 極めて簡便な操作性の手動もしくは自動測定システムを用いることにより、現在に至 るまでそのオペレーションの複雑さにより利用者の限定されていたタンパク分野の NMR測定が、測定そのものには特別な知識や技能を必要としなくなることが期待され る。これが実現すれば、多くの時間やコストが費やされて養成された人的資源を測定 操作に割く必要がなくなるため、構造ゲノム科学分野での使用において特に高い生産 性が期待できる。

【謝辞】

理化学研究所ゲノム科学総合研究センターの小柴生造先生、栃尾尚哉先生、木川隆則 先生、菊地淳先生、前田秀明先生、好田真由美先生、山崎俊夫先生、廣田洋先生、横 山茂之先生、および物質・材料研究機構強磁場研究センターの吉川正敏先生、木吉司 先生、には非常に貴重なコメントを賜りましたことを心より厚く御礼いたします。

2 P 2

単一核複数帯域の励起方法; マルチシーケンサのタンパク質多核溶液測定への応用

日本電子株式会社 〇根本畅明、穴井孝弘

Multi region excitation; an application of multi sequencer to multi nuclear solution experiments of proteins.

Nobuaki Nemoto and Takahiro Anai, JEOL Ltd.

We here report a new method to excite multi region for a single nucleus using multi sequencer. This is applied for multi nuclear solution experiments of proteins. Without off-resonance pulses, different region such as aliphatic carbon, carbonyl carbon and so on is independently excited by short rectangular pulses. We show an application to CBCA(CO)NH.

CBCA(CO)NH 実験¹に代表されるタンパク質多核溶液測定の多くの実験において、¹³C 核は複 数の異なる励起帯域として取り扱われることが多い。 例えば、 CBCA(CO)NH 実験において は、¹³Cαβは 47ppm、¹³Cαは 57ppm、¹³CO は 176ppm などのように、異なる周波数を中心と する領域を、あたかも別の核のような扱いをしながら個別に励起する必要がある。従来法にお いては、¹³C 核のひとつひとつの領域に一対のシンセサイザ(以下 FSY)および電力増幅器(以 下 PA)を用意するか、一つの領域に一つの FSY を一つ割り当て、それ以外の領域は成形パル ス等により実現されるオフレゾナンスパルスで励起するかのいずれかであった。前者の場合、 複数の FSY と PA を必要となる帯域の数だけ用意する必要があるため、分光計の構成上非常に 高価になり、かつ、異なる周波数領域をコヒーレントに行き来することができない。また後者 の場合、成形パルスによるオフレゾナンスパルスにおいては、位相変調であれ強度変調であれ、 概ねオフレゾナンスにオフセットさせる周波数幅分の1程度のパルス長が最低限必要である。 このため、必ずしも長いパルスが必要でない、あるいは好ましくない場合でも、その程度の比 較的長いパルスを使用せざるを得なかった。他方、従来の NMR 分光計では、多チャンネルの 実験においても、1つのシーケンサがそのすべてのチャンネルのパルス発生および制御を行う ことが多かった。これに対し、多チャンネル実験において複数のシーケンサを用意することで (つまり、1つのチャンネルに対し、1つのシーケンサを用意する)、複雑なパルスシーケンス を実行する際に、ハードウエア・ソフトウエア両面での制約が少なくなる。今回我々は、マル チシーケンサを利用した単一核の複数帯域を励起する一方法を開発し、タンパク質の多核溶液 測定に応用することに成功したので、CBCA(CO)NH 実験を例に報告する。この方法では、1 つの励起領域に対し1式の直接デジタル合成器 (Direct Digital Synthesizer、以下 DDS) によ り周波数を発生させ、その周波数を制御する個別のシーケンサがパルスを発生させる。そのよ うなチャンネルを複数用意し、PA に導入する前に混合することで単一核の複数の帯域を独立 に励起することが可能となった。

マルチシーケンサ、パルスシーケンス、成形パルス、トランスミッタ

ねもとのぶあき あないたかひろ

実際の測定では7式のトランスミッタ(DDS 及びシーケンサを含む)を装着した日本電子製 JNM-ECA 600MHz 装置を使用した。PA は 'H、'a'C、'5N 核種ごとの周波数にあわせ、計3台用意した。磁石に磁場勾配(以下 FG) コイル付き 5mm ϕ 'H-'a'C,'5N 三重共鳴プローブを装着して測定を行った。測定には購入した 'a'C/5N 均一ラベルされたユビキチンを使用した。パルスダイアグラムを図1に示す。文献1のオリジナルと比較して、マルチシーケンサ方式対応にした点(その結果、RF パルスはすべて矩形波パルスを使用し、成形パルスは使用していない)、FG パルスの使用、シーケンス全体を通して 'H のオフセットを変更していない点、広帯域コンポジットインバージョンパルスの利用²、W5-WATERGATE³ による溶媒信号の消去、などが大きく異なる。それ以外の delay 等の値は文献1で示されているような標準的な値を使用している。

図1の CBCA(CO)NH 実験のパルスシーケンスによる結果を図2にキュービック表示に て示す。本発表で述べたマルチーシーケンサを使用して、良好な3次元スペクトルを得ること ができた。

なお、 パルスプログラムを実際にコーディングする際に、¹³C 核に対しては、¹³Ca/β (47ppm)、¹³Ca (57ppm)、¹³CO (174ppm) の3つの異なるオフセットをもつ独立したチャ ンネルとして書き下した。しかし、ここに示す CBCA(CO)NH 実験においては、¹³Ca/βと¹³Ca の2カ所の領域を同時に励起することはない。つまり、開始から point-a) までは、¹³Ca/βのパ ルスが必要だが、それ以降は不要で、それに対し、¹³Caのパルスは開始から point-a) までは不 要であるが、それ以降、必要である。したがって、パルスコンパイラが自動的に、1)¹³Ca/β (47ppm) から¹³Ca (57ppm) ヘオフセットを変更するトランスミッタ、2)シーケンス全体 を通して¹³CO (174ppm) でオフセットが固定されたトランスミッタ、計2枚のトランスミッ タを使用するようにコンパイルした(ちなみに、設定により、3枚のトランスミッタを強制的 に使用させる設定も可能である)。

さらに、この実験では5つのパラレルブロックを用いている。このパラレルブロックに おいては、そのブロックが継続する間、複数のチャンネルに対し、それぞれのシーケンサが、 パルスの強度、位相、等を制御する。従来の1つのシーケンサで複数のチャンネルを制御する 方法では、パルスプログラムを書く際に、各チャンネルで起こるイベントを順に書き下す必要 があった。例えば、図1の Parallel-2 (φQDy で示す¹³Cα/β90 度パルスから、point-a)の直前 のg4 まで)において、¹⁵N のデカップル開始、¹³Cα/β 90 度パルス、t,/2 の待ち時間、¹³CO の 180 度パルス、というように順を追ってイベントごとに命令を与える必要があった。他方、 パラレルブロックでは、ブロックが継続している間のイベントを、チャンネルごと、ないしは 複数のチャンネルから構成されるグループごとに命令を与えることが可能である。この方法は、 複雑なパルスプログラムでは絶大に能力を発揮し、とくにパルスやイベントの「すり抜け」を 簡単に解決したばかりでなく、パルスプログラミングにおける「表現力」が格段に向上した。

- 229 -

Figure. 1 Schematic pulse diagram of CBCA(CO)NH applied to a spectrometer with multi sequencer. All narrow (wide) pulses are applied with a flip angle of 90 degree (180 degree). Unless indicated, pulses are applied along the x-axis. The 'H and ¹⁵N carriers are centered at 4.66ppm (water) and 120ppm, respectively, and are not changed through the sequence. 'H hard pulses are applied using a 35.7kHz field, while 'H WALTZ16 decouple are applied using a 10kHz together with +/- y phase 90° pulses. The ¹⁵N pulses are applied using a 6kHz field, with ¹⁵N GARP-1 composite pulse decoupling using a 740Hz field. All the carbon pulses are generated as rectangular pulses. Two independent transmitter are prepared to generate pulses for 1) $^{13}C\alpha\beta$ region (centered at 47ppm) and $^{13}C\alpha$ region (centered at 57ppm) and 2) ¹⁸CO region (centered 176ppm). The frequency offset of transmitter 1) is jumped from $^{13}C\alpha\beta$ to $^{13}C\alpha\beta$ to $^{13}C\alpha\beta$ between the last $^{13}C\alpha\beta$ 90 degree pulse and the first ^{13}CO 90 degree pulse, around point a). The field strength of ${}^{13}C\alpha\beta$ and ${}^{13}C\alpha$ pulses are optimized as to minimize the excitation in ${}^{13}CO$ region, whereas the field strength of ¹³CO is optimized as to minimize the excitation in ¹³C $\alpha\beta$ region before point a), as well as ¹³C α region after point a). The field of 90 degree pulse for "Cq6 is 5.0kHz, while 180 degree pulse for "C α 6 and for "CC for the first two 180 pulses is 5.58kHz, respectively. The field of 90 degree pulse for "CO after point a) is 4.61kHz and the field of 180 degree pulse for and $^{13}C_{\alpha}$ and 180 degree pulse for ^{13}CO after point a) is 5.15kHz. Shaka 6 stands for composite pulses for wideband inversion² with 14.2kHz field. Off resonance phase shift is compensated with 180 pulse marked as BSP together with an arrow. The W5-WATERGATE technique is used to suppress the solvent signal. The delays employed are $\delta = 1.7$ ms, $\varepsilon = 3.6$ ms, $T_{xa} = 3.5$ ms, $\zeta = 3.7$ ms, $\eta = 3.5$ ms, $\theta = 12$ ms, $T_x = 12$ ms, $\kappa = 5.4$ ms and λ =2.25ms. The quadrature detection of F, is achieved by States TPPI in ϕ QDy, while that of F, is achieved by States TPPI in ϕ QDz, The phase cycling is ϕ 1=4(x), 4(y); ϕ 2=(x,y); ϕ 3=2(x), 2(y); ϕ 4=2(-x), 2(-y); ϕ acq = x, 2(-x), x, x, x, x) -x, 2(x), -x. The phase of ϕQDy (ϕQDz) and the phase of the receiver are incremented by 180 degree for each increment of t, (t₂). The duration and maximum strength of the half-sine shaped gradients along with z-axis are g1=1ms, 1.98G/cm), g2=(0.5ms, 3G/cm), g3=(1ms, 18G/cm), g4=(1ms, 9.96G/cm), g5=(1ms, 3.3G/cm), g6=(1ms, 18G/cm), g5=(1ms, 18G/cm), g5=(1ms 7.2G/cm), g7=(1ms, 16.2G/cm) and g8=(1ms, 24G/cm). This pulse sequence is composed of five parallel blocks in which an individual sequencer is generating pulses independent from the other sequencers.

Figure. 2 A cubic presentation of CBCA(CO)NH spectrum measured as described in the context.

最後に、今回我々が報告している方法以外でも、当然成形パルスで実現されるオフレゾ ナンスパルスを用いても CBCA(CO)NH 実験を実行することが可能であり、その意味では実験 者の選択の幅が広がったことになる。また、当然のことながら、ここで述べた方法は CBCA(CO)NH 実験のみならず、他のタンパク質溶液測定、およびそれ以外の多くの実験に対 し応用、転用可能である。

謝辞 助言・協力をいただいた日本電子社内の皆様に感謝いたします。

Reference:

1. Grzesiek, S. and Bax, A., J. Am. Chem. Soc., 114, 6291-6293 (1992)

2. Shaka, A.J., Chem. Phys. Lett., 120, 201-205 (1985)

3. Liu, M. et al J. Mag. Reson, 132, 125-129 (1998)

タンパク質 NMR 解析における可溶化タグ法の検討 (奈良先端大バイオ¹、三菱化学生命研²) 〇小林俊達¹、河野俊之²、三島正規¹、児嶋長次郎¹

Solubility enhanced tag methods in protein NMR

¹Graduate School of Biological Science, Nara Institute for Science and Technology, and ²Mitsubishi Kagaku Institute of Life Sciences (MITILS)

OToshitatsu Kobayashi¹, Toshiyuki Kohno², Masaki Mishima¹ and Chojiro Kojima¹

For recombinant protein expression and purification, protein-tags and peptide tags are frequently used, such as GST (Glutathione S-Transferase), MBP (Maltose Binding Protein), Trx (Thioredoxin), His tag and so on. Some of these tags contribute to the protein stabilization. However, the presence of tag is unfavorable in NMR analysis because of signal overlappings and fast relaxations caused by tags. Thus, the small tags are preferred, and large tags are removed. Here, we measured the HSQC spectra of ubiquitins fused with MBP and GST, which are large solubility enhance tags. Nice spectrum was obtained for GST-fusion ubiquitin, but not for MBP-fusion. Most main chain signals of GST-fusion ubiquitin were successfully assigned by conventional triple-resonance experiments. These results indicate GST tag is a good solubility enhance tag for NMR.

[緒言]

一般的に、タンパク質へのタグの付加は、①大腸菌等による大量発現後の簡便な精製、②凝集性・易 分解性タンパク質の安定化、③蛍光性タグによる in vivo での挙動の追跡、④担体固定化条件でのタン パク質間相互作用解析といった点で有用である。

発現・精製に用いられるタグ(Table)の幾つ かは、タンパク質の安定化に寄与することが 知られている。しかしながら、タグの付加は NMR 解析において分子量の増大に伴う緩 和速度の増加・シグナルのオーバーラップ 等の不利な要素を持ち、それゆえ通常タグ は除去される必要があった。

今回我々は、これら一般的にタンパク質精 製に利用され、かつタンパク質安定化に寄 与する幾つかのタグについて NMR 解析に Table Various tags for recombinant protein expression and purification.

Name	Size
His-tag	6, 8, 10 aa
Strep-tag	8 aa
S•tag	15 aa
CBD (Cellulose~binding domain)	107, 114, 156 aa
Trx (Thioredoxin)	109 aa
NusA	491aa
CBP (Calmodulin-binding peptide)	4 kDa
GST (Glutathione S-transferase)	26 kD (Dimer:52kD)
MBP (Maltose-binding protein)	40 kDa

対する影響を評価し、不安定なタンパク質のタグの付加による NMR シグナル帰属の可能性、及びレジン 固定化条件におけるタンパク質間相互作用の NMR による詳細な解析の可能性に関して検討を行った。

可溶化タグ法、HSQC、主鎖帰属、GST、MBP

こばやしとしたつ、こうのとしゆき、みしままさき、こじまちょうじろう

[実験]

本研究では、測定対象モデルタンパク質としてヒト由来 Ubiquitin (Ub)を、またタグとして GST、MBP を用いた。これらタグの異なる Ub を ¹⁵N もしくは ¹³C/¹⁵N 均一標識化タンパクとして大腸菌内で発現、精 製し、Bruker 社製 DRX800 を用いて¹H-¹⁵N HSQC、及び Avance500 を用いて主鎖帰属のための HNCACB、HN(CO)CACB を測定した。Buffer 条件は 10 mM Phosphate(pH 6.5)、50 mM KCl、 1 mM Pefablock®、もしくは 50 mM HEPES (pH 8.0)である。

[結果および考察]

MBP 及び GST タグはタンパク質の発現・精製で一般的に用いられ、その発現率および安定性の増大 に寄与する事が知られている。このため、GST または MBP タグを付加した Ub に関して¹H-¹⁵N HSQC スペクトルによる比較を行った。GST Ub では GST 由来のシグナルはほとんど観測されなかったが、 MBP・Ub では MBP 由来のシグナルが多数観測され、また GST に較べ Ub 由来シグナルの広幅化も 顕著だった (Fig. 1)。GST タグ付加条件における Ub の τ c は 9.6±0.1 ns である(小林ら、第 41 回 NMR 討論会要旨)。そこで主鎖帰属を試みたところ、ループ領域の一部及び C 末端領域を除く Ub 領域 の約 90%の残基の帰属に成功した(Fig. 2)。これらの結果は、GST タグの有効性と NMR 解析における 可能性の高さを示唆する。現在、これらのタグに加え NusA、Strep・tag 等についても評価中である。

R54 T55 L56 S57 D58 Y59 N60 I61 Q62 K63

Fig. 2 HNCACB spectra of Ub (A) and GST Ub
(B) (pH8.0 50mM HEPES, 500 MHz, 303K).
Sequential assignments are shown by dotted lines.

R54 T55 L56 S57 D58 Y59 N60 161 Q62 K63

-233 -

1量子、2量子スペクトルの同時測定法の開発

○高橋征三¹、加藤 恵¹、荻野孝史²

1) 日本女子大学理学部物質生物科学科、2) 国立精神・神経センター神経研究所 A Method of Simultaneous Acquisition of Single and Double Quantum Filtered Spectrum Seizo Takahashi¹, Megumi Kato¹ and Takashi Ogino²

1 Dept. Chem. & Biol. Sciences, Fac. Science, Japan Women's University,

2 Institute of Neurosicience, NCNP

Simultaneous observation of single and double quantum filtered spectra was devised for one and two dimensional spectra. FIDs of each phase combination in the pulse train were stored in the memory buffer and saved on the disk after completion of a series of pulse train. The saved data are then combined as different sets of data in accordance to the coherence selection of single and double quantum. The double quantum spectrum with this method was found slightly more vulnerable to the hardware imperfection. It was easily corrected adjusting the phase of each FID by software. The present technique is versatile enough to apply any kind of NMR spectra.

生体組織は複雑な形状の固体成分と細胞液からなる不均一系であり、その中に多種多様の物質が混合して存在する多成分系である。しかもこれらの成分は動的平衡にあり、時々刻々と変化している。 したがって生体の NMR 測定はしばしば特別の工夫を要することが多い。脳組織における 2 量子遷移スペクトルの緩和挙動は動的平衡の存在を強く示唆するが、代謝物濃度の変化の影響を除去するためには、1 量子(SQ)と2 量子(DQ)遷移を同時に測定することが望ましい。

2 量子遷移は水のようにスピン結合を持たないスペクトルを選択的に抑制する一方、励起状態から基 底状態へエネルギー緩和する挙動は、細胞内における存在状態について洞察を与える可能性を与える。 SQF-, DQF-NMR スペクトルの測定は従来別々に行われてきた。SQ、DQ スペクトルの同時測定は可能 性として提案されたことがあるが、分光器がそれに適した設計になっていないので、実用化されてい ない。今回はパルスプログラムの工夫と、対応できない部分をソフトで補う方針で臨んだ。つまり FID の取り込みにあたっては、すべて移送の組み合わせをそれぞれ独立にメモリーに保存し、遷移経路選 択に必要な位相回転をソフトで行った。

[実験] 測定は Bruker AMX400WB を使い、組み込みプログラムである UXNMR 上で適宜パルスプログ ラムを書いた。取り込みデータの解析は Sun Ultra10 に転送し、MATLAB 言語で作成した自作のプログ ラムで行った。

[結果]

1次元スペクトルは Bruker 標準プログラムの dqs1d を改変した。これは8位相の組み合わせで構成 される。各位相成分を取り出すために、1位相ごとに別々のファイルに書き込む方式と、メモリーバ ッファーに蓄える方式をテストしたところ、後者の方が位相の安定に優れていて後処理も簡単だった ので後者を採用した。位相の推移はFIDの1点目の位相と周波数領域の位相補正値で評価した。UXNMR はデータサイズに関係なくバッファー数は最大4であった。したがって1次元の場合、8位相を4位 相に射影した。

2次元スペクトルは DQF-COSY について検討した。この場合、8位相の組み合わせを独立に求めた。

○たかはし せいぞう、かとう めぐみ、おぎの たかし

- 234 -
receiver の位相の動きが不安定なときがあったので、最終的には receiver の位相を固定し解析ソフトウェアで位相回転を行う方法を採用した。そして receiver の位相を変えた場合とまったく同じ効果を得た。

[考察]

同時測定の場合はダミースキャンが使えないのでダミーループを 挿入した。得られた結果は、同時測定の場合は、DQF スペクトル単 独を得る場合より SQ 成分の混入が多くなる傾向が見られた。これは 作成したパルスプログラムのタイミングのずれが疑われた。

SQ 成分が完全に消失することが分っている場合は、理想位置 からの FID の位相のずれをソフトウェアで補正することは極め て簡単であった。装置固有のパルスや receiver のずれは、再現 性がある部分については既知情報として予めソフトに組み込んで おけば、1回の DQF スペクトルを3回ないし4回の積算で取得で

Fig.1 Phases of first point of FID for DQF spectrum. The figure exhibits the instrumental missalignment.

きる可能性がある。とくに receiver XY チャンネルの DC オフセットや増幅率のアンバランスをソフト で補正できる利点は大きい。

SQ と DQ スペクトルの同時測定は、

1 2種類のデータを1度の測定で得られるために測定時間の短縮が可能となる。

2 両者を比較するときに経時変化の影響を除去できる。

3 スピン結合を持たない DQ スペクトルで失われる情報を SQ スペクトルで取得できる。

4 単一ピークの SQ、DQ スペクトルの強度比は、生体の場合は高分子や組織成分と相互作用する 割合の情報を与える、等々の利点がある。

Fig. 2 A result of simultaneous acquisition of SQF- (left) and DQF-spectrum (right) expressed in a magnitude mode. The DQF-spectrum shows a fair amount of water resonance due to the miss-cancellation of SQ component. This is easily corrected by adjusting the phase of FID by means of a post-processing software.

小麦胚芽抽出物を用いた無細胞合成系によるタンパク質の選択的標識法

¹愛媛大学総合科学研究支援センター、²三菱化学生命科学研究所、

3愛媛大学工学部

○森田 勇人¹、清水 真人¹、田中 利好²,河野 俊之²、 遠藤 弥重太³

Amino-acid selective labeling of proteins synthesized with wheat-germ cell free system

¹Integrated Center for Science, Ehime University, ²Mitsubishi Kagaku Institute of Life Sciences, ³Faculty of Engineering, Ehime University oEugene Hayato Morita¹, Masato Shimizu¹, Rikou Tanaka², Toshiyuki Kohno², Yaeta Endo³

For the high-throughput protein structural analysis, many protein overexpression systems such as that using *E.coli* cells are developed. However, the numbers of overexpressed proteins showing the same biological activity as that of native proteins are limited, and the novel ways to overcome this limitation have to be developed. We have shown that the wheat germ cell-free protein synthesis system is one of the candidates. For the high-throughput monitoring of protein structure, we also have developed the way to assign the signals observed in ${}^{1}\text{H}{-}^{15}\text{N}$ HSQC spectra, amino-acid specifically.

【序】蛋白質の構造機能相関を解明する上で、生理活性を保持した蛋白質(あるいは蛋白質 ドメイン)を安定にかつ大量に発現させることは最初に解決すべき重要な問題点の一つであ る。これまで、大腸菌などの生きた細胞や細胞抽出液を用いた発現系が開発されたが、膜蛋 白質など合成が困難な蛋白質や人為的改変を加えた新規機能性蛋白質の合成などを効率的に 行うためには、新しい蛋白質発現系の開発が不可欠である。我々は、このような可能性が考 えられる系として小麦胚芽抽出物を用いた無細胞合成系(WGS)に着目した。これまでに、 WGSを用いて、生理活性を保持した可溶性蛋白質を安定かつ大量に発現できることを明ら かにする[1]とともに、いくつかの補因子を含む蛋白質、膜結合蛋白質に対しても、数種の酵 素を新たに添加することで効率的に合成することが可能であることを明らかにした。本報告 では、このようにして合成した蛋白質の高次構造をハイスループットで解析するために、W GSでアミノ酸選択的安定同位体標識を行うための手法を開発し、その有効性を¹H-¹⁵N HSQC スペクトルの測定により確認した。

キーワード: 無細胞、小麦胚芽、蛋白質合成、アミノ酸選択的標識

○ もりた はやと、しみず まさと、たなか りこう、こうの としゆき、えんどう やえた

【実験】

選択的アミノ酸標識を行うための標準蛋白質として、我々が¹H-¹⁵N HSQC スペクトルの帰属 を確定した RNA 結合蛋白質 RbpA1 を用いた。また、小麦胚芽抽出物はセルフリーサイエンス 社製を、また、¹⁵N 標識アミノ酸は日本酸素製(セルフリーグレード)を使用した。合成条件 は論文[2]に準拠し、48 時間合成を行った。なお 24 時間反応後反応の進行状態を電気泳動に より確認した。またトランスアミナーゼ阻害剤はシグマ社製の製品を用いた。合成した RbpA1 (合成液量:0.9 ml)は既報の手法[2]で精製した後、約 250 µl まで濃縮し、DMX-500 (Bruker) FT-NMR 分光光度系を用いて¹H-¹⁵N HSQC スペクトルを測定した。測定は、試料温度 30 ℃、積 算回数 1,024、データポイント数(64(t1) x 512(t2) complex points)で行った。

【結果と考察】

今回のスケールの合成により最終試料濃度は約 50 μM であり、上記の測定条件下で H-IN HSQC スペクトルは十分な S/N で観測できた。一方、WGSで合成した蛋白質で3次元スペクトルを測定しうる量を合成する場合、10倍程度(約9ml;試料蛋白質最終濃度約 0.5mM)の反応液を調整する必要がある。これは従来の大腸菌の細胞抽出液を用いた無細胞系と比較して同程度の合成規模であるが、必要となる標識アミノ酸の反応液中の濃度が約 1/10 であることから、アミノ酸選択的標識、立体特異的標識アミノ酸導入、セレノメチオニン導入などにはWGSの方がはるかに効率が良いと考えられる。

次にPro 以外のアミノ酸 19 種類について、各1 種類のアミノ酸のみ ¹⁵N標識化合物を使用 することで合成した RbpA1 の ¹H-¹⁵N HSQC スペクトルを測定することで、アミノ酸選択的標識 の可能性を評価したところ、Ala、Asp、Glu 以外のアミノ酸についてはトランスアミナーゼ 阻害剤を加えることなく選択的に標識されることが解った。Ala, Asp, Glu の3種類のアミノ 酸については、それぞれ単独に標識を試みてもそれ以外の2種類のアミノ酸に由来するシグ ナルが観測されたことから、相互に転移反応が起こっていると考えられた。そこで、Ala と Glu の相互変換をベータクロロアニリン (7 mM) で、Glu と Asp の相互変換をアミノオキシ酢 酸 (0.4 mM) で阻害したところ、ほぼ完全に相互変換を停止させることができた。

この結果から、WGSを用いて^{H-1}N HSQC スペクトルのアミノ酸選択的帰属が可能である ことを明らかにするとともに、小麦胚芽抽出物中では、いくつかのトランスアミナーゼ活性 が無視できない程度に高いことを明らかにした。

【参考文献】

- [1] "A wheat germ cell-free system is a novel way to screen protein folding and function." Morita, E.H., Sawasaki, T., Tanaka, R., Endo, Y. and Kohno, T. Protein Sci. 12: 1216-1221 (2003).
- [2] "NMR backbone assignments of the cold-regulated RNA-binding protein, RbpA1, in the cyanobacterium, Anabaena variabilis M3." Morita, E.H., Murakami, T., Uegaki, K., Yamazaki, T., Sato, N., Kyogoku, Y. and Hayashi, H. J. Biomol. NMR 17: 351-352 (2000).

インテラクティブなNMR解析ツール, Kujira, およびNOE自動帰属 モジュールCYANAによる結晶構造に迫る高精度なマウスラミンC 末ドメインの溶液構造決定

(理研・GSC¹、東大院理²、理研・播磨³)

○小林直宏¹、小柴生造¹、井上真¹、Peter Güntert¹、白水美香子¹、寺田貴 帆¹、矢吹孝¹、青木雅昭¹、松田貴意¹、関英子¹、布川絵未¹、松田夏子¹、 碇正臣¹、廣田洋¹、好田真由美¹、長内隆¹、田仲昭子¹、荒川貴博¹、Piero Carninci¹、河合純¹、林崎良英¹、木川隆則¹、横山茂之^{1,2,3}

Solution structure of mouse lamin determined by NMR using an interactive tool for NMR analysis, Kujira, and fully automated NOE assignment module, CYANA.

Genomics Sciences Center, RIKEN¹, Graduate School of Science, University of Tokyo², Harima Institute, RIKEN³

ONaohiro Kobayashi¹, Seizo Koshiba¹, Makoto Inoue¹, Peter Güntert¹, Mikako Shirouzu¹, Takaho Terada¹, Takashi Yabuki¹, Masaaki Aoki¹, Takayoshi Matsuda¹, Eiko Seki¹, Emi Nunokawa¹, Natsuko Matsuda¹, Masaomi Ikari¹, Hiroshi Hirota¹, Mayumi Yoshida¹, Takashi Osanai¹, Akiko Tanaka¹, Takahiro Arakawa¹, Piero Carninci¹, Jun Kawai¹, Yoshihide Hayashizaki¹, Takanori Kigawa¹, Shigeyuki Yokoyama^{1,2,3}

Elemental components of nuclear lamina, lamins, are known to be nuclear specific intermediate filaments maintaining nuclear shape and providing a structural support for chromosomes and DNA replication. Recent studies on mutations of the genes encoding lamins demonstrated that mutated C-terminal region of lamin is responsible for muscular dystrophy and lipodystrophy. Three dimensional structure of C-terminal domain of human lamin has been determined by crystallography and NMR, respectively, however, there are obvious differences between them with respect to their backbone and several side-chain conformation. To obtain more accurate structural information of lamin in solution, we have determined NMR structure of ¹⁵N,¹³C-labeled mouse lamin C-terminal domain by NMR using an interactive NMR analysis tool, Kujira, and fully automated NOE assignment module, CYANA.

[序論] 核ラミナの主要構成成分であるラミンは細胞核に特異的な中間経繊維として見出され、 細胞核の形状維持、クロモソームにおける構造維持などの構造タンパク質としての機能を有 することが知られている。最近では筋萎縮症など多くの家族性筋疾患の原因がラミンをコー ドする遺伝子変異であることが明らかにされ、核ラミンの細胞内における重要な役割が示唆 されている。ごく最近、ラミンC末側ドメインのNMR構造[1]および結晶構造[2]が相次いで 発表されたが、両者の構造には主鎖、一部の疎水性残基の側鎖に相違点が見られた。本研究 はより正確なラミンの溶液構造を得る目的で、¹³C、¹⁵N標識ラミンを作成し、NMRによる 高精度な立体構造解析を行った。

構造プロテオミクス、マウスcDNA、無細胞タンパク質合成、kujira、CYANA

○こばやしなおひろ、こしばせいぞう、いのうえまこと、ぴーたーぎゅんたーと、しろうずみかこ、 てらだたかほ、やぶきたかし、あおきまさあき、まつだたかよし、せきえいこ、ぬのかわえみ、まつ だなつこ、いかりまさおみ、ひろたひろし、よしだまゆみ、おさないたかし、たなかあきこ、あらか わたかひろ、ぴえろかるにんち、かわいじゅん、はやしざきよしひで、きがわたかのり、よこやまし げゆき

[方法] 無細胞タンパク質合成系により ¹³C、¹⁵N 標識ラミン C 末ドメイン(408-545)を調整し た。NMR 測定には Bruker 社製 AVANCE600 および AVANCE800 を用いた。主鎖および側鎖 の帰属には NMRView および理研 GSC にて独自に開発した解析用ツール Kujira (ver. 0.473)を 用いた。立体構造計算に用いた NOE は全て¹³C-edited NOESY および¹⁵N-edited NOESY スペクトル上で検出した。 NOE 自動帰属と立体構造計算には CYANA (ver.1.0.7)を用いた。 初期の立体構造計算においては、シグナル帰属達成度が8割程度の化学シフトテーブルおよ び NOE ピークテーブル、TALOS 計算によって得られた ϕ , ϕ 2 面角制限テーブル、手動で 帰属した2次構造特異的な NOE 由来の距離制限テーブルを用いて CYANA による計算を実 行し、グローバルフォールドを得た。この時点で Kujira に搭載されている NOE 帰属結果 をスペクトル群と連動させて解析できる機能を用いて化学シフトテーブルの修正追加、NOE ピークの追加やノイズピークの削除を行った。構造の収斂度が主鎖構造に対しておよそ RMSD 0.5 Åに達した構造解析中盤においては CYANA によって計算された構造に基づいた 化学シフトテーブルの検討を行い修正を行った。また HD 交換実験の結果と NMR 構造とを 検討しながら水素結合の距離制限テーブルを作成し CYANA の立体構造計算に用いた。解析 の終盤においてはARG、SER、THR 側鎖などの交換性プロトンシグナルの帰属、 φ, φ 角、 χ1, χ2 角の検討を NMR 構造をもとに行い、僅かに残っている化学シフトの誤りや NOE テーブル中のノイズを修正あるいは削除した。

[結果と考察] 本研究によって収斂度が高く(主鎖 RMSD: 0.33Å)、エネルギー的に低い構造が最終的に得られた。CYANAによって帰属された NOE は 4668 個に達し(全体の 97.5%)、0.5-1.5Åのバイオレーションによる理由で帰属されなかった NOE は僅か 27 個であった。既に報告されているヒトラミンの結晶構造(1IFR)および NMR 構造(1IVT)と比較したところ、主鎖構造、側鎖構造ともに結晶構造に最も良く一致した(主鎖 RMSD 0.70Å)(Fig.1 左)。これに対し、1IVT のグローバルフォールドは良く似ているものの、主鎖構造、側鎖構造ともに一致度が低く(主鎖 RMSD 1.39Å)、特に Trp498、Trp520 の側鎖の位置が大きく異なっていた(Fig.1 右)。従って本研究によって結晶構造と我々の決定した溶液構造が主鎖、側鎖共に信頼できるラミンの構造である事が示された。また CYANA による自動 NOE 帰属法は Kujira などのインテラクティブな解析ツールと連携しながら使用し、NOE 帰属の完全度をあげることでより信頼できる立体構造が得られる可能性が示された

Fig1. Crystal structure (1IFR, light gray, left) and NMR structure (1IVT light gray, right) of human lamin overlayed with mouse lamin (dark gray).

References

[1] Krimm, I., Östlund C., Gilquin B., Couprie J., Hossenlopp P., Mornon J-P., Bonne G., Courvalin J-C., Worman H. J. and Zinn-Justin S. *Structure*, **10**, 811-823 (2002).

[2]Dhe-Paganon S., Werner E. D., Chi Y-I and Shoelson S. E. J. Biol Chem., 17, 17381-17384 (2002).

phytochrome B PAS domain の構造

奈良先端大バイオ¹、農業生物資源研²

○田畑亮¹,三島正規¹,赤木香予²,加藤悦子²,高野誠²,山崎俊正²,児嶋長次郎¹

NMR structural study of phytochrome B PAS2 domain

Ryo Tabata¹ , Masaki Mishima¹ , Kayo Akagi² , Etsuko Katoh², Makoto Takano², Toshimasa Yamazaki², Chojiro Kojima¹

¹ Graduate School of Biological Sciences, Nara Institute of Science and Technology, ² National Institute of Agrobiological Sciences

PAS (PER-ARNT-SIM) domain, found in diverse proteins throughout all three kingdoms of life, is a family of sensor protein domains that mediate protein-protein interactions or bind small ligands and/or cofactors. It is interesting that these domains contain a structurally conserved α/β -fold, whereas low sequence similarity is observed. There are two PAS domains in plant photoreceptor phytochromes and its roles for phototransformation have been demonstrated by genetical approach in *Arabidopsis*. In this research, we have attempted to determine the solution structure of the rice phytochrome B PAS domain (L806-A923) by using multidimensional NMR spectroscopy to discuss structure and function relationship. To date, by analyses of secondary structure, rice phytochrome B PAS domain possess typical PAS fold.

【序論】

PAS (Per-Arnt-Sim) domain は、全ての生物界において環境刺激応答に関与する数多くのタン パク質に存在し、シグナル伝達に関わる重要なモジュールと考えられている。そのアミノ酸配列レ ベルでの相同性の低さに反し、保存された α / β -fold を持つ事が知られているが、低分子リガン ドと結合するものや、タンパク質・タンパク質相互作用に関わるものなど様々な分子機能に寄与す る。イネの赤・遠赤色光可逆反応の光受容体として知られている phytochrome B には PAS domain がタンデムに並んで存在しており、光反応におけるその機能に興味がもたれる。本研究では、溶液 NMR を用いて phytochrome B の PAS domain (L806-A923) の構造解析を試みた。

キーワード: 溶液 NMR、 phytochrome B、 PAS domain

たばたりょう、みしままさき、あかぎかよ、かとうえつこ、たかのまこと、やまざきとしまさ、 こじまちょうじろう

【方法】

大腸菌発現系を用いて、¹³C/¹⁵N 安定同位体標識したイネ phytochrome B PAS domain (L806-A923) を大量発現及び精製した。この PAS domain をリン酸緩衝液(50 mM potassium phosphate, pH 6.8, 20 mM KCl, 0.1 mM EDTA, 0.1 mM DTT)を用いて調整し、NMR 測定試料 とした。Bruker 社の DRX 500 及び DRX 800を用いて¹⁵N-¹H HSQC、HNCACB、HN(CO)CACB、HNCO、HN(CA)CO を測定し、これらのスペクトルデータをもとに、Sparky を用いて主鎖の帰属を 行った。

【結果と考察】

多核多次元 NMR スペクトルを用いた連鎖帰属法により、主鎖 118 残基のうち 1 残基目を除く全 ての残基において帰属が完了した。 Chemical shift index より得られたイネ phytochrome B PAS domain (L806-A923) の二次構造は、PAS core、helical connector、 β -scaffold より構成される PAS domain 特有の fold を保持しており、最初の α helix 周辺には疎水性残基が多く存在していた。 こ れらアミノ酸残基は、すでに明らかにされた各生物種由来 PAS domain の立体構造との比較により、 保存された疎水性コアの形成に深く関わっている可能性が強く示唆された。

現在は側鎖の解析のため C(CO)NH、H(CCO)NH、4DHC(CO)NH の測定を行なっており、立体構造を目指して解析を進めている。さらに、保存された領域に存在すると考えられている flexibility と機能を議論するため解析を進めている。

Figure 1: Comparison of the amino acid sequence and the secondary structure element between Rice phytochrome B PAS domain (L806-A923) and other PAS domains. The helices and strands are shown by broken line and arrows. Thick under lines indicate conserved residues. (1) Hhal photoactive yellow protein (PYP) (2) Smellion FixL heme domain (1) ERG).

マウス構造プロテオミクス:

MARK3 C 末端 KA1 ドメインの溶液構造

(理研・GSC¹、東大・院理²、理研・播磨³) 〇栃尾尚哉¹、小柴生造¹、小林直宏¹、白水美香子¹、寺田貴帆¹、 矢吹孝¹、青木雅昭¹、松田貴意¹、関英子¹、布川絵未¹、鞆康子¹、 元田容子¹、小林敦夫¹、廣田洋¹、好田真由美¹、長内隆¹、 田仲昭子¹、荒川貴博¹、Piero Carninci¹、河合純¹、林崎良英¹、 Peter Guntert¹、木川隆則¹、横山茂之^{1,2,3}

Mouse Structural Proteomics: Solution structure of MARK3 C-terminal KA1 domain

(RIKEN Genomic Sciences Center¹, The University of Tokyo², RIKEN harima³) N. Tochio¹, S. Koshiba¹, N. Kobayashi¹, M. Shirouzu¹, T. Terada¹, T. Yabuki¹, M. Aoki¹, T. Matsuda¹, E. Seki¹, E. Nunokawa¹, Y. Tomo¹, Y. Motoda¹, A. Kobayashi¹, H. Hirota¹, M. Yoshida¹, T. Osanai¹, A. Tanaka¹, T. Arakawa¹, P. Carninci¹, J. Kawai¹, Y. Hayashizaki¹, P. Güntert¹, T. Kigawa¹, S. Yokoyama^{1,2,3}

The MARK (MAP/microtubule affinity-regulating kinase) family consists of the following kinases. MARK1 has been implicated as a kinase which modulates microtubule structure. EMK is involved in the regulation of cell polarity, microtubule dynamics, Wnt pathway signaling, and the maintenance of immune system homeostasis. C-TAK1 (Cdc25C-associated kinase 1) participates in cell cycle regulation and Ras signaling. In this study, by using triple resonance NMR techniques, we have determined the solution structure of KA1domain (kinase associated domain 1) at the C-terminal region of mouse MARK3 which is homologous to human C-TAK1. Its structure is a novel fold, consisting of $\beta\alpha\beta\beta\beta\beta\alpha$ topology. We found that the longer region than predicted by Pfam is required for stability of this domain.

序論

MARK (MAP/microtubule affinity-regulating kinase) ファミリーには、微小管構造を調節する MARK1 や、細胞極性の制御、微小管の動態、Wnt 経路シグナル伝達、免疫系のホメオスタシスの調節に関する Emk (ELKL motif kinase)、細胞周期の制御や Ras シグナル伝達に関与する C-TAK1 (Cdc25C-associated kinase 1) が含まれている。 本研究ではマウス由来 MARK3 (similar to human C-TAK1) の C 末端に存在する KA1 ドメイン (kinase associated domain 1) の溶液構造を、多核多次元 NMR 法を用いて決 定した。このドメインは $\beta \alpha \beta \beta \beta \beta \alpha$ 構造からなっている新規のフォールドである ことが明らかとなり、その構造を安定化させるには、一次配列の解析により KA1 ド メインと定義されているより長い領域が必要であることがわかった。

MARK、KA1、構造プロテオミクス、無細胞タンパク質合成

とちおなおや、こしばせいぞう、こばやしなおひろ、しろうずみかこ、てらだたかほ、 やぶきたかし、あおきまさあき、まつだたかよし、せきえいこ、ぬのかわえみ、とも やすこ、もとだようこ、こばやしあつお、ひろたひろし、よしだまゆみ、おさないた かし、たなかあきこ、あらかわたかひろ、Piero Carninci、かわいじゅん、はやしざき よしひで、Peter Guntert、きがわたかのり、よこやましげゆき

方法

大腸菌抽出物を用いた無細胞タンパク質合成系により調整された¹³C/¹⁵N 標識タンパ ク質を用い、Bruker 社製 Avance600 および Avance800 にて多核多次元 NMR 測定を行 った。データ処理には NMRPipe を、シグナルの帰属には NMRView-Kujira を用いた。 また、CYANA-CANDID による NOE 自動帰属と立体構造計算によって最終構造を得 た。

結果と考察

本研究によって、MARK3 C 末端 KA1 ドメインの立体構造を得ることができ、その構造は $\beta \alpha \beta \beta \beta \beta \alpha$ 構造をとっていることが分かった。また、DALI による立体構造相同性検索の結果、既知の構造との相同性は低く、新規フォールドである考えられる。また、本研究によって、Pfam で定義されている KA1 ドメイン領域よりも長い領域から構成されて、はじめて安定な構造を得ることができることがわかった。本研究で用いた KA1 ドメインは、C 末端に特徴的な ELKL モチーフを有しており、このモチーフ領域の構造もあきらかになった。

¹⁵N (ppm)

¹H (ppm)

Fig. 1 ¹⁵N-¹H HSQC spectrum obtained from Bruker Avance 800MHz

Fig. 2 The ribbon diagram of KA1 domain. The residues of ELKL motif region are shown in neon representation.

立体整列同位体標識(SAIL)法による分子量 42 kDa のタンパク質・

MBP の立体構造決定

(東京都立大学¹, CREST/JST²)

○岩下由紀1, 鳥澤拓也2, 寺内勉2, 甲斐荘正恒12

Structure Determination of a 42 kDa Protein, Maltose Binding Protein (MBP), using SAIL Technology

Tokyo Metropolitan University¹, CREST/JST²

Yuki Iwashita¹ Takuya Torizawa² Tsutomu Terauchi² Masatsune Kainosho^{1,2} Structural determinations of proteins larger than 25-30 kDa by NMR are quite difficult, because of excessive signal congestion and line broadening of their NMR spectra. In order to overcome these problems, we have been developing a new isotope-labeling method, SAIL (Stereo-Array Isotope-Labeling), which utilizes protein samples fully composed of stereo/regio-selectively ²H, ¹³C, and ¹⁵N-labeled amino acid residues. SAILed proteins are designed to eliminate redundant structural information, and also to improve signal sensitivities by line narrowing. An analysis of the NMR data of the 41 kDa protein MBP (maltose binding protein) complexed with 8-cyclodextrin (1 kDa) will be reported to demonstrate the utility of the SAIL method for a protein of this size.

1. はじめに

タンパク質の分子量増大に伴う NMR スペクトルの重なりと線幅の増加による測定感度の低 下は、立体構造決定可能な分子量限界を実質的に決定している重要な因子である。安定同位体標 識法の高度化により、測定用試料自体の最適化を行うことでこれら二つの要因の解決を図り、 NMR による立体構造決定可能なタンパク質の分子量限界を拡張する革新的手法が、過去数年間 我々が開発に取り組んできた SAIL (Stereo-Array Isotope-Labeling)法である。SAIL 法にお いては、タンパク質の構成アミノ酸の側鎖全てを位置・立体選択的に²H,¹³C,¹⁵N-三重標識した 試料を測定に用いる。SAIL タンパク質においては、構造情報を得るのに必要な観測核を合理的 に選択標識しているため、スペクトルの簡略化が実現する一方で、精密な構造計算を行うために 必要な NMR シグナルが効率良く取得できる。さらに、¹H 数の大幅な削減によりシグナルの緩 和時間の延長が可能となるため、測定感度の著しい向上が期待される。本報告では、従来の NMR 法では立体構造決定が不可能とされてきた分子量領域のタンパク質 MBP 複合体 (Maltose Binding Protein:41 kDa, β-cyclodextrin:1 kDa)を NMR 解析手法開発のモデルとし、この 分子量領域における SAIL 法の有効性を評価した。

キーワード:SAIL、立体整列同位体標識、重水素標識、立体構造決定、無細胞タンパク質合成

いわしたゆき、とりざわたくや、てらうちつとむ、かいのしょうまさつね

- 244 -

2. 実験

N 末端側に His-tag, thrombin 切断配列を融合した MBP の発現用プラスミドを構築し、これ を鋳型 DNA として大腸菌無細胞タンパク質合成系により SAIL-MBP および均一 13 C, 15 N 標識 MBP(UL-MBP)を得た。発現した MBP を、陰イオン交換カラムによって粗精製し、続いて His-tag 親和性カラムによって精製した。His-tag を thrombin 酵素による切断・除去した後、 NMR 試料とした。両試料とも 5 mol 当量の β - cyclodextrin を添加した状態で、解析用・評価 用の多次元 NMR 測定を行った。

結果・考察

シグナル帰属は以下のようにして行った。最初に UL-MBP の $^{1H-15N}$ HSQC, HNCO, HN(CA)CO, HNCACB, HN(CO)CACB スペクトルの解析を行い、主鎖シグナルの帰属を確定した。これらの帰属を利用し、さらに SAIL-MBP の HN(CO)CACB、HBHA(CO)NH を解析することにより、これまでに SAIL-MBP の 1HN , $^{1H^{\alpha}}$, $^{1H^{\beta}}$, 15N , $^{13}C'$, $^{13}C'$, $^{13}C^{3}$ の帰属が完了した。

次に側鎖シグナルの分離、測定感度を評価するために SAIL-MBP と UL-MBP の ¹H-¹³C ct-HSQC スペクトルの比較を行った。SAIL-MBP のスペクトルにおいては、メチル基、メチレ ン基が検出される領域でシグナルの重なりが著しく軽減された。特にメチレン領域においては、 単にスペクトルが簡略化されるだけでなく、線幅の減少から遥かに感度良くシグナルが得られる ことがわかった (Figure 1)。

実際に側鎖シグナルを帰属するために、HCCH-TOCSY、HCC(CO)NH 測定を行った。これ らのスペクトルにおいても UL-MBP ではシグナルの感度・分離が不良なため、側鎖シグナルの 解析は不可能であると判断した。一方、SAIL-MBP においては、それらの問題点が格段に改善 されたスペクトルが得られた。これによって側鎖シグナルの内、大部分の帰属を見込むことがで きる。現在、これらのスペクトルを併用して残りの側鎖シグナルの帰属を行っている。

Figure 1: ¹H-¹³C ct-HSQC spectra of MBP (methylene regions) (A) UL-MBP (B) SAIL-MBP

NMR structure of the ENTH-VHS-like domain

At3g16270 from Arabidopsis thaliana

O Blanca López-Méndez¹, David Pantoja-Uceda¹, Tadashi Tomizawa¹, Seizo Koshiba¹, Mikako Shirouzu^{1,2}, Takaho Terada^{1,2}, Takanori Kigawa¹, Makoto Inoue¹, Takashi Yabuki¹, Masaaki Aoki¹, Eiko Seki¹, Takayoshi Matsuda¹, Hiroshi Hirota¹, Mayumi Yoshida¹, Akiko Tanaka¹, Takashi Osanai¹, Motoaki Seki¹, Kazuo Shinozaki¹, Shigeyuki Yokoyama^{1,2,3} & Peter Güntert¹

¹RIKEN Genomic Sciences Center, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan; ²RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148, Japan; ³Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.

Endocytosis is a complex process that is essential for many cellular functions, including synaptic vesicle recycling, nutrient uptake and removal of receptors and ion channels from the cell surface. ENTH (epsin N-terminal homology; Chen et al., 1998) and VHS (Vps27, Hrs and STAM; Schultz et al., 1998) domains are present in the N-terminal part of many 'accessory' proteins that have primarily regulatory roles in endocytosis, i.e., by determining the contents of the endocytic vesicle or by initiating the formation of coated pits (Wendland, 2002). The hypothetical 127 amino acid ENTH-VHS-like domain At3g16270 from *Arabidopsis thaliana* was selected by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) for a NMR study.

タンパク質構造、ENTH-VHS、Arabidopsis thaliana、CYANA

○ぶらんか ろぺず めんでず、でぃびっど ぱんとーや うせだ、とみざわ ただし、こしば せいぞう、しろうず みかこ、てらだ たかほ、きがわ たかのり、いのうえ まこと、やぶき たかし、あおき まさあき、せき えいこ、まつだ たかよし、ひろた ひろし、よしだ まゆみ、たなか あきこ、おさない たかし、せき もとあき、しのざき かずお、よこやま しげゆき、ペーたー ぎゅんたーと

Methods & Results

The ¹³C- and ¹⁵N-labeled Arabidopsis ENTH-VHS-like domain At3g16270 was produced by the *E. coli* cell-free synthesis system (Kigawa et al., 1999) as a 173 amino acid recombinant protein with an N-terminal HAT affinity tag and a TEV protease cleavage site. The HAT-tag was removed by incubation with TEV protease. The protein sample used for the

NMR measurements comprises 140 amino acid residues including the non-native terminal sequences added in the cloning process. NMR experiments were recorded with one sample of approximately 1.20 mM, uniformly ¹³C and ¹⁵N labeled protein in 20 mM Tris buffer at pH 7.5, containing 100 mM NaCl, 1 mM dithiothreitol, 0.02 % NaN₃ and 10% D₂O (v/v). All NMR measurements were performed at 25°C on Bruker DRX 600 and Bruker AV 800 spectrometers (for the NOESY experiments). Backbone and side-chain assignments were obtained using a combination of standard NMR experiments: 2D [¹H,¹⁵N]-HSQC, 2D [¹H,¹³C]-HSOC, 3D HNCO, HN(CA)CO, HNCA, HN(CO)CA, HNCACB, CBCA(CO)NH, (H)CC(CO)NH, HCCH-COSY, HCCH-TOCSY, H(CCCO)NH and (H)CCH-TOCSY. Assignments were checked for consistency with 3D ¹⁵N-edited [¹H,¹H]-NOESY and ¹³C-edited [¹H,¹H]-NOESY spectra recorded with 80 ms mixing time. Conformational constraints were obtained exclusively from 3D ¹⁵N-edited [¹H,¹H]-NOESY and ¹³C-edited [¹H,¹H]-NOESY spectra recorded with 80 ms mixing time. The 3D NMR structure of the Arabidopsis ENTH-VHS domain was calculated by simulated annealing in torsion angle space using the program CYANA. All NOEs used as distance constraints for the structure calculation were assigned automatically in seven cycles of combined automated NOE assignment and structure calculation with CYANA.

The three-dimensional structure of the ENTH-VHS-like domain At3g16270 from *Arabidopsis thaliana* forms a multi-helical structure consisting of two antiparallel two- α -helix HEAT motifs and one three- α -helix ARM motif (Figure 1).

Figure 1. NMR structure of the ENTH-VHS-like domain At3g16270 from *Arabidopsis thaliana*. 15 CYANA conformers were superimposed for pair-wise minimum RMS deviation of the N, C^{α} and C' atoms of residues 15-13.

References

Chen, H., Fre, S., Slepnev, V.I., Capua, M.R., Takei, K., Butler, M.H., Di Fiore, P.P. and De Camilli, P. (1998) *Nature*, **394**, 793–797.

Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T. and Yokoyama, S. (1999) FEBS Lett., 442, 15–19.

Schultz, J., Milpetz, F., Bork, P. and Ponting, C.P. (1998) Proc. Natl. Acad. Sci. USA, 95, 5857–5864. Wendland, B. (2002) Nature Rev. Mol. Cell Biol. 3, 971–977.

HR23Bユビキチン相同ドメイン-プロテアソームS5aサブユニット ユビキチン結合モチーフ複合体の構造解析 (横浜市大・院総合理¹、理化学研究所²、愛媛大・院理工³、生物分子工学 研究所¹、奈良先端大バイオ⁵)

○藤原健一朗¹、天野剛志^{1,3}、菅澤薰²、Jee Jun-Goo^{1,2}、大木出⁴、児嶋長次郎⁵、栃尾豪人⁴、 廣明秀一¹、花岡文雄²、白川昌宏¹

Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B Kenichiro Fujiwara¹, Takeshi Tenno^{1,3}, Kaoru Sugasawa², Jun-Goo Jee^{1,2}, Izuru Ohki⁴, Chojiro Kojima⁵, Hidehito Tochio¹, Hidekazu Hiroaki¹, Fumio Hanaoka², Masahiro Shirakawa¹

(¹Graduate School of Integrated Science, Yokohama City University, ² RIKEN,³Graduate School of Science and Engineering, Ehime University, ⁴BERI, and ⁵Graduate School of Biological Sciences, NAIST)

Ubiquitination serves signalling functions that control several cellular processes. The ubiquitination signal is recognized by downstream effectors, many of which carry a ubiquitin-interacting motif (UIM). Such interactions can be modulated by regulators carrying a ubiquitin-like (UbL) domain, which binds UIM by mimicking ubiquitination.

To understand the mechanism of interaction between UIM snd ubiquitin or UbL, we have analyzed the solution structures of the UIM of the proteasome subunit S5a bound to the UbL domain of HR23B. The UbL domain presents one hydrophobic and two polar contact sites for interaction with UIM. The residues in these contact sites are well conserved in ubiquitin, but ubiquitin also presents a histidine at the interface. We also showed that the side chain of this residue may have a regulatory role in the binding of ubiquitin to UIM.

【序】 ユビキチンは 76 残基からなる真核生物に高度に保存されたタンパク質で、C末端 のカルボキシル基が蛋白質のリジン残基側鎖に isopeptide 結合により付加することが知られ ている。この反応はユビキチン化と呼ばれ、①K-48 リンクのポリユビキチン化、②K-63 リ ンクのポリユビキチン化、③モノユビキチン化の三種類が確認されている。また、これらは それぞれ①基質蛋白質のプロテアソームによる分解、②DNA修復・シグナル伝達③エンド サイトーシスや蛋白質輸送に関与することが知られている。このように、ユビキチン化は標 的たんぱく質への結合様式の違いによって、多種多様な機能に関与するのが特徴であるとい

キーワード ユビキチン、UBL、UIM、 構造解析

ふじわらけんいちろう、てんのたけし、すがさわかおる、じーじゅんぐ、おおきいずる、 こじまちょうじろう、とちおひでひと、ひろあきしゅういち、はなおかふみお、 しらかわまさひろ

- 248 -

える。近年ユビキチンと相互作用するドメインが見出されている。これらとユビキチンの 間の相互作用機構を調べることはユビキチンの提示するシグナルの理解に重要であると思わ れる。

このうち、ユビキチン認識モチーフ(UIM) は約 20 残基からなるモチーフであり、ユビキ チンとの相互作用については、K-48 リンクのポリユビキチン及びモノユビキチンに結合する こと、結合活性はポリユビキチンに対する方が高い事が知られている。また、ユビキチンに 類似した配列をもつユビキチン相同ドメイン(UbL)とも相互作用することが知られている。

我々は、ヌクレオチド除去修復因子である HR23B の UbL とプロテアソーム S5a サブユニ ットの UIM との複合体の構造決定をおこない、UbL-UIM 間の認識機構を明らかにすること ができた。更に、UbL とユビキチンの構造比較から、ユビキチンと UIM の認識機構につい ての考察をおこなった。

【UbL-UIM 間の認識機構について】

構造解析の結果、HR23B UbL(以下 UbL と略す)はユビキチンフォールドであり、S5aUIM (以下 UIM と略す)は、ルプ部分とαヘリックスで構成されていることがわかった。また、 UIM は UbL のβシートと相互作用していることが確認できた。立体構造と *in vitro* におけ る結合活性実験から、複合体は、疎水性相互作用・静電的な相互作用・分子間水素結合の三 種類の相互作用により安定化されていることが確認できた。

【ユビキチン-UIM 間の認識機構について】

上記の構造をもとに、ユビキチンーUIMの相互作用様式について考察をおこなった。UbL の構造は、ユビキチンの溶液構造と同一のフォールドであり、滴定実験からユビキチンもUbL と同一の表面でS5aUIMと相互作用していることを示唆する結果が得られた。表面残基を比 較した結果、UIMとの相互作用に関与するユビキチンの残基は、UbLのV70に該当するユ ビキチンの残基がH68である以外は、ほぼ同一であった。ユビキチンのUIMに対する結合 活性はUbLのそれに比べて低い事が知られているが、結合活性の差は、異なる表面残基であ るH68が原因であると考え、この残基の変異体を作成し、UIMの結合活性を調べたところ、 変異体のUIM 結合活性の上昇が確認できたことから、ユビキチンはUbLと同一の様式で UIMと相互作用していることを確認できた。

【ユビキチンH68のUIM 結合活性に及ぼす役割】

ユビキチンの H68 の UIM 結合活性に対する影響を検討するためにユビキチンの UIM 結 合活性と、イミダゾール基の荷電状態の pH 依存性との相関の有無を調べた。

この結果、wild type のユビキチンの UIM 結合活性とイミダゾール基の荷電状態には明瞭 な相関が見られた。一方、変異ユビキチンには、両者の相関は全く認められなかった。この 結果、ユビキチンの H68 は、イミダゾール基の荷電状態により、UIM の結合活性を調節し ていることを推定することができた。 ニ成分情報伝達系レスポンスレギュレーターFixJの構造・機能解析 (横浜市大院・総合理¹,理研・遺伝生化学研究室²,CREST/JST³, 理研播磨・生体物理学研究室⁴) 〇葛西 佑一¹,倉島 かおり¹,伊藤 隆^{1,2,3},中村 寛夫^{1,4}, 柴田 武彦^{1,2,3},城 宜嗣⁴

Structural and functional analyses of two-component system response regulator FixJ

Yuichi Kasai¹, Kaori Kurashima¹, Yutaka Ito^{1.2.3}, Hiro Nakamura^{1,4}, Takehiko Shibata^{1.2.3},

and Yoshitsugu Shiro⁴

¹Graduate School of Integrated Science, Yokohama City University; ²Research Group for Bio-supramolecular Structure-Function, RIKEN; ³CREST/JST; ⁴Biophysical Chemistry Laboratory, RIKEN Harima Institute

The nitrogen fixation reaction of rhizobia which symbiotically live within the root nodules of leguminous plants is controlled by the oxygen sensor proteins, FixL/FixJ two-component system. The response regulator FixJ works as a transcriptional factor that regulates the expression of nitrogen fixation-related genes. Although the C-terminal domain of FixJ (FixJC) is able to bind to the specific promoter DNA, its activation requires the phosphorylation and its consequently induced dimerization of the receiver domain (FixJN). In this study, we prepared the ${}^{13}C/{}^{15}N$ labeled full-length FixJ for NMR spectroscopy in order to investigate how FixJC is activated by the phosphorylation of FixJN. we also examined on a FixJ mutant (T109A) which constitutively binds to the DNA regardless of phospholyzation to obtain the structural information of the active form.

【緒言】

マメ科植物の根に共生する根粒菌の窒素固定反応は、酸素センサー蛋白質 FixL/FixJ の二成分情 報伝達系によって制御されている.レスポンスレギュレーターFixJ は FixL からリン酸基転移によ って活性化され、窒素固定反応に関連した遺伝子の転写因子として働く.FixJ の C 末端ドメイン (FixJC) は DNA 結合活性を担っているが、その活性は N 末端ドメイン (FixJN) のリン酸化と 二量体化によって制御されていると考えられる.そこで、FixJN による FixJC の活性制御のメカニ ズムを原子分解能で解明するため、野生型 FixJ 全長蛋白質の安定同位体標識試料を調製し NMR 解析を行っている.また、FixJ の Thr109 残基が Ala に置換された変異体についても同様の解析を 試みた.T109A 変異体は、非リン酸化状態でも DNA 結合活性を示す変異体であり、FixJN による FixJC の活性制御を理解する上で非常に重要と考えられる.

キーワード: FixJ, 二成分情報伝達, 蛋白質-DNA 相互作用

著者ふりがな: かさいゆういち、くらしまかおり、いとうゆたか、なかむらひろお、しばたたけひこ、 しろよしつぐ 【実験】

大腸菌内の大量発現システムを用いて¹³C/¹⁵N 標識をした野生型および変異型 FixJ を調製した. それぞれ,NMR 用緩衝液 [20 mM Na-phosphate(pH 8), 100 mM NaCl, 10% D₂O] を用いて NMR 測定試料を得た.NMR 測定は理研和光本所の Bruker DRX600 を使用し, 303 K で行った.¹H-¹⁵N HSQC スペクトルの他に,主鎖 NMR シグナルの帰属のための 3 次元 3 重共鳴 NMR スペクトルを 測定した.データ処理には Azara v2.7, スペクトルの解析には Ansig-for-OpenGL v1.0.5 を用いた.

【結果·考察】

野生型と変異型 FixJ について¹H-¹⁵N HSQC スペクトルを測定した結果,両者とも 204 残基のう ち約 170 個の分離したクロスピークを観測したが,FixJ にはプロリンが 10 残基存在することと α-helix が主体であると推定され、シグナルのオーバーラップが予測されることを考慮すると,+ 分なシグナル数が観測されたと考えられる.また,T109A 変異に伴って,複数のクロスピークに ついて化学シフト変化が起こっていることが判明した.

現在,野生型と変異型の全長 FixJ について主鎖 NMR シグナルの帰属を進めており, FixJN に よる FixJC の制御のメカニズムと, T109A 変異による DNA 結合活性転換のメカニズムの解明を目 指す.

Fig.1: ${}^{1}H{}^{-15}N$ HSQC spectra of wild-type FixJ (left panel) and FixJ(T109A) mutant (right panel). T109A single mutation caused chemical shift changes for several ${}^{1}H{}^{-15}N$ correlation cross peaks, which are represented with boxes in the left panel.

— 251 —

マウス構造プロテオミクス:hypothetical protein 2610208M17Rik N末端ドメインの溶液構造

(¹理研・GSC、²東大・院理、³理研・播磨)

○李華¹、富沢忠¹、小柴生造¹、井上真¹、白水美香子¹、寺田貴帆¹、 矢吹孝¹、青木雅昭¹、松田貴意¹、関英子¹、布川絵未¹、齋藤深雪¹、 渡辺恵¹、平戸麻里¹、廣田洋¹、好田真由美¹、長内隆¹、田仲昭子¹、 荒川貴博¹、Piero Carninci¹、河合純¹、林崎良英¹、Peter Guntert¹、 木川隆則¹、横山茂之^{1,2,3}

Mouse Structural Proteomics: Solution Structure of the Hypothetical Protein 2610208M17Rik N-terminal Domain

(¹RIKEN GSC, ²The University of Tokyo and ³RIKEN Harima Institute)

OH. Li¹, T. Tomizawa¹, S. Koshiba¹, M. Inoue¹, M. Shirouzu¹, T. Terada¹, T. Yabuki¹, M. Aoki¹, T. Matsuda¹, E. Seki¹, E. Nunokawa¹, M. Saito¹, M. Watanabe¹, M. Hirato¹, H. Hirota¹, M. Yoshida¹, T. Osanai¹, A. Tanaka¹, T. Arakawa¹, Piero Carninci¹, J. Kawai¹, Y. Hayashizaki¹, Peter Guntert¹, T. Kigawa¹, S. Yokoyama^{1,2,3}

Structural proteomics is an emerging field which aims at understanding comprehensively the protein structure and its related function. As a step toward mouse structural proteomics, the solution structure of the N-terminal domain of hypothetical protein 2610208M17Rik from mouse was determined by NMR. The result shows that the interest protein adopts a four-helical up-and-down bundle fold. The function of the protein was estimated based upon comparison of the structural homologues obtained from Dali search.

構造プロテオミクス、マウス cDNA、無細胞タンパク質合成、溶液 NMR、 four-helical up-and-down bundle fold

りか、とみざわただし、こしばせいぞう、いのうえまこと、しろうずみかこ、てらだた かほ、やぶきたかし、あおきまさあき、まつだたかよし、せきえいこ、ぬのかわえみ、 さいとうみゆき、わたなべめぐみ、ひらとまり、ひろたひろし、よしだまゆみ、おさな いたかし、たなかあきこ、あらかわたかひろ、Piero Carninci、かわいじゅん、はやしざ きよしひで、Peter Guntert、きがわたかのり、よこやましげゆき 【序】

我々は、タンパク質の立体構造と機能を包括的に解明する構造プロテオミクス研究を進めている。その一環として、マウス由来の機能未知タンパク質である hypothetical protein 2610208M17Rik のN末端ドメインについて、NMR 法を用いた立体構造解析を行った。

【方法】

¹³C、¹⁵N 標識した hypothetical_protein 2610208M17Rik の N 末端ドメインの発 現は、無細胞タンパク質合成系を用いた。Bruker 社製 Avance600 および Avance800 を用いた多核多次元 NMR を測定後、NMRpipe によるデータ処理、 NMRView-Kujira(ポスター 2P6 参照)によるシグナル帰属を行い、 CYANA-CANDID(ver.1.0.7)による NOE 自動帰属と立体構造計算を行った。

【結果と考察】

立体構造解析の結果、hypothetical protein 2610208M17RikのN末端ドメインは、 4本へリックスからなる four-helical up-and-down bundle foldを形成していること が明らかとなった(Fig.)。Dali による類似する立体構造を検索したところ、 α -catenin/vinculin、cytochrome、histidine-containing phosphotransfer domain (HPt domain)などのスーパーファミリーに属するタンパク質がヒットした。類似の立 体構造を持つタンパク質との比較に基づいて、このタンパク質の機能推定が可 能となった。

Fig. Ribbon diagram (left) and superposition of 20 calculated structures (right) of the hypothetical protein 2610208M17Rik N-terminal domain.

マウス構造プロテオミクス:

COP9 複合体サブユニット 4 の PCI ドメインの溶液構造 (¹理研・GSC、²理研・播磨、³東大・院理)

○鈴木咲良¹、畠中秀樹¹、井上真¹、木川隆則¹、寺田貴帆¹、 白水美香子¹、理研ゲノムセンター遺伝子グループ Phase1&2チーム¹、林崎良英¹、横山茂之^{1,2,3}

Mouse structural proteomics:

Solution structure of the PCI domain of COP9 complex subunit 4 ¹RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, ²RIKEN Harima Institute at Spring-8, 1-1-1 K outo, Mikazuki-cho, Sayo, Hyogo 679-5148, ³Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033. Sakura Suzuki¹, Hideki Hatanaka¹, Makoto Inoue¹, Takanori Kigawa¹, Takaho Terada¹, Mikako Shirouzu¹, Yoshihide Hayashizaki¹, Shigeyuki Yokoyama^{12.3}

PCI domains are found in multiple subunits of 26S proteasome, COP9 signalosome and eukaryotic translation initiation factor 3 complexes. Some of PCI domains are characterized as necessary for specific interaction between subunits. However common functions of PCI domains and its tertiary structure are still unknown. Here we report the NMR structure of the PCI domain of COP9 complex subunit 4 from *Mus musculus*. As a result, we found the PCI domain adopts the helix-turn-helix (HTH) structural motif that is well known as a DNAbinding motif. But the number of basic residues is insufficient for DNA binding, and some known structures of complexes show that HTH structural motif can act directly as a base of protein-protein interaction. Thus we rather propose that the PCI domains might have the function as protein-protein interaction scaffolds.

[序論]

PCIドメインは 26S proteasome、COP9 signalosome、eukaryotic translation initiation factor 3 などの複合体の多数のサブユニットで見つかっているドメインであり、通常 タンパク質の C 末端領域に位置している。26S proteasome とCOP9 signalosome の生 化学的な実験より、サブユニット間相互作用に必要であると示唆されたPCIドメイン が存在するが、PCIドメインが共通に持つ機能や立体構造については明らかにされて いない。本題ではマウス由来 COP9 複合体サブユニット 4 に存在する PCI ドメイン (71 残基)の構造を NMR 法を用いて決定した。

[方法]

¹³C,¹⁵N標識 PCIドメインは無細胞タンパク質合成系により調整された。最終試料として 6.1mM の試料を 20mM sodium phosphate (pH6.0), 100mM NaCl, 1mM d-DTT, 10% D₂O に溶かしたものを得た。すべての NMR 測定は Varian Unity INOVA 600MHz と 800MHz の装置を用い、25℃で行った。主鎖の帰属用に ¹⁵N-HSQC, HNCACB, CBCA(CO)NH, HNCO, HN(CO)CA, 側鎖の帰属用に ¹³C-HSQC, C(CO)NH, H(CCO)NH,

キーワード:構造プロテオミクス、無細胞タンパク質合成、COP9 signalosome、PCIドメイン、HTH モチーフ

著者ふりがな:すずきさくら、はたなかひでき、いのうえまこと、きがわたかのり、てらだたかほ、 しろうずみかこ、りけんげのむせんたーいでんしぐるーぷふぇーず1&2ちーむ、はやしざきよしひ で、よこやましげゆき HBHA(CO)NH, HBHANH, HCCH-TOCSYを測定した。また距離制限情報 (NOE) として "N-edited NOESY と "C-edited NOESY (mixing time 75ms)を測定した。スペクトルの処理や構造計算には NMRPipe, NMR View, Olivia, CYANA/CANDID, TALOS を用いた。

[結果と考察]

COP9 signalosome subunit 4 (CSN4)の PCI ドメインの立体構造を Fig.1 に示す。 CSN は PCI ドメインを持つサブユニット 6 つと MPN ドメインを持つサブユニット 2 つの合わせて 8 つのサブユニットから形成されているが、PCI ドメイン間では機能 を示唆するような保存残基はなく、構造的にも主にα-helical であると推測されてい る程度であった。Fig.1に示した構造より、PCIドメインは3つのαヘリックスと3 つのβストランドから形成されていることが分かった。また興味深いことに、DALI 検索などを通じて、3 つの α ヘリックスのうち 2 つ (α2, α3)のヘリックスが、ヘ リックス-ターン-ヘリックス (HTH) 構造モチーフを形成していることが明らかに なった。 HTH 構造モチーフは本来 DNA 結合モチーフとして広く知られている。し かし CSN4の PCI ドメインにおいて DNA 結合に重要な塩基性残基の数は、DNA と 結合するには不十分であった。よって PCI ドメインが DNA 結合ドメインとしての 役割を持つとは考え難い。一方まれなケースではあるが、すでに構造が決定されて いる転写因子のホモもしくはヘテロ複合体より、HTH 構造モチーフがタンパク質 -タンパク質間相互作用に直接関与することが示されている。もし PCI ドメインがこ の様な役割をすると仮定した場合、CSN サブユニット間相互作用に PCI ドメインが 必須であるという生化学的な実験結果と矛盾がない。また、CSN 以外のHTH 構造モ チーフを保有している部位と PCI ドメインが、タンパク質間相互作用を形成する可 能性が考えられる。例えばユビキチンリガーゼとして知られる SCF 複合体の Cullin 1 (winged helix を2つ含む)と CSN2 (PCI ドメインを含む)が相互作用するとい う報告がある。今後は特に PCI ドメイン以外で HTH 構造モチーフを持つ他のタンパ ク質とCSN の PCI ドメインが複合体を形成するかどうかを調べ、PCI ドメインの基 本的な機能について更に理解を深めていく予定である。

Fig. 1. Three-dimentional structure of PCI domain. (a) Superposition of 20 NMR structures. (b) A ribbon diagram of the structure of the lowest energy. The HTH structural motif is indicated by dark gray.

[謝辞]

以下の諸氏に感謝します(敬称略):Jeremy R.H. Tame (横浜市立大学大学院総合理学研究科),林文晶、矢吹 孝、谷一寿、青木雅昭、関英子、松田貴意、廣田洋、好田真由美、長内隆、松尾洋、田仲昭子(理研 GSC) **膜蛋白質から単離した新規 NfeD 様ドメインの構造解析** (横浜市大院・総合理学¹, 産総研・生物情報解析研究センター²) 〇森井太一¹、廣明秀一¹、杤尾豪人¹、横山英志²、松井郁夫²、白川昌宏¹

Structural analysis of the NfeD like domain isolated from hypothetical membrane protein PH0471 from Pyrococcus horikoshii

Taichi Morii¹, Hidekazu Hiroaki¹, Hidehito Tochio¹, Hideshi Yokoyama², Ikuo Matsui² and Masahiro Shirakawa¹

¹Graduate School Integrated Science, Yokohama City Univ., ²Natl. Inst. Adv. Indust. Sci. & Tech., BIRC.

Abstract: *PH0471* gene encodes a hypothetical membrane protein of unknown function, which belongs to a chemotaxis gene cluster of hyperthermophile *Pyrococcus horikoshii*. We performed structural analysis of PH0471 aimed at the functional elucidation. In the process of analysis, we isolated a novel domain from the C terminus of PH0471 using sequence analysis combined with proteolytic experiment, thereafter named *NfeDC* domain. The *NfeD* gene conserved in symbiotic bacteria *Rhizobium* is thought to function in nodule formation. We acquired ¹H-¹⁵N HSQC spectrum of *NfeDC* domain, as well as 3D HNCACB, CBCA(CO)NH and C(CO)NH experiments, and main-chain resonance assignment was completed. The chemical shift indeces (CSI) as well as ¹H-¹⁵N NOE revealed this domain was compact domain with five β -strands. Furthermore, we analyzed interactions between *NfeDC* domain and micelles by chemical shift changes. Minimum chemical shift perturbation experiment in PH0471 full length indicated an amphipathic helix between the transmembrane segment and the *NfeDC* domain, which was induced only in the membrane bound full length state.

1. 序

近年、Thermus thermophilus を代表とする高度好熱菌の産生する蛋白質の網羅的解析がさかん に行われている。その一端として、絶対嫌気性高度好熱性古細菌 Pyrococcus horikoshii のゲノム配 列が決定され、その構造生物学的研究もさかんになってきた。そこで、我々は高度好熱菌 Pyrococcus horikoshii の走化性遺伝子群から単離された機能未知の膜蛋白質 PH0471 に注目し、機 能解明を指向した NMR による構造解析を行うこととした。

2. 実験と考察

PH0471 遺伝子を大腸菌による発現系で大量発現させ、各種カラムクロマトグラフィーにより精 製後、NMRにより二次元¹H-¹⁵N HSQC を測定したところ、化学シフトがよく分散した約 50 個の ピークが確認された。また、本蛋白質は機能未知であるため、各種 Database による検索を行った ところ、N 末端が 3 回膜貫通型であることが示唆され、本蛋白質の一部に NfeD 遺伝子と相同性を 示す領域が確認された。さらに、トリプシンによる限定分解を行ったところ、先の配列解析と矛 Keywords: membrane protein, PH0471, Pvrococcus horikoshii, NfeD, amphipathic helix

もりいたいち、ひろあきひでかず、とちおひでひと、よこやまひでし、まついいくお、しらかわまさひろ

- 256 -

盾せず、単独で機能を有していることが実験的に示唆される領域が得られた。これらの情報に基づいて、PH0471のC末端側の発現系を作成し、¹H-¹⁵N HSQCを測定したところ、よく分離したピークが得られた。我々はこの領域が単独で機能を有しているβ-strandに富む新規の球状ドメインであると考え、NfeDCドメインと命名した。

さらに NfeDC ドメインを¹⁵N, ¹³C で標識し、三次元 HNCACB, CBCA(CO)NH, CC(CO)NH を測 定し、主鎖シグナルを完全帰属した。Chemical Shift index(CSI)より NfeDC は 5 本のβ-strand からな るドメインであることが明らかになった。さらに、¹⁵N edited NOESY の測定により、暫定的にト ポロジーを決定した。次に NfeDC は膜蛋白質の C 末端領域で細胞質側で機能していることが示唆 され、脂質二重膜と相互作用している可能性があるため、CMC 程度の DPC ミセルで titration 実験 を行った。その結果、スペクトルの変化は見られず、NfeDC は単独で膜成分と相互作用してない ことが確認された。一方、DPC に可溶化した全長 PH0471 のスペクトルと NfeDC のスペクトルを 比較したところ(minimum chemical shift perturbation)、NfeDC においてはフレキシブルな領域である が、全長においてはケミカルシフトの値が残基周期的に変化する領域(72R-89G)が確認された。こ のことは両親媒性へリックスにおけるケミカルシフトの周期性に関する研究(Nian E. Zhou *et al., J. Am. Chem. Soc.*, 1992)から、この領域に両親媒性のヘリックスが存在することを示唆している。た だし、この領域に関してヘリカルホイールを作成してみたが、強い二極性のヘリックスではなか った。この膜貫通部位と NfeDC ドメインの間の両親媒性のヘリックスは膜貫通領域に対して相対 的な配置が制限されたために誘起されたと考えられる。

現在、NMR による NfeDC ドメインの立体構造解析に向けて、側鎖の帰属が進行中であり、約70%が完了している。当年会においては立体構造に関して議論したい。

Fig.1 The chemical shift index of NfeDC domain.

Fig.2 Minimum chemical shift perturbation of *NfeDC* region in PH0471 full length(miceller condition). The difference in chemical shift of ¹H (A) and ¹⁵N (B).

Fig.2(A)

Fig.2(B)

マウス構造プロテオミクス:

BAG domain の構造解析

(理研 GSC1、東大院理生化 2)

遠藤弘¹、八田玲子¹、〇林文晶¹、好田真由美¹、清宮恭子¹、白水美香子¹、寺田貴 帆¹、木川隆則¹、井上真¹、矢吹孝¹、青木雅昭¹、関英子¹、松田貴意¹、廣田洋¹、 田仲昭子¹、長内隆¹、松尾洋¹、荒川貴博¹、Piero Carninci¹、河合純¹、林崎良英¹、 横山茂之^{1,2}

Mouse Structural Genomics: Solution Structure of the BAG domains.

¹RIKEN Genomic Sciences Center, ²Graduate School of Science, University of Tokyo

H. Endo¹, R. Hatta¹, F. Hayashi¹, M. Yoshida¹, K. Seimiya¹, M. Shirouzu¹, T. Terada¹ T. Kigawa¹, M. Inoue¹, T. Yabuki¹, M. Aoki¹, E. Seki¹, T. Matsuda¹, H. Hirota¹, A. Tanaka¹, T. Osanai¹, Y. Matsuo¹, T. Arakawa¹, P. Carninci¹, J. Kawai¹, Y. Hayashizaki¹, and S. Yokoyama¹, ²

BAG (Bcl-2-associated athanogene) proteins are molecular chaperone regulators that affect diverse cellular pathways. All the members contain at least one conserved motif, called BAG domain, which binds to Hsp70/Hsc70 chaperone proteins. The binding to the chaperone molecules enhance the substrate release and result in rendering the cell more resistant to apoptosis. In several cancer cells, overexpression of BAG domain occurs and this inhibits apoptosis by the treatment of irradiation and/or anti-cancer drugs. Here we report the solution structure of the BAG domain from BAG3 and BAG5 in the RIKEN mouse cDNA library. Both domains were composed of consensus antiparallel three helix bundle. We found new type of N-terminal capping structure in the first helix of both domains.

序

BAG(Bcl-2 associated athanogene)タンパク質ファミリーは、酵母から高等生物に至るまで幅 広く見出されている。すべての BAG タンパク質は「BAG domain」と呼ばれる数十残基の進化上 よく保存された domain をもっている。このドメインは分子シャペロンの一種 Hsp70/Hsc70 の ATPase domain と結合し、その機能を制御することが知られている。また、ある種のがん細胞で は、BAG タンパク質の発現が上昇し、anti-apoptotic に機能していることが知られており、がん の放射線や薬剤耐性にかかわっている可能性が指摘されている。

本研究では、理研マウス cDNA ライブラリーの中から、BAG ファミリーのうち、まだ構造の決められていない BAG3 と BAG5 に含まれる BAG ドメインについて、溶液中での立体構造解析を行い、それらの構造を比較検討した。

キーワード:マウス cDNA、無細胞タンパク質合成、antiparallel three helix bundle

えんどうひろし、はったれいこ、はやしふみあき、よしだまゆみ、せいみやきょうこ、しろうず みかこ、てらだたかほ、きがわたかのり、いのうえまこと、やぶきたかし、あおきまさあき、せ きえいこ、まつだたかよし、ひろたひろし、たなかあきこ、おさないたかし、まつおよう、あら かわたかひろ、ピエロカルニンチ、かわいじゅん、はやしざきよしひで、よこやましげゆき

方法

すべての NMR 実験は ¹³C/¹⁵N 標識タンパク質を用いて行った。標識タンパク質の合成は無細胞 タンパク質発現系を用いて行った。試料条件としては、BAG3 が 0.7mM のタンパク質を 20mM リン酸バッファー (pH6.5),90mM NaCl,40mM MgSO4, 4mM DTT, 8% D2O、BAG5 が 0.7mM タンパク質を 20mM リン酸バッファー(pH7.5),200mM NaCl,4mM DTT,8% D2Oにそれぞれ溶解 したものを用いた。NMR 測定は Varian 社製 UnityINOVA-600 および-800 を用い、25℃にて行 った。主鎖の帰属用に ¹⁵N·HSQC, HNCO, H(CA)CO(CA)NH, HN(CO)CA, CBCA(CO)NH, HNCACB、側鎖の帰属用に ¹³C·HSQC, HBHAHN, HBHA(CO)NH, HCCH-TOCSY, CCH·TOCSY、距離制限用に ¹³C·edited 3D NOESY, ¹⁵N·edited 3D NOESY を測定した。データ 処理は NMRPipe、スペクトル解析は NMRView の持つ解析機能を大幅にアップさせた自家製の KUJIRA、NOE の帰属、立体構造解析は CYANA 1.0.7 を用いて行った。

結果と考察

両 BAG ドメインの特徴として、低 pH、低塩濃度ではタンパク質が不安定であった。また、主鎖 アミドプロトンの化学シフトに関して、他のすべてのピークが 9.2ppm より高磁場側に観測され るのに対し、1 個のピークのみが 11.8ppm に観測された。このピークは BAG3 では Gly、BAG5 では Ser と違う残基に帰属されるにもかかわらず、11.8ppm というきわめて独特な、ほぼ同じ化 学シフトを持つことから、独特な立体構造を持っていることが予想された。立体構造解析の結果、 どちらの BAG ドメインも下図に示すとおり、反平行な 3 本の helix bundle 構造をとっているこ とがわかった。また、11.8ppm のシフトを持つアミノ酸残基はどちらも第一 α -helix の N 末端部 分に位置し、その 2 残基前の His の imidazole 環によって、capping されていることが明らかに なった。他の BAG ファミリーとの比較では、特に Hsp70/Hsc70 との結合に関与すると考えられ る第 2、第 3 helix が BAG1 や BAG4/SODD と類似性が高かったが、第一 helix では上記の点を 含め個性が見られた。また、BAG3 では SH3 domain との結合に関与する PXXP 配列のある proline-rich 領域を含んだ形で構造解析を行ったが、この領域は構造をとらなかった。

大腸菌 DNA 修復蛋白質 Ada の立体構造解析と機能スイッチ機構の解明 (阪大院薬)〇瀧之脇浩人、松田安弘、吉田卓也、小林祐次、大久保忠恭

Solution Structure and Switch Mechanism of Escherichia coli DNA repair protein Ada Graduate School of Pharmaceutical Sciences, Osaka University OHiroto Takinowaki, Yasuhiro Matsuda, Takuya Yoshida, Yuji Kobayashi and Tadayasu Ohkubo

The N-terminal 16kDa domain of *Escherichia coli* Ada protein (N-Ada16k) repairs specifically the Sp diastereomer of the DNA methyl phosphotriester lesions by an irreversible methyl transfer to its Cys38. Upon the Cys38 methylation, its sequence-specific DNA binding affinity for the methylation resistance genes is enhanced dramatically by 10^3 -fold. Then the Cys38 methylated N-Ada16k (meC38 N-Ada16k) acts as a transcriptional regulator for the methylation damage. Solution structures of N-Ada16k and meC38 N-Ada16k have been determined by NMR. The comparison of solution structures shows the local conformational change at the four-stranded β -sheet region in the vicinity of Cys38 resulted in the formation of new hydrophobic core. Based on these results, the functional switch mechanism for Ada protein, especially how the Cys38 methylation can induce the sequence-specific DNA binding activity, is proposed.

【目的】大腸菌 DNA 修復蛋白質 Ada のN 末ドメイン(N-Ada16k)はアルキル化剤等により損 傷を受けた DNA のメチル基を自身の Cys38 に転移することによって DNA 損傷を修復する。 そして Cys38 がメチル化された N-Ada16k (meC38 N-Ada16k)は転写制御因子に機能をスイッ チし DNA 修復に関わる ada, alkA, aidB 遺伝子のプロモーター領域に DNA 配列特異的に結合 し転写の活性化及び抑制を行う。我々はこの機能スイッチ機構を原子レベルで解明するた めに N-Ada16k 並びに meC38 N-Ada16k の NMR による立体構造解析を行い、両者間での構造 比較を行った。さらに、各 ada, alkA 遺伝子プロモーターに対する結合様式を調べるため、 meC38 N-Ada16k と各プロモーターDNA フラグメントとの複合体実験を行った。

【方法】N-Ada16k 並びに Cys38 を選択的にメチル化した meC38 N-Ada16k を ¹³C/¹⁵N ダブル ラベル化して精製し、Varian Inova600 NMR 装置を用いて二次元及び三次元 NMR スペクト ルを測定した。N-Ada16k と meC38 N-Ada16k それぞれについて連鎖帰属法を用いて主鎖及 び側鎖の帰属を行なった。次に NOE の帰属を行い、CNS を用いて立体構造計算を行った。 また、*ada, alkA* 遺伝子プロモーター配列の DNA フラグメントを合成し、NMR を用いて meC38 N-Ada16k との複合体実験を行った。

キーワード; DNA 修復蛋白質 Ada、転写制御因子、メチル化修復、NMR、立体構造決定

著者ふりなが;Oたきのわきひろと まつだやすひろ よしだたくや こばやしゆうじ おおくぼただやす

【結果及び考察】約 1500 個の NOE を用いた立体構造計算の結果、N-Ada16k と meC38 N-Ada16k は中央部の E75-Q80 にフレキシブルなループが存在した2ドメイン構造を形成し ていること、6 つの α ヘリックスと4つのストランドから成る1つの β シートを持つこと が明らかとなった(Fig1)、またN末側(M1-P74)の構造モチーフは新規のトポロジーである こと、C 末側(Q81-K146)の4本のヘリックスに転写制御因子に普遍的に見出されるヘリッ クスーターンヘリックス構造が存在することを見出した。また、両者間での立体構造比較を 行ったところ、N 末側、特に Cys38 近傍のβシート付近が局所的に変化しており、C 末領域 にはほとんど構造変化がないことが明らかとなった(Fig2)。Cys38のメチル基選択的な NMR 実験から、meC38 N-Ada16k では付加されたメチル基による蛋白質内部への hydrophobic coreの形成が確認された。このことは DNA との相互作用に付加されるメチル基は直接的に は関与しないことを示している。また、ada遺伝子及び alkA遺伝子のプロモーター領域の コンセンサス配列を含む 2 本鎖 DNA (ada21mer, a1kA21mer) と meC38 N-Ada16k の複合体の HSQC スペクトルの比較を行った。その結果、メチル化した蛋白質は複合体を形成すること で、βシート領域とHTH領域のアミドプロトンのシグナルが変化していた。また、ada21mer と alkA21mer DNA 複合体の HSQC スペクトルの間にはほとんど変化はなかった。このことか ら ada と alkA のそれぞれのプロモーター領域に対して meC38 N-Ada16k は同じ結合モード で DNA に結合していると考えられた。

Fig1, Solution Structure of meC38 N-Ada16k

Fig2, Chemical shifts differences between N-Ada16k and meC38 N-Ada16k

TraR DNA結合ドメインの立体構造解析

¹三菱化学生命研・構造生物学研究ユニット ²信州大学・工学部 〇田中剛史¹、小松千江子¹、小林邦子¹、須貝真理子¹、 片岡正和²、河野俊之¹

Structural Analysis of DNA Binding Domain of TraR

Takeshi Tanaka¹, Chieko Komatsu¹, Kuniko Kobayashi¹, Mariko Sugai Masakazu Kataoka², Toshiyuki Kohno¹

¹Mitsubishi Kagaku Institute of Life Sciences, ²Department of Environmental Science and Technology, Faculty of Engineering, Shinshu University

The *traR* gene product, TraR, that regulates the pSN22 conjugation system in *Streptomyces*, is a 27 kDa protein that function as a transcriptional repressor for the *tra* operon (*traA-traB-spdBs*) and *traR* itself. TraR protein has a helix-turn-helix (HTH) motif and binds to a 12 bp consensus DNA sequence, TRE box. This is located within the divergent promoter region for the *tra* operon and *traR*, and regulates their expression negatively.

Although all of these regulators for the *Streptomyces* conjugation systems have HTH motifs, their primary structures exhibit little similarity. From the viewpoint of the structure-function relationships, it is significant work to determine and to compare 3D structures of such regulators. We analyzed the structure of TraR DNA binding domain (TraR100) including the HTH motif.

*traR*遺伝子産物TraRは放線菌においてpSN22プラスミドの接合機構を制御して いる27kDaのリプレッサータンパク質であり、*tra*オペロンおよび*traR*遺伝子自身の 転写調節因子として機能している。TraRタンパク質はヘリックス・ターン・ヘリッ クス(HTH)モチーフを持ち、12bpの特異的DNA配列(TRE box)を結合する。 TRE boxは*tra*オペロンおよび*traR*遺伝子のプロモーター領域に存在しこれらの遺伝 子発現を調節している。

放線菌の遺伝子接合機構を制御する全ての転写調節因子はHTHモチーフを持つ が、一次構造上の相同性は低い。このためこれらの制御因子の立体構造を解析・比 較することは立体構造-機能相関を議論する上で重要である。そこで我々はTraRの HTHモチーフを含むアミノ酸100残基のDNA結合ドメイン(TraR100)のNMRに よる立体構造解析を行った。

キーワード: TraR、多次元NMR、立体構造解析、DNA結合ドメイン、HTHモチー フ

たなか たけし、こまつ ちえこ、こばやし くにこ、すがい まりこ、かたおか まさかず、こうの としゆき

<実験>

¹⁵Nユニフォームラベルおよび¹⁵N/¹³CユニフォームラベルしたTraR100を大腸菌 を用いた発現系により調製した。NMR測定は90% H2O - 10% D2O 100 mMリン酸 バッファー (pH 6.5) を用い30°Cで行った。

配列特異的なシグナルの帰属のために¹⁵N/¹³CユニフォームラベルしたTraR100 を用いHNCA、HN(CO)CA、HNCACB、CBCA(CO)NNH、HNCO、 HN(CA)CO、CC(CO)NNH、H(CCCO)NNH、HCCH-TOCSYを測定した。³J 値は2D intensity modulated ¹H-¹⁵N HSQCより得た。原子間距離情報を得るため に3D ¹⁵N separated NOESYおよび3D ¹³C separated NOESYを測定し、 ARIA/CNSによってambiguous NOEを用い立体構造計算を行った。

<結果>

¹H-¹⁵N HSQC上で7個のPro残基を除く95残基のうち92残基(97%)の主鎖¹H 核および¹⁵N核シグナルの帰属を完了した。Gly1、Ala70、Glu92は帰属できなかっ た。また、99%の¹³Ca、100%の¹³Cβ、99%の¹Ha、100%の¹Hβ、99%の¹³CO核のシ グナルを帰属した。NOE距離情報とChemical Shift Indexおよび³J 値から得ら れた二面角情報を用いた立体構造計算により主鎖原子のRMSDが0.828(Tyr11-Val73)の構造が得られた。TraR100は3本のαへリックスと2本のβストランドから 構成され、DNA結合ドメインであるHTHモチーフのC末端側に1個のβシートを持 つWinged-HTHモチーフを形成していることが分かった。

Figure 1. (A) ¹H - ¹⁵N HSQC spectrum of TraR100 at a ¹H resonance frequency of 500 MHz (pH 6.5, 303 K). The resonance assignments are indicated with the oneletter amino acid code and residue number. (B) CSI consensus plot for TraR100. Generated using ¹H α , ¹H β , ¹³C α , ¹³C β , and ¹³CO chemical shifts. (C) The ³J_{HN-H α} values for TraR100 obtained from the 2D intensity modulated ¹H - ¹⁵N HSQC. (D)Superposition of the backbone atoms of 10 lowest energy structures.

K⁺チャネル阻害ペプチド Spinoxin の 立体構造解析

 (三菱生命研¹、福岡女子大²、Nat. Univ. of Singapore³、 Harv. Med. Sch.⁴、Univ. of Leuven⁵)
○小林邦子¹、菅原由子²、Selvanayagam Nirthanan^{3,4}、 Isabelle Huys⁵、Ponnampalam Gopalakrishnakone³、 Jan Tytgat⁵、佐藤一紀²、河野俊之¹

Three-dimensional Structure of Potassium Channel Block Peptide Spinoxin

Mitsubishi Kagaku Institute of Life Sciences¹, Fukuoka Women's University², National University of Singapore³, Harvard Medical School⁴, University of Leuven⁵

Kuniko Kobayashi¹, Yuko Sugahara², Selvanayagam Nirthanan^{3,4}, Isabelle Huys⁵, Ponnampalam Gopalakrishnakone³, Jan Tytgat⁵, Kazuki Sato², Toshiyuki Kohno¹

The peptide Spinoxin derived from a venom of the black scorpion *Heterometrus spinifer* has 34 amino acid residues. The amino acid sequence of this peptide shows about 80% homology with the potassium channel block peptide Maurotoxin, which blocks Kv1.1, Kv1.2, and Kv1.3. However, our recent findings indicate that Spinoxin has high affinity for Kv1.2 and some affinity for Kv1.3, but no affinity for Kv1.1. To investigate the structural differences that determine the channel selectivity of these toxins, we analysed the solution structure of Spinoxin and compared the structures of Spinoxin and Maurotoxin. The overall folding of Spinoxin is very similar to that of Maurotoxin; a helix connected to a two-stranded antiparallel β sheet by a loop. Thus, charge distribution on the peptides surface may give rise to the distinctive channel selectivity.

[序]

Spinoxin はマレーシア産のサソリの一種 Heterometrus spinifer の毒液から単離されたペプチドで、34 アミノ酸残基から成り、分子内の8個の Cys が4本のジスルフィド結合を形成している。このペプチドは、K⁺チャネル阻害ペプチドである Maurotoxin と非常に高い相同性があり、8割のアミノ酸残基が保存されている。 Maurotoxin は電位依存性 K⁺チャネルのうち、Kv1.1、Kv1.2、Kv1.3 を阻害することが知られている。しかし、我々の最近の実験結果によると、Spinoxin は Kv1.2、Kv1.3 を阻害するが、Kv1.1 は阻害しないことがわかった。この活性の違いを調べるために、

キーワード:K*チャネル阻害ペプチド、立体構造、溶液 NMR

こばやし くにこ、すがはら ゆうこ、Nirthanan, Selvanayagam、Huys, Isabelle、 Gopalakrishnakone, Ponnampalam、Tytgat, Jan、さとう かずき、こうの としゆき Spinoxin の立体構造を溶液 NMR を用いて解析し、Maurotoxin の立体構造と比較した。

[実験]

Spinoxin を化学合成し、5 mM、pH 4.0 でサンプル調製した。NMR 測定には Bruker 製 DRX-500 を使用して、軽水中での2次元 'H-NMR 測定(DQF-COSY、TOCSY、 NOESY)を 288 K、298 K、310 K で行った。解析には、NMRPipe、PIPP、ARIA、X-PLOR を用いた。

[結果·考察]

解析の結果、Spinoxin は1本のヘリックスと1個の2本鎖逆平行βシートがルー プでつながった構造をしていた。このフォールディング様式は Maurotoxin と同じで ある。どちらのペプチドも4本のジスルフィド結合が配列上同じ位置に存在してお り、この結合によって主鎖の構造がコンパクトに折り畳まれ、安定化している。主 鎖の構造がほぼ同じであることから、側鎖の違いによるペプチド表面の電荷分布の 差が、Spinoxin と Maurotoxin の活性の違いを生じていると考えられる。

	- 1	5	10	15	20	25	30	34
Spinoxin	IRC	CSGSR	DCYŞP	CMKQT	GCPNA	KCINK	SCKCY	/GC
Maurotoxin	VSC	TGSK	DCYAP	CRŔQT	GCPNA	KCINK	SCKCY	/GC
	· l	· · · · · · · · · · · · · · · · · · ·]	<u> </u>	L	

Fig. 1. Amino acid sequences of Spinoxin and Maurotoxin. Disulfide bonds are also indicated.

Fig. 2. Ribbon diagram of Spinoxin

- 265 -

枯草菌由来細胞壁溶解酵素 CwlC の細胞壁結合ドメインの立体構造解析と ペプチドグリカン認識機構の解明

(1奈良先端大バイオサイエンス研究科、2信州大工学系研究科)

○加藤健一1、三島正規1、志田敏夫2、関口順一2、児嶋長次郎1

Structure and function of cell wall binding domain of B. subtilis cell wall lytic amidase CwIC

Ken-ichi Kato¹, Masaki Mishima¹, Toshio Shida², Junichi Sekiguchi², Chojiro Kojima¹

¹ Graduate School of Biological Sciences, Nara Institute of Science and Technology

² Faculty of Textile Science and Technology, Shinshu University

The cell wall of gram positive bacteria such as *Bacillus subtilis* consists of peptideglycan as a major component. The *Bacillus subtilis* CwlC is the cell wall lytic N-acetylmuramoyl-L-alanine amidase. The CwlC amidase has catalytic domain and peptideglycan binding domain. The three-dimensional structure of the peptideglycan binding domain has not been reported. We tried to determine the three-dimensional structure by multidimensional NMR spectroscopy and investigated the peptideglycan recognition mechanism based on the structure.

【緒言】

枯草菌に代表されるグラム陽性菌の細胞壁はペプチドグリカンを主成分とする単一の層から構成されている。 枯草菌のペプチドグリカンは N-アセチルグルコサミンと N-アセチルムラミン酸が交互にβ-1,4 結合してグリカ ン鎖を形成し、それぞれのグリカン鎖の間を4残基からなるペプチド(L-Ala-D-Glu-meso-DAP-D-Ala)で 架橋した網状構造からなる。

細胞壁は構造の維持や、浸透圧変化等の外的要因から内容物を保護する役割を担っているが、細胞分裂、胞子 形成期の母細胞の溶解、胞子の発芽等の過程において溶解される必要がある。CwlC はこれらの過程で働くと考 えられている細胞壁溶解酵素であり、グリカン鎖と架橋しているペプチドの間を切断する活性を持つ。CwlC は ペプチドグリカン結合ドメイン(CwlCr)と触媒活性ドメインからなっており、ペプチドグリカン結合ドメインの 立体構造は未だ解明されていない。また同様のフォールディングを持ったタンパク質が見つかっていないため、 このペプチドグリカン結合ドメインに注目し、多次元 NMR 法を用いて立体構造の決定を行い、ペプチドグリカ ン認識メカニズムの解明を目指している。

Key words: タンパク質、立体構造、ペプチドグリカン、多次元 NMR かとうけんいち、みしままさき、しだとしお、せきぐちじゅんいち、こじまちょうじろう

【実験】

大腸菌 M15株を用いて、最少培地で¹⁵N uniform label 及び¹³C/¹⁵N uniform label した CwlCr を His-tag 融 合タンパク質として発現させ、破砕後可溶性画分を回収した。Ni カラムを用いて His-tag 融合タンパク質 を精製し、プロテアーゼ処理により His-tag を切断し CwlCr を得た。その後陽イオン交換クロマトグラフ ィーを用いて SDS PAGE でシングルバンドになるまで精製を行った。

NMR 測定は Bruker DRX800、AVANC500 を用いて、50mM リン酸バッファー (pH6.8), 10 mM KCl, 303 K の条件下で行った。

【結果】

ペプチドグリカン結合ドメインである CwlCr の構造を決定するため、¹H-¹⁵N HSQC,HNCACB, HNCACO HN(CO)CACB, HNCO を測定した後、主鎖の帰属、二次構造の同定を行った。その結果、CwlCr が約 35 残基からなる二回繰り返し配列から構成されるペプチドで、繰り返し配列の基本単位が二本の β -ストラン ドと一本の α :へリックスから構成されていることが明らかになった。現在、¹⁵N-edited TOCSY-HSQC、H(CCO)NH、C(CO)NH、4 D HC(CO)NHの測定から側鎖の帰属を進めている。

figure 1. (A) ¹H-¹⁵N HSQC spectrum of CwICr

1.7 mM protein in K-phos buffer (pH6.8) containing 10 mM KCl at 303K.

(B) CSI plot of CwlCr.

CSI of Ca and schematic representation of secondary structure are shown,

プロトン NMR 化学シフト解析による水 - エタノール混合 溶液中の水の構造性に及ぼす塩、酸、フェノール類の影響 (高知大理・酔鯨酒造(株)*) 能勢 晶*・〇北條正司・上田忠治

The Effect of Salts, Acids, and Phenols on the Structure of Water in Ethanol-Water Mixtures by the Analysis of the Proton NMR Chemical Shift

Nose, Akira*; Hojo, Masashi; Ueda, Tadaharu

Department of Chemistry, Faculty of Science, Kochi University

*Suigei Brewing Co. Ltd

Effects of salts, acids, and phenols on the hydrogen-bonding structure of water in 20 (v/v)% EtOH-H₂O solution were investigated on the basis of ¹H NMR chemical shifts of the OH of water and ethanol. Many salts caused structure breaking of water while a few of metal salts, such as MgCl₂ and KF, had the strengthening effect. The OH proton chemical shifts caused by the presence of alkali metal and alkaline earth metal ions or anions (halides, NO₃⁻, ClO₄⁻, SO₄²⁻) from strong acids were related to the sizes and charges of the ions. Not only acids (H⁺ and HA: undissociated acids) but also bases (OH⁻ and A⁻: conjugate-base anions from weak acids) had the effect of strengthening structure of water; the degree of effect was dependent on the acid strength (pK_a). Hydrogen bond donors as well as acceptors seemed to cause the intimate (or tight) interaction between H₂O and EtOH molecules even in alcoholic beverages.

1. 緒言 酒類のうちウイスキー、ブランデーなどの蒸留酒は蒸留した後、通常数年~20年程度の木製樽貯蔵が行われる。長期保存(熟成)によるエタノール-水分子の(物理的作用による)構造変化が「まろやかさーアルコール刺激の軽減」に寄与するといわれ、水-エタノールの構造性が研究されている^{1,2)}。しかし、ビールや清酒などの醸造酒は、長期の熟成工程を経ることなく、既に飲用可能な状態になっている。また、アルコール刺激の強く残っている酒類に、各種の有機酸等をふくむレモンや糖類などを添加すると、一瞬にして「アルコール刺激」が軽減することは、誰でも体験していることかも知れない。このような長期の熟成を伴わない酒類においても、エタノール-水の構造性が「まろやかさ」に関与している可能性がある。

本研究は酒類中の水の構造性を理解し、酒類の品質向上に役立てることを目的としている。エタノール-水混合溶媒において水の構造性に及ぼす塩類、酸類、フェノール類等の影響について調べた。そして、酸・フェノール及びその共役塩基が水の構造性を強くすることを見出したので報告する。

2. 実験方法 各種の溶質を含むエタノール-水混合溶の OH プロトン NMR 化学シフトを、核磁気共鳴装置(400 MHz)により 25 ± 0.1 ℃で観測した。Wilmad 同軸管を用い、 内側の管にはロック溶媒として D₂O、外側の管には測定試料を入れた。内部標準物質 は添加せずエタノールのメチル基の 3 重線の中心を基準とした($\delta = 1.164$ ppm vs. TMS)。各物質の濃度と H₂O プロトンの化学シフト値の直線性を確認し、各物質 1.0 mol dm³ 当たりのシフト値を算出した。

<u>3. 結果と考察</u>エタノール-水混合溶媒中の水のプロトンの化学シフトは、エタノー ル濃度が 20~25 v/v%で最も低磁場側になり、水の構造性が最も強くなることが知ら

エタノール - 水混合溶液の構造性、水素結合、¹H NMR、アルコール飲料、酒の熟成

のせ あきら・ほうじょう まさし・うえだ ただはる

れている³⁾。構造性が強い状態にあるエタノール 20 v/v%水溶液において、種々の塩類、酸類、糖類、フェノール類が水の構造性に与える影響を調べた。その結果、一部の金属イオンや酸類、フェノール類の添加により水のプロトンの化学シフトが低磁場側に移行し、水の構造性が強められる効果が認められた。

金属イオンでは、Ca²⁺, Mg²⁺ などが低磁場シフトを示した。金属イオン及びハロゲ ンイオンについてはイオンの電荷あたりの半径と、化学シフト値との間に直線関係が あった。酸類には水のプロトンを低磁場にシフトさせる効果が認められた。 Fig. 1 は酸の強さ(pK_a値)と OH シグナルのシフト値の関係を示している。酸の共役塩 基アニオン(M⁺A)は、その塩基性が高い程低磁場シフトを起こした。塩基性がほとん どない CH₃SO₃・イオンは高磁場シフトを示し、水の構造を破壊することがわかる。以 上のようにエタノール濃度 20 v/v%において、水の構造に及ぼす酸、共役塩基アニオ ンの影響は pK_aの値と関連付けて考えることができた。

酸は水素結合を供与することにより、共役塩基アニオンは、逆に、水素結合を受容 することにより、水の構造性を強くしていると考えられる(Scheme 1)。酸またはポリ フェノール添加による「アルコール刺激」の軽減に関する客観的なデータを得ること が課題として残っている。

参考文献

1) K. Nishimura and R. Matsuyama, in "The Science and Technology of Whiskies," ed. by J.R. Piggott, R. Sharp, and R.E.B. Duncan, Longman Scientific & Technical (1989), Chap. 8, p.235-263.

2) R. Akahoshi and H. Ohkuma, Nippon Nogeikagaku Kaisi, 58, 357 (1984).

3) A. Coccia, P.L. Indovina, F. Podo and V. Viti, Chem. Phys., 7, 30 (1975).

Fig. 1. OH-proton chemical shifts in 20 (v/v)% EtOH-H₂O mixtures containing acids and conjugate-base anions as the function of pK_a in H₂O: (\bigcirc) acids; (\square) evaluated values for undissociated acids; (\triangle) conjugate-base anions; solid symbols show acids having a benzene ring: (1) methanesulfonic acid; (2) trifluoroacetic acid; (3) trichloroacetic acid; (4) dichloroacetic acid; (5) chloroacetic acid; (6) acetic acid; (7) propionic acid; (8) 2,2,2-trifluoroethanol; (9) benzoic acid; (10) p-nitrophenol; (11) o-nitrophenol; (12) phenol.

SCHEME 1: A Model for the Intimate Association among Water and Ethanol Molecules with the Assistance of Stronger Hydrogen-bonding Donors (Acids) or Accepters (Conjugate-base Anions).

¹³C NMR による非イオン性界面活性剤の分子構造解析

(福井大工¹, 日華化学²) 前田史郎¹, ○大西充洋¹, 篠原正法¹, 小林紀秋², 滝澤徹²

Structural analysis of non-ionic surfactants by using NMR spectroscopy

Shiro MAEDA¹, <u>Mitsuhiro ONISHI¹</u>, Masanori SHINOHARA¹,

Noriaki KOBAYASHI² and Toru TAKIZAWA²

¹Faculty of Engineering, Fukui University, 3-9-1 Bunkyo, Fukui 910-8507, JAPAN,
²NICCA CHEMICAL CO., LTD., 4-23-1 Bunkyo, Fukui 910-8670, JAPAN.

Structural analysis by using NMR spectroscopy is a powerful tool for a non-ionic surfactants of ethylene oxide (EO) / propylene oxide (PO) adducts to be comprehensively characterized. In the present study we employed ¹³C NMR for homopolymers of EO or PO, copolymers which were obtained by attaching EO and PO to various alkanols, and copolymers which had various EO/PO sequences. We obtained detailed information about structure of end-group, a content of end-group and, EO and PO content. In addition, we performed quantitative measurements to estimate the residual contents of the reactants such as an alkanol.

【はじめに】 Propylene oxide (PO), Ethylene oxide (EO)共重合体の片側の末端にアルコキシ基 (R-) が結合した非イオン性界面活性剤は,紙をリサイクルする際にインクを取り除く脱墨剤等として 用いられている.この界面活性剤は,POとEOの連鎖様式によってその特性が変化するため, 詳細な構造解析が必要不可欠である.本研究では、種々の形式で合成された R-O-(EO)_m-(PO)_n, R-O-(EO)_m, R-O-(PO)_nの¹³C NMR による分子構造解析を行った.また,付加反応過程での未反応 物 (R-O-(EO)_n, R-OH)の定量も試みた.

【実験】 試料は、ノルマルアルコールに PO もしくは EO を付加させた化合物である R-O-(PO)7, R-O-(EO)7, R-O-(EO)7-(PO)m(m=1-3), 分岐を持つ1級アルコールに PO もしくは EO を付加させ た化合物である R'-O-(EO)5, R'-O-(EO)5-(PO)n (n=1-3)を用いた. 試料は次のようにして調製した. (1) 加圧反応装置内でアルコールに水酸化カリウムを添加する. (2) 140~160℃で規定量の EO ま たは PO を約1時間反応させる. (3) 降温し、70℃以下の酢酸で中和する. 溶媒には CDCl₃を用い た. NMR 装置には JEOL LA-500 を用い 50℃で測定した.

【結果・考察】

①ポリオキシプロピレン アルキルエーテル (R-O-(PO)7)の構造解析

R-O-(PO)7 の¹³C NMR スペクトルを帰属した.帰属には PO 付加数の異なる試料とのスペクトルの比較, fl decouple ¹³C-¹H COSY, HMBC, DEPT を用いて行った.

キーワード:界面活性剤, propylene oxide, ethylene oxide, ¹³C NMR, 構造解析

まえだしろう、おおにしみつひろ、しのはらまさのり、こばやしのりあき、たきざわとおる

-270 -
PO unit は不斉メチン炭素に起因する R と S の 光学異性体が存在するため,立体規則性 (m, r) を考慮しなくてはならない.

ー例として末端 PO メチン, メチレンの帰属 を Fig.1 に示した. meso と racemo 由来の末端 PO メチン(-P-<u>P</u>*)が分離したシグナルとして現 れており,それぞれ約1:1の割合で存在する ことがわかる.

ポリオキシプロピレン ポリオキシエチレン アルキルエーテル(nR-O-(EO)5-(PO)n)の末端 unit シグナルの帰属

PO 付加数が、それぞれ 1, 2, 3 である試料 の¹³C NMR スペクトルを Fig.2 に示す. PO の 付加数の増加に伴う末端 PO シグナルの強度変 化から末端 PO メチンを帰属した. ここで各試 料の末端 PO シグナルが複数存在しているのは, PO の付加数に分布があることに起因している. また P-P-<u>P</u>*, E-P-<u>P</u>*の分裂は立体規則性分裂で ある.

Fig.2 ¹³C NMR spectra of (a) nR-(EO)₅-(PO)₁, (b) nR-(EO)₅-(PO)₂ and (c) nR-(EO)₅-(PO)₃

ppm

66.0

未反応物の定量

R-O-(EO)₅と R-OH に対して,定量性のある¹³C NMR (inverse gated decoupling without NOE)を測定した (Fig.3). 末端 EO (-E-E-E*)と アルコールのヒドロキシル基と結合しているメチレン (-<u>CH</u>₂-OH) の積分強度比を求めることにより, R-O-(EO)₅の未反応アルコール(R-OH)を定量するこ

とができた (5.0~5.6 wt%). ここで, R-OH は分岐構造を持つアルコールの ため, -<u>CH</u>2-OH は複数存在している. また, R-O-(EO)5-(PO)n型の試料に対 して, ②で帰属した末端 PO メチン (-E-E-<u>P</u>*+ -E-P-<u>P</u>*+ -P-P-<u>P</u>*) と -<u>CH</u>2-OH との積分強度比により未反応 アルコール(R-OH)の定量が,末端 PO メチン (-E-E-<u>P</u>*+ -E-P-<u>P</u>*+ -P-P<u>-</u>P*)に 対する末端 EO (1-E-E-<u>E</u>*, 2-E-E-<u>E</u>*)の 積分強度比により未反応 EO 付加物 (R-O-(EO)5)の定量が可能であることが わかった.

全芳香族共重合ポリエステルカーボネートおよびポリアミドの

モノマー連鎖 NMR 構造解析

(東京農工大工¹、帝人²)

○松田裕生^{1,2}、永阪文惣²、中川泰雄²、朝倉哲郎¹

Sequence Analysis of Fully Aromatic Polyestercarbonate and Copolyamide Using NMR

<u>Hironori Matsuda</u>^{1,2}, Bunsow Nagasaka², Yasuo Nakagawa², and Tetsuo Asakura¹ ¹Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo,

184-8588; ²Material Analysis Research Laboratories, Teijin Ltd., Hino, Tokyo, 191-8512

Recent development of NMR apparatus and its technique makes possible to obtain detailed sequence information for the complex copolymers. In this report, we observed NMR spectra of fully aromatic polyestercarbonate prepared from U-Polymer[®] and bisphenol-A polycarbonate, and of fully aromatic copolyamide; Technora[®]. The selection of suitable solvent for the detailed NMR analysis was important. The ¹H and/or ¹³C NMR peaks which were splitted into detailed sequences were assigned by comparing with the spectra of several model polymers. The dyad or triad sequence analyses were performed on the basis of the assignments.

【緒言】

一般に合成高分子材料の一次構造の特徴は、その固体物性に反映されるので、一次構造の詳細な解析は重要である。今日、NMR 装置の高磁場化、高性能化に伴い、ピークのより長距離にわたる、より厳密な帰属が可能となり、それを基礎とした詳細な連鎖分布解析が、複雑系共重合体に対しても可能となってきた。これまでに、我々は、芳香族/脂肪族ミックス系のポリエステル共重合体を取りあげ、詳細な長距離連鎖に基づく帰属を行うとともに、その連鎖分布解析を行ってきた^{1,2}。

本研究では、複雑系共重合体として、2 種類の全芳香族共重合体、すなわち、①ポリエステルカーボ ネート(ユニチカ製 U-ポリマー®/PBA 型ポリカーボネート共重合体)、②ポリアミド(帝人テクノプロ ダクツ製テクノーラ®)を取りあげ、連鎖構造に基づく精密な帰属を行うとともに、その連鎖分布解析 を行った。

【実験】

日本電子製 JNM-α600、400 を用い、¹HNMR および ¹³CNMR 測定を行った。溶媒として、試料①に対して はオルトクロロフェノール/重クロロホルムの 75/25 (v/v) 混合溶媒、試料②に対してはトリフルオロメ タンスルホン酸を用いた。

【結果と考察】

① 全芳香族ポリエステルカーボネート (U-ポリマー®/PBA 型ポリカーボネート共重合体)³⁾

このポリマーは酸成分3種、グリコール成分1種からなる複雑系共重合体である。NMR 測定溶媒を検討した結果、オルトクロロフェノール/重クロロホルムの75/25(v/v)の混合溶媒、80℃の時に、BPA ユ

Key words: NMR、合成高分子、連鎖分布、triad、dyad

まつだひろのり、ながさかぶんそう、なかがわやすお、あさくらてつお

ニットのメチルプロトンピークは、酸成分に関する dyad 構造を反映して6本のピークに分離、観測され、 6 種類の dyad 構造をすべて解析できることが判った (Fig.1)。さらに、イソフタル酸ユニット、テレフタ ル酸ユニットの芳香環プロトンピークは、それぞれ、 酸成分に関する triad 構造を反映して分離、観測され、 triad 解析ができることが判った。モデルポリマーに よる厳密な帰属を行ない、dyad 解析、triad 解析を行 った結果、連鎖分布は完全ランダムであることが確認 された。

② 全芳香族共重合ポリアミド (テクノーラ®)⁴¹ このポリマーは酸成分1種、ジアミン成分2種からなるが、非対称構造のジアミン成分を有するため、ジアミン成分は3種類と見なすことのできる複雑系共重合体である。このポリマーは一般的なNMR 測定溶媒には不溶のため、これまで、NMR による連鎖分布解析は報告されていなかった。我々は、溶媒として、濃硫

Fig.1 Expanded 600MHz ¹H NMR spectra (CH₃ region) of polyestercarbonate derived from U-Polymer⁸ and PC, and the other model polymers for the assignment along with the notations of methyl protons. B: bisphenol-A unit, I: isophthalic unit, T: terephthalic unit, C: carbonate unit.

酸、メタンスルホン酸、トリフルオロメタンスルホン酸を検討した。その結果、トリフルオロメタン スルホン酸を用い、100℃の条件で測定することによって、テレフタル酸ユニットのカルボニル炭素ピ ークは、ジアミン成分に関する dyad 構造を反映して、微細に分離観測されることが判った。帰属解析 のため、連鎖構造を制御したモデルポリマーを合成し、同様の条件で測定した。ピークの化学シフト を比較することによって、各ピークを dyad 構造に厳密に帰属することができた(Fig.2)。各ピーク面 積から連鎖分布を解析した結果、テクノーラ®は完全ランダム共重合体であることが明らかとなった。 すなわち、2 種類のジアミン成分の連鎖分布は完全にランダムであり、また、非対称ジアミン成分の頭 尾結合に関しても完全にランダムであることが明らかとなった。

Fig.2 Expanded 100MHz 13 C NMR spectra (C=O region) of Technora[®] and the other model polymers for the assignment along with the notations of carbonyl carbons.

【まとめ】

高磁場 NMR および特殊溶媒条件を用いることにより、これまで困難であったポリエステルカーボネートおよびポリアミドの複雑系共重合体に対して、精密な連鎖構造解析を行うことができた。 1) H. Matsuda, T. Miki, T. Asakura, *Macromolecules*, **35**, 4664 (2002). 2) H. Matsuda, B. Nagasaka, T. Asakura, *Polymer*, **44**, 4681 (2003). 3) H. Matsuda, B. Nagasaka, T. Asakura, *Polymer J.*, (2003) in press. 4) H. Matsuda, Y. Nakagawa, T. Asakura, *Macromolecules*, **36**, 6160 (2003).

パルス磁場勾配NMRを用いた

yeast 細胞内制限空間における自己拡散係数測定 (分子科学研究所) 〇大石 修

Measurement of restricted self-diffusion coefficients in the yeast cell by PFG-NMR (Institute for Molecular Sciense) Osamu OISHI

The diffusion coefficient of the water in the yeast cell was measured by the PFG-NMR method, changing diffusion time between 1-5ms, in order to see the restricted self-diffusion coefficient of water in yeast cell. The result showed the following things. 1)The water in a yeast cell showed the feature of the restriction space which is not seen with the water of a bulk system. 2)In the restriction space of a cell, the diffusion distance of the water per time in a big cell is larger than it in a small cell.

【序論】

パルス磁場勾配 NMR(PFG-NMR) 法による自己拡散係数測定は物質が拡散した距離を直接共鳴周波数 に変換して測定するため、凝縮物質のダイナミクスを研究する上で非常に有用な方法になっている。また 既に液体の自己拡散係数測定の方法としては標準的な方法になっている。動植物の細胞の水分子は細胞膜 や小器官の膜によって閉じられた系の中に存在するために、その拡散は制限されたものとなり、制限の無 い bulk な系と異なった特性を示す。そのため閉じられた系での見掛けの拡散係数を拡散時間を変化させ ながら測定することにより、逆にその閉じられた系の大きさ等を推測することができ、前回の本討論会で は植物細胞の制限空間内での制限拡散について報告した。今回の研究では、植物細胞よりもさらに小さな 細胞である酵母を試料として、拡散時間を 1-5ms まで変化させながら測定した。

【実験】

- 装置:0.93T(40MHZ)の電磁石のNMR装置に、磁場勾配発生コイルに四極コイルを用いた自作のプ ローブを用いて測定を行った¹⁾。
- 2. 試料: yeast を真空乾燥したものを直接、もしくは水を加えて膨潤させ、市販の NMR5mm 管に入れ て、拡散係数を測定した。
- 3. パルス系列: two-puls の spin-echo を用いて使用した。
- 4. 測定条件:約 6T/m の強度の磁場勾配を用い、温度 35 ℃で測定した。パルス幅は拡散時間 Δ を 1-5ms まで変化させて、各拡散時間において磁場勾配パルス δ を 0.4-0.6ms まで 0.05ms おきに変化させるパ ラメータを設定し、エコーの強度を自動測定した。
- 5. 光学顕微鏡及び走査型電子顕微鏡による形態観察:酵母の実際の大きさを、乾燥状態の物を走査型電子 顕微鏡で、膨潤させた物を光学顕微鏡で観察し、実際の菌の大きさを求めた。
- 6. 標準試料:四極コイルのコイル定数はグリセリンの拡散係数の測定値と文献値から導き出したものを用い、磁場勾配の安定性は試料の測定条件において、ポリジメチルシロキサン、bulkの水、bulkのdimethylformamideを標準物質として拡散係数を測定し、yeastを含む各測定データは bulkの水の拡散係数で補正した。

キーワード:パルス磁場勾配・自己拡散係数・制限空間・細菌細胞

おおいし おさむ

【結果及び考察】

Figure 1 は dry yeast と水で膨潤させた wet yeast 中の水の拡散係数を拡散時間に対してプロットした ものである。また酵母中の水に対する比較として、同条件で測定した、bulk の dimetylformamide の拡散 係数をプロットしている。1ms から 5ms の拡散時間では、bulk の dimethylformamide の拡散係数は時間 に依存せずほぼ一定なのと対象的に、wet yeast 中の水の見掛けの拡散係数は時間とともに減少して行く。 試料を一日放置後、同一試料での再測定において見掛けの拡散係数の時間的変化はみられなかった事か ら、この拡散時間に対する見掛けの拡散係数の減少は細胞膜による拡散領域の制限のためであると推測さ れる。拡散時間 2ms 以上の見掛けの拡散係数は非常に小さくなるので、測定データを水の拡散係数で補 正できる条件ではノイズレベルに達しいている。

NMR で観測される見掛けの自己拡散係数 (D) に対して拡散分子の二乗平均拡散距離 (r) は拡散時間を t として、

$$r = \sqrt{2Dt}$$

で示される。Figure 2 は二乗平均拡散距離の時間変化を示している。bulk な系における dimethylformamide の拡散係数は時間の平方根に対して直線的に変化して、その分子は無制限に広がって いく一方で、wet yeast 中の水の拡散距離は拡散領域の制限の為に原点を通る直線からずれている。走査 型電子顕微鏡と光学顕微鏡で観察した dry yeast 及び wet yeast の直径はそれぞれ 3~3.5µm 及び 5~6µm 程であったが、今回の拡散係数から導いた平均拡散距離もまた dry yeast は wet yeast の半分程度の値を 示している。そして、細胞の大きさを考慮すると、この拡散領域の大きさの差は yeast 細胞の大きさの違 いのためと推察される。

今回測定した制限領域の大きさは、細菌と動物細胞に対する大きさであるので、今回の結果は装置的に は動物及び細菌の細胞の大きさや形に対する拡散係数の変化を測定できる事を示しており、逆に制限拡散 における見掛けの拡散係数の測定により、細菌及び動物の細胞の大きさや形を推測できることが示された。

Symbols are dry yeat(\circ), wet yeast(\bullet), and bulk dimethylformamide (\triangle), respectively.

Figure 2. Root mean square distances of water in yeast at 35°C.

Symbols are dry yeat(\circ), wet yeast(\bullet), and bulk dimethylformamide (\triangle), respectively.

1)Osamu OISHI and Seiichi Miyajima, J. Magn. Reson. A, 123, 64-71 (1996)

Channel Cavity を有する高磁場配向高分子ゲルの

キャラクタリゼーション及び物質拡散に関する研究

(東工大院理工・高分子セ)山根祐治、〇松井政徳、兼清真人、小泉聡、黒木重樹、安藤勲

Characterization and Diffusion Analysis of Highly-Oriented Poly(y-benzyl L-glutamate) Gel Having Channel Cavity

Yuji Yamane, <u>Masanori Matsui</u>, Masahito Kanekiyo, Satoshi Koizumi, Shigeki Kuroki and Isao Ando (Department of Chemistry and Materials Science, Tokyo Institute of Technology)

Poly(γ -benzyl L-glutamate) (PBLG) gels with highly-oriented α -helical chains are prepared by cross-linking PBLG chains by changing the concentration of ethylenediamine as cross-linker in 1,4-dioxane as placed in the strong magnetic field of an NMR magnet with the strength of 10.5 T. From the experimental results, it is found that in one of these gels long channels with averaged diameter of ca.100 μ m are formed by phase separation between cross-linked PBLGs and solvent. Further, from the observation of three-dimensional ¹H NMR imaging patterns, it is found that the long channels are aligned in the direction parallel to the α -helix axis. From the ¹H pulsed-field-gradient spin-echo NMR experiments, diffusional behavior of 1,4-dioxane in PBLG gel and channels is elucidated.

【緒言】

ポリ(γ-ベンジルーLーグルタメート) (poly(γ-benzyl L-glutamate): PBLG) はジクロロメタン、 1,4-ジオキサン、クロロホルムなどの良溶媒中でリオトロピック液晶を形成する。また、PBLG 液晶は磁場及び電場中で PBLG 鎖が高配向する。NMR 磁場中で高配向の PBLG ゲルを調製し、固 体¹³C NMR を用いて PBLG 鎖の配向度について追跡することに成功し、高配向 PBLG ゲル中の溶 媒及び棒状分子の拡散速度が配向軸方向及び垂直方向で異なることを見出し、異方的な拡散過程 について報告している。¹⁾

このような背景から、架橋密度を変化させることによって nm スケールの channel の直径を変化 させることができないかと考えた。そこで、10.5 T の NMR 磁場中で架橋剤の濃度を変化させて高 配向 PBLG ゲルを合成したところ、nm スケールの間隔で PBLG 鎖が配向し、さらにµm スケー ルのチャンネルが発現した。高配向 PBLG ゲルの構造を 3 次元 NMR イメージング法により解析 し、さらに高配向ゲル及び channel 内の溶媒の拡散過程を磁場勾配 NMR 法を用いて解析した。

磁場勾配 NMR、3D NMR イメージング、高配向ゲル、制限拡散、channel Cavity

やまねゆうじ、まついまさのり、かねきよまさひと、こいずみさとし、くろきしげき、あんどういさお

【試料調製】

PBLG (MW=277,000) を 1,4-ジオキサンに溶解し、 25wt% PBLG リオトロピック液晶を調製した。内径 4.2 mmのテフロンチューブに PBLG 溶液 0.2gを入れ、室温 で1日 NMR 磁場 (10.5 T) 中で PBLG 鎖 (α -ヘリック ス構造)を磁場方向に配向させた。このような方法で配 向させた PBLG 鎖の配向度が 0.81 であることを固体高分 解能 ¹³C NMR 法により明らかにしている ¹⁾。PBLG 鎖を 十分に配向させた後、NMR 磁場からサンプルチューブ を取り出し、架橋剤としてエチレンジアミン((A) 5 µL、

(B) 10 µL (C) 20 µL) を添加した。サンプルチューブ は再び NMR 磁場の中へ入れ、室温で3日間エステルア ミド交換反応を進行させた。その後、サンプル A、B 及 び C をサンプルチューブから取り出し、過剰の 1,4-ジ オキサンで未反応の架橋剤及び副生成物であるベンジ ルアルコールを取り除き、最後に溶媒を取り除きロッド

Fig.1 A diagram of schematic three-dimensional structure of highly oriented PBLG network, d is the interchain distance between the nearest neighboring two PBLG chains.

状の高配向ゲルを得た。Table 1 にゲルの調製条件と膨潤挙動について示した。 Table 1 Preparation Condition and Properties of Highly-Oriented PBLG Gels

.1	PBLG /g	1.4-dioxane /g 0.15	ethylenediamine / μl	swelling ratios in x, y and z direction*		volume swelling ratio*	interchane distance between the nearest-neighboring two PBLG chains ^b / Å			
	0.05			x y z	1.44 1.74 1.11	2.79	dry gel	13.4 21.2		
B	0.05	0,15	10	A y z	1.50 1.75 1.00	2.62	gel	18.1		
C.	0.05	0.15	20	••••••	no swelling					

 a) relative to the dried state. The z direction and the x and y directions are in parallel and perpendicular to a cylindrical PBLG gel.
 b) as determined by X-ray diffraction.

【測定】高配向 PBLG ゲルの¹H NMR イメージング画像は Bruker 社製 DSX-300 分光器 (測 定周波数 300MHz) に磁場勾配発生装置(磁場勾配強度 100 mT/m)を組み込んだイメージン グシステムを用いて室温で測定した。PBLG ゲル中の channel の 3 次元構造を明らかにするた めに、イメージング測定には 3D gradient echo(GE)法を採用した。フリップ角度、繰り返し時 間及びエコー時間は、それぞれ 30 度、1 s 及び 20 ms に設定した。観測したサンプルサイズ は 10.8 × 10.8 × 2.7 mm、データポイントは 256 × 256 × 32、ボクセルサイズは 42 × 42 × 84 µm である。また、拡散係数の測定には磁場勾配(最大 1100G/cm)を発生できる磁場勾配ユ ニットを付属した Bruker 社製 DSX-300 分光器を用い、¹H pulsed-field-gradient spin echo(PFGSE) NMR 法により高配向高分子グル中の 1,4-ジオキサンの拡散過程の解析を行った。

【結果と考察】

光学顕微鏡による高配向 PBLG ネットワークの観察 ロッド状の高配向 PBLG ゲルのクロスセク ションの観察をした。Fig.2 に B の光学顕微鏡写真を示す。 μ m スケールの直径を持った channel が多く存在することが観察された。channel は円柱軸方向、つまり、 α ーヘリックス軸に平行方向 につながっている。一方、サンプル A に関して、 μ m スケールの channel は確認されなかった。以 上より、高架橋密度の高配向 PBLG ネットワークにおいて、 μ m スケールの channel が発現するこ とがわかった。

¹HNMR イメージング法による長い channel を有する高 配向 PBLG ネットワークの観察 channel を有する高配 向 PBLG ゲルについて、channel キャビティーがロッド 状のサンプルを軸方向に貫通している様子を 3 次元 NMR イメージング法により捉えることに成功した。 Fig.3 に示すように、channel が円柱軸に平行に、サンプ ルを貫くように続いていることが確認され、ロッド状ゲ ルの側面から 500 µm の領域には channel が形成されない こと、平均的な channel の直径が 98.9 µm であることが わかった。以上の測定結果から長い channel を有する高 配向 PBLG ゲルの模式図を Fig.4 に示した。

Fig.2 Optical microscope photographs of a highly-oriented PBLG network material of sample B in the dried state.

Fig.3 The observed 2D ¹H spin density NMR image patterns of highly-oriented PBLG gel(sample B) with 1, 4-dioxane as solvent, where 32 pieces of the XY-plane sliced images are observed with the thickness of 84 μ m per image in the Z direction and 12 pieces of them are shown The slice no. 1 is the upside of the sample, and the slice no. 12 is the downside of the sample, where the interval thickness is 84 μ m. The 2D image slices are taken from 3D NMR image data sets of sample B.

Fig.4 A schematic diagram of a rod-like highly-oriented PBLG gel with long channels.

¹H PFGSE NMR 法による高磁場配向 PBLG グル及び channel Cavity 中の溶媒の拡散過程 高配向 グルA及びB に関して、ゲル中の1,4-ジオキサンの拡散係数を¹H PFGSE NMR 法により解析した。 はじめに、キャビティーを持たない A ゲル中の 1,4-ジオキサンの拡散係数を測定した。解析式に は[A(g)/A(0)] =exp(- $\gamma^2 g^2 \delta^2 D(\Delta - \delta/3)$ を用いた。 γ は¹H の磁気回転比、g は磁場勾配強度、δは磁場 勾配パルスの持続時間、 Δ は磁場勾配パルスの間隔、D は拡散係数である。Fig.5 に磁場勾配を配 向軸方向に印加した場合について、ln[A(g)/A(0)] を $\gamma^2 g^2 \delta^2 (\Delta - \delta/3)$ に対してプロットした結果を示す。 プロットが直線であることから 5ms のタイムスケールにおいて拡散成分は一成分であると決定で きる。その結果、配向軸方向(Fig.1 の z 軸方向)の D が 6.2×10⁻¹⁰ m²/s、垂直方向は 4.8×10⁻¹⁰ m²/s と決定でき、配向構造を反映して、配向軸方向に拡散しやすいことが示された。一方、channel キ ャビティーを有する B ゲル中の拡散過程は単純ではない。溶媒は PBLG ゲルマトリックス中及び channel キャビティー中を拡散できる。Fig.5 に磁場勾配を配向軸(かつ channel キャビティー軸)方 向に印加した場合について、ln[A(g)/A(0)] を $\gamma^2 g^2 \delta^2 (\Delta - \delta/3)$ に対してプロットした結果を示す。この プロットから、channel キャビティー中の溶媒は自由拡散として解析できないことが理解できる。 そこで、エコー強度は、 $E(\mathbf{q}, \Delta) = \iint d\mathbf{r}_0 d\mathbf{r} \rho(\mathbf{r}_0, \mathbf{0}) P(\mathbf{r}_0, \mathbf{r}, \Delta) \exp[-i2\pi q \cdot (\mathbf{r}_0 - \mathbf{r})]$ と表現

に $E(q, \Delta)$ を q 空間に対してプロットした。プローブ分子が制限空間内に閉じ込められ、障壁によって反射される拡散過程を観測した際に現れる ^{2),3)}エコー信号の極小が q =(65 μ m)⁻¹ で最初の極小 点が観測された。溶媒分子は channel キャビティーと PBLG ゲルとの界面で反射されていると考え られる。本討論会では、観測時間の依存性のデータも紹介する予定である。

Fig.5 Plots of $\ln[A(g)/A(0)]$ versus $\gamma^2 g^2 \delta^2 (\Delta - \delta/3)$ for a ¹H PFGSE experiment of 1,4-dioxane diffusing in PBLG gel A(\bigoplus) and B(\square) at $\Delta = 5$ ms. Sample B has long channels.

Fig.6 Plots of $E(q,\Delta)$ versus q for a ¹H PFGSE experiment of 1,4-dioxane diffusing in PBLG gel A(\bigoplus) and B(\square) at $\Delta = 5$ ms. Sample B has long channels.

Zhao, C.; Zhang, H.; Yamanobe, T.; Kuroki, S.; Ando, I. *Macromolecules*, **32**, 3389(1999).
 W. S. Price, *Ann. Rep. NMR Spectrosc.* **32**, 53-135(1996)
 P. T. Callaghan, *J. Magn.Reson.* **A 113**, 53-59(1995).

高分子電解質膜中における水の拡散挙動解析

(株日産アーク¹)○佐藤秀紀¹
 (産総研²)
 早水紀久子²、秋葉悦男²

Analysis of self-diffusion for water in polymer electrolyte membrane <u>Hidenori SATO¹</u>, Kikuko HAYAMIZU² and Etsuo AKIBA² ¹NISSAN ARC, LTD.

²National Institute of Advanced Industrial Science and Technology

H₂O dynamics in polymer electrolyte membrane, Nafion®117, was analyzed by measuring self-diffusion coefficient using PFG-NMR and relaxation time in the temperature range between 30°C and -50°C. Below about -15°C, frozen water and non-frozen water were existed in the membrane. The dynamics parameters of the both waters were different from parameters of bulk water. The difference indicated interactions of water with membrane molecules. It suggested that NMR experiments are very useful for indicating properties of polymer electrolyte membranes.

【はじめに】固体高分子形燃料電池(PEFC)の電解質として Nafion®に代表される パーフルオロスルホン酸系の高分子イオン交換膜が多用されている。このタイプの電 解質膜に対する要求特性の一つである含水状態でのプロトン伝導性は、膜に含まれる 水の動的挙動と密接に関連している。低温下において燃料電池の発電特性が低下する のは、電気化学反応の抑制とともに水の運動性が低下することが大きく影響している。 本報告では30℃から-50℃までの温度領域でパルス磁場勾配 NMR (PFG-NMR)法 による自己拡散係数の測定を行ない、高分子電解質膜に含まれる水の動的挙動につい て検討した結果を報告する。

【実験】高分子電解質膜として市販の Nafion®117 を用いた。この膜を酸で処理した だけの「初期膜」、および初期膜に熱処理を施した 2 種類の膜「熱処理膜 A」と「熱 処理膜 B」を調製した。熱処理膜 A とは加熱冷却炉を用いて初期膜に-100℃から+ 150℃までの熱変動を 3 サイクル繰り返す処理を施したものであり、熱処理膜 B とは 初期膜を 80℃の空気雰囲気下で 60 時間加熱したものである。酸処理および熱処理を おこなった後の Nafion®膜試料は NMR 測定までの間、それぞれイオン交換水の中で 保管した。

4.7T のワイドボア SCM に APOLLO 分光計(Tecmag, Inc.)と最大強度約 10T/m を発生する磁場勾配ユニット(日本電子)を組み合わせ、共鳴周波数 200MHz にて ¹H·NMR を測定した。試料は $5mm \phi$ 対称型ミクロ試料管(シゲミ)を用いて高さが 約 5mm となるようにした。30℃から温度を徐々に低下させ、所定の温度で Stimulated Echo 法による自己拡散係数の測定を実施した。

【結果と考察】図1に初期膜を30℃から徐々に冷却したときのNMR 信号の相対的 な強度変化の様子を示す。膜に含まれる水は-10℃から-15℃の間で凍結して信号強 度が低下するだけでなく、この凍結水とは別に、NMR 信号を与えるのに十分な運動

キーワード:磁場勾配 NMR、高分子電解質膜、Nafion®膜、水、自己拡散係数

さとうひでのり、はやみずきくこ、あきばえつお

性を持ったまま凍結しない水(不凍水)が存在することが分かる。さらに温度が低下 するのに伴い、不凍水の信号強度が徐々に減少しており、不凍水の状態に分布がある ことを示している。これら一連の傾向は、熱処理を施した2種の膜でも同様であった。

初期膜、熱処理膜 A、熱処理膜 B の3 試料について、拡散時間 Δ =27ms 程度のときに観測された自己拡散係数 Dの温度依存性を図2に、得られた D値の一部を表 1 に示す。30℃から-10℃の温度範囲では初期膜における自己拡散係数 Dはバルクの水の半分程度であり、電解質膜との相互作用により拡散速度が抑制されていることが分かる。熱処理した2種の膜のうち、より穏和な条件である熱処理膜 A では初期膜とほぼ同じかやや小さい値を示したのに対して、より厳しい条件である熱処理膜 B では D値が低下する結果となった。これは熱による膜の構造変化に起因するものと考えられる。-20℃における D値は不凍水を観測したものであり、試料間で顕著な差異を示さなかった。図2では膜中水の一部が凍結する-13℃近傍を境に D値の温度依存性に明確な違いが認められた。それぞれの領域で直線近似により活性化エネルギーを求めると高温側ではバルクの水とほぼ同程度の約 19kJ/mol に対して低温側では34kJ/mol 程度と見積もられることから、不凍水は膜中で強く束縛を受けた状態にあるといえる。

初期膜および熱処理膜 B について、拡散時間を Δ =5~100msの範囲で変えて測定 を行ない D値の Δ 依存性を検討した。その結果、初期膜では-15℃、-20℃において Δ 依存性が認められたのに対して、熱劣化膜では-5℃以下の測定で Δ 依存性が顕著 に観測された。これは不凍水の存在する領域では、拡散移動を制限する空間的障壁が 存在することを示唆している。

【結論】PFG・NMR 法により自己 拡散係数を測定することによって、 固体高分子形燃料電池に用いられ る電解質膜の特性評価やプロトン 伝導性のメカニズム解析をおこな う際の有用な指標や情報を取得で きることが示された。

Table 1	Self-diffusion	coefficients of H ₂	0 in Nafion [®]

Membrane	$D/(10^{-10} \mathrm{m^2/s})$					
sample	30°C	3 .0	` — 20℃			
Initial	11.5	5.25	1.14			
Heat treatment A	10.9	4.79	1.15			
Heat treatment B	7.24	3.35	1.10			
Buik water	25.5	10.5				

Improved Automated NMR Structure Calculation with CYANA 2.0

O Blanca López-Méndez, Jun-Goo Jee, David Pantoja-Uceda & Peter Güntert

RIKEN Genomic Sciences Center, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan

Until recently NMR protein structure determination has remained a laborious undertaking that occupied a trained spectroscopist over several months for each new protein structure. However, it has been recognized that the most time-consuming part of interactive spectrum analysis can be accomplished by automated, computational approaches. Combined automated NOESY assignment and structure calculation with the CYANA program has been used for most of the NMR structure determinations that have been accomplished within the RIKEN Structural Genomic/Proteomics Initiative (RSGI). The new version 2.0 of the CYANA program that features a new probabilistic treatment of the NOE assignment and other improvements of the automated structure calculation procedure will be presented.

タンパク質構造、自動帰属、構造計算、CYANA

○ぶらんか ろぺず めんでず、じゅんぐー じー、でぃびっど ぱんとーや うせだ、 ペーたー ぎゅんたーと

3D NOE structure calculation based on unassigned NOE data is performed by CYANA 2.0 in an iterative process consisting of 7 cycles of NOE automated assignment and structure calculation by simulated annealing in torsion angle space, and a final structure calculation using only unambiguously assigned distance constraints. All cycles except the first one use the best structures from the previous cycle for the automated NOE assignment. Automated NOE assignment is based on the matching of peak positions with chemical shift values, *network-anchoring* and, from cycle 2 onwards, on the 20 best conformers from the previous cycle. Possible distortions of intermediate structures from erroneous distance constraints that may originate from artifact peaks, inaccurate NOESY cross peak positions or volumes, and incomplete chemical shift assignments are reduced by *constraint combination* and *violation confinement*. In each cycle of a CYANA structure calculation four output files are written: a file with the NOE assignments made by the automated NOE assignment algorithm and their

- 282 -

probabilities according to several criteria (chemical shift agreement, *network-anchoring* and structure compatibility), a file with the upper limit constraints used in the structure calculation, a file with the coordinates of the 20 conformers with lowest target function value for that cycle, and an overview file with the target function values for each conformer, the rms deviation among the best conformers and a list of relevant constraint violations.

CYANA 2.0 uses a new residue library that is based on the covalent parameters (bond length, bond angles) for amino acid residues of Engh and Huber (Engh and Huber, 1991) that are a quasi-standard for X-ray protein structure determination and for structure validation. CYANA 2.0 can work directly with input data from the NMRView spectrum analysis program in addition to the previously supported formats of the programs XEASY and ANSIG. The new probabilistic method for automated NOE assignment in CYANA 2.0 provides a uniform and consistent treatment of all NOE assignment criteria and replaces the former CANDID algorithm. For each assignment possibility, the probability that the corresponding interatomic distance will be shorter than the upper distance limit that is derived from the cross peak volume is calculated, and those with a total probability above a threshold are accepted as assignments in an ambiguous or unambiguous distance constraint. A new type of torsion angle constraints that acts simultaneously on multiple angles can be applied to improve the Ramachandran plot characteristics of the structures calculated with CYANA 2.0. Similarly, the distributions of side-chain torsion angles can be improved by favoring the staggered rotamer positions.

The new CYANA 2.0 program is implemented in Fortran 95 without any fixed limits and the protein size or input data. The memory requirements and computation time for the automated NOESY assignment have been significantly reduced when compared to version 1 of CYANA. CYANA 2.0 is fully supported on Linux, SGI, Compaq Alpha, MacOS X, Sun and HP-UX systems. Straightforward parallelization on clusters of Linux workstations or other parallel systems provides a high efficiency of the structure calculations.

References

Engh, R.A., Huber R. (1991) Acta Crystallogr A 47, 392-400.
Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997) J. Mol. Biol. 273, 283-298.
Herrmann, T., Güntert, P. and Wüthrich, K. (2002) J. Mol. Biol. 319, 209-227.
Güntert, P. (2003) Prog. Nucl. Magn. Reson. Spec., in press.

4.7T 人体用 MRI における ¹H/³¹P/¹³C 局在化スペクトル同時測定法

(国立環境研) 〇三森文行、高屋展宏、渡邉英宏

Interleave ¹H, ³¹P and ¹³C localized spectroscopy at 4.7T wholebody spectrometer

(National Institute for Environmental Studies) <u>F.Mitsumori</u>, N.Takaya, H.Watanabe We constructed a method of TRIple Nuclei Interleave in Triple channel spectroscopY (TRINITY) based on a 4.7 T wholebody MRI, which enables us to measure ¹H, ¹³C and ³¹P NMR spectra from the same localized area. ¹³C spectrum was indirectly obtained through ¹H connected to ¹³C by editing the ¹H STEAM spectrum. ³¹P spectrum was obtained with an ISIS technique. ¹H, ¹³C and ³¹P measurements were performed in an interleave manner. For the triple nuclei measurements, ³¹P dual loop quadrature coils (8cm in diameter) with ¹³C single loop coil were made, and successfully combined with a TEM head coil for ¹H. The performance of TRINITY method was evaluated with a phantom containing acetate, glutamate and ATP solution.

【はじめに】我々は、4.7T 人体用 MRI 分光計に3つの送受信系を装備し、同一の局 在領域から多核種スペクトルを同時に測定する方法の開発を進めている。今回は、昨 年報告した¹H、³¹P の同時測定に¹³C 核を追加し、3核種を同時に測定する TRINITY (TRIple Nuclei Interleave in Triple channel spectroscopY)法を実現した。¹³C 測定法として は、¹H スペクトルを¹³C-¹H 結合を用いて編集する間接検出法を用いることとした。 この方法の利点としては、すでに実現した¹H 局在化法をそのまま利用できること、 領域選択の精度が高いこと、検出感度が高いことなどがあげられる。

【方 法】Oxford Magnet Technology (OMT)社の 4.7T 磁石(ボア径 925mm)を接続し た Varian Inova 分光計を用いて測定法の構築を行った。信号検出器は直径 8cm の2重 ループを用いるクォドラチャ型³¹P 検出器に、直径 12cm の単一ループの¹³C 同調コ イルを付加して³¹P/¹³C 2 重同調信号検出器を作製した。これを口径 30 c mの頭部用 ¹H TEM 型コイルと組み合わせ、3 核同時測定に用いた。コイル間の結合は、その形 状、重なりに大きく依存するので、注意深く調整を行った。領域選択の方法として¹H スペクトルは STEAM 法、³¹P スペクトルは ISIS 法を用いた。新たに追加した¹H スペ クトルの¹³C編集のために、STEAM 法の(1/2)TE=1/(2J_{CH})とし、TM 期間中に¹³C に広 帯域の180度パルスを加え、アンチフェイズになった¹³C結合プロトンのコヒーレン スを位相反転させ、通常¹H スペクトルとの差分から¹³C 結合プロトンを選択検出す る方法を採用した。¹³Cの180度パルスには、パルス幅25msの断熱パルスを用いた。 反転パルスの有効帯域は 6kHz であった。¹H 検出のため、同一 TR 内に 3 核測定を行 うことはできないので、昨年の同一 TR 内に 1 H, 31 P を interleave で行う測定をさらに、 ¹³C 編集パルスの有無で2重に interleave にし、 ${}^{1}H \rightarrow {}^{31}P \rightarrow {}^{1}H({}^{13}C \text{ edited}) \rightarrow {}^{31}P$ で1 測定 サイクルとした。¹³Cのデカップリングを行う場合は¹Hのデータ取得期間中に断熱パ ルスを用いる MLEV4 パルスを付加した。デカップリングの帯域は 3kHz であった。

Keywords: 高磁場 MRI, 多核種 NMR, ¹H スペクトル, ³¹P スペクトル, ¹³C スペクトル みつもり ふみゆき、たかや のぶひろ、わたなべ ひでひろ 【結果】直径 40mm のピンポン球に 50mM 酢酸、50mM グルタミン酸、100mM ATP、100mM MgCl₂、5mM EDTA の混合溶液を封入し、これを 1L のガラス球に満たした生 理食塩水中に置いたものをファントム試料として、3 核測定法の検証を行った。ピン ポン球の中央に 2x2x2 cm の立方体領域を設定し、領域内のシムを FASTMAP 法によ り調整した。測定の結果、天然存在比の試料においても、酢酸やグルタミン酸の¹³C サイドバンドが定量的に観測できた(図 1)。観測された差スペクトル(図 1c)にお いて酢酸のメチル基の¹³C 結合プロトンのダブレット強度は中央ピークの1.0%でその 結合定数は 126Hz であった。中央ピークは完全に相殺されている(パルス繰り返し時 間:5s、測定時間 85.3 分)。次に、上記試料の酢酸を、98% 2-¹³C 標識酢酸に換えたフ ァントムを用いて同様の測定を行い、さらに¹³C デカップリングを試みた。図 2 にデ カップリングを行った場合の結果を示す。

【考察】コイル間の結合やスピン間の相互作用が3核種同時測定に及ぼす影響を考察 するために、3核種同時測定の結果を、1核種ずつ測定した結果と比較した。この結 果、¹³Cの反転パルスの付加によって、¹H、³¹Pの信号強度が影響を受けることがわか った。¹³C反転パルスがあると¹Hスペクトルはわずかに信号強度が減少した。この変 動は、差スペクトルにおいて、中央ピークに差し引き誤差を生ずる。このため、¹³C の180度パルスは常に打ち、反転を起こさせないときは照射位置を20kHz ずらす方法 にシークエンスを変更した。同様に、¹³C 反転パルス後の³¹P スペクトルでは S/N 比 の25%の低下がみられた。この低下は、¹³C の照射ラインにカットオフ(-3dB)が 62MHz の lowpass filter (81MHz での減衰-32dB)を設置することで回避された。これらの影響 は、コイル間に残存するわずかな結合に由来すると思われる。また、¹³C デカップリ ング時にはダブレット信号がシングレットとなり、スペクトルは単純化するものの、 ¹H プリアンプの直前に帯域20MHz の¹H bandpass filter をいれたにもかかわらず雑音 強度が大きくなるため、S/N 比の改善は余り大きくなかった。

Fig.2. TRINITY spectra with 13 C decoupling in a phantom of 50mM 2- 13 C acetate, 50mM glutamate and 100mM ATP. (a) 1 H, (b) 13 C detected with 1 H, and (c) 31 P. 32, and 64 transients were accumulated in 1 H, and 31 P, respectively with TR of 5sec.

NMR spectroscopy 及び NMR imaging による 卵の発生過程の解明 (海洋大・食品¹、海洋大・生物資源²) 〇西山大介¹、吉崎五朗²、渡部徳子¹

Ontogeny of fish egg using NMR spectroscopy and NMR imaging Daisuke Nishiyama¹, Goro Yoshizaki², Tokuko Watanabe¹

> Department of Food Science and Technology¹, and Department of Aquatic Biosciences², Tokyo University of Marine Science and Technology, 4-5-7, Konan, Tokyo 108-8477, Japan

NMR is an important tool for elucidating life sciences, and has been exploited in the field of developmental biology to mouse, African clawed frog, chicken, and so on. However, few studies have been reported about fish, and fewer about freshwater fish.

Using ¹H, ³¹P and ²³Na NMR spectroscopy and ¹H NMR imaging, we verified *in vivo* changes in components and morphology of eggs of rainbow trout (*Oncorhynchus mykiss*) and zebrafish (*Danio rerio*) during development, and tried to elucidate chemical changes accompanied by progress in ontogenesis.

【序論】生命現象を化学的に解明する手法として NMR は重要な手段の1つとなっており、発生 生物学の分野においてもマウス、アフリカツメガエル、ニワトリなどで活用されている。しかし、 魚類に関する研究は少なく、さらに淡水魚となると報告例はわずかである。そこで本研究では、 ニジマス(Oncorhynchus mykiss)とゼブラフィッシュ(Danio rerio)の卵に対し¹H、³¹P、²³Na NMR spectroscopy、及び¹H NMR imaging を用い、発生過程における物質と形態の変化を *in vivo* で 確認することによって、発生の進行に伴う化学的な変化の解明を試みた。

【実験】<u>ニジマス</u>東京水産大学大泉実験実習場にて飼育されたニジマスから卵と精子をそれぞ れ採取し、翌日に学内の研究室で受精させた。受精後は 10℃に保たれた水槽で発生させた。測 定時に卵を水槽から取り出し、1 個体(for imaging)及び 10 個体(for spectroscopy)を直径 10 mm のガラス管に入れ、生理食塩水で満たした。

<u>ゼブラフィッシュ</u>研究室にて 28℃で飼育しているゼブラフィッシュを自然交配させて受精卵 を採取した。得られた数百個の受精卵を直径 10 mm のガラス管に入れ、生理食塩水で満たした。

Keywords: NMR イメージング、ニジマス、受精、 *in vivo*、³¹P NMR

にしやまだいすけ、よしざきごろう、わたなべとくこ

測定 ³¹P NMR では methylenediphosphonic acid を外部標準物質として加え、このピークの化 学シフトを 19.3 ppm とした。²³Na NMR ではシフト試薬及び緩和試薬を加え、細胞内外 Na の 信号の分離を試みた。¹H NMR spectroscopy では Pulsed-Field Gradient Double Quantum Filtered COSY を用い、水の化学シフトを 4.7 ppm とした。¹H NMR imaging では 2D 及び 3D のスピンエコー法(TR=2s、TE=30ms)によって測定した。なお、これらの測定には Bruker 社製 DRX300 分光器を用い、ニジマスの測定は 10.5℃、ゼブラフィッシュの測定は 27℃で行った。

【結果】³¹P NMR では、ニジマスとゼブラフィッシュの両方で、発生の進行に伴い無機リン酸(P_i)のピークが移動した。この P_iの化学シフト(δ₀)から次式によって卵内の pH を算出した¹⁾(Fig.1)。

$$pH \approx \frac{1979.5}{(T+273)} - 5.4409 + 0.018567(T+273) + \log\left[\frac{\delta_{\circ} - 3.280 + 0.003579T}{5.625 + 0.001888T - \delta_{\circ}}\right]$$

¹H NMR imaging の結果から、受精後に細胞質が動物極側で凝集し、また卵黄内の脂質も細胞 質の真下へ凝集することが確認された。さらに発生が進行し植物極側へ胚が形成されると、それ に伴い卵黄内の脂質も胚の真下へ来るように植物極側へ移動することが認められた。 その他の測定に関する詳しい結果は当日会場にて報告する。

Fig.2 2D spin echo images of rainbow trout.

Left; unfertilization, Middle; 1day post fertilization, Right; 22days post fertilization.

Reference

1) Gerald J. Kost; Magnetic Resonance in Medicine 14, 496-506 (1990)

SPI法による米の吸水における水分布の 可視化

('食総研、'生物研)〇石田信昭'、内藤成弘'、狩野広美²

Tracing of water absorption of a rice seed by SPI

Nobuaki Ishida¹, Shigehiro Naito¹, Hiromi Kano²

'National Food Research Institute, Tsukuba Science City, Ibaraki 305-8642, Japan

²National Institute of Agrobiological Resources, Tsukuba Science City, Iba raki 305-8602, Japan.

Changes of water distribution in rice seeds during soaking in water were traced using NMR imaging. Because T2 of water signal in rice seeds was too short to image using echo signal, SPI (single point mapping imaging) method was used. Water signal can be detected till 10% of water content using dephasing time of 135 μ s. By optimization of the parameters water signal in rice seed soaking in water was highlighted and the image can be measured every 3 min. The pass way of water permeation into rice was traced using variety of rice.

NMRイメージングは食品中の水分布を調べるよい手法であり、乾燥や吸水による水分布 を時間を追って追跡して食品の特性を調べることができるため、食品の研究においてよく 用いられてきている。炊飯前の米の吸水過程は炊飯後の飯の品質にとって重要であるが、 米粒内部への水の浸透の様子を追跡するための適切な方法がなかったため、これまでほと んど研究が行われてこなかった。NMRイメージングにおいても、米の水分含量は吸水前で1 5%以下、吸水後でも35%程度しかなく、吸水された水の緩和時間(T2)は1ms程度と短いた め、エコーを用いたイメージング法ではエコーを結ぶまでの時間に大きなシグナル減衰が 生じる上、シグナル取り込み時間の減衰も問題となるため、イメージを得ることが困難で あった。ここではこのようなT2の短い成分のイメージングに有効なSPI(single Point Map ping Imaging)を用いて、米の吸水過程をリアルタイムで追跡し米の吸水における性質の 違いを調べることを試みた。

キーワード:NMRイメージ、SPI、米、吸水、水分布イメージ

著者:いしだのぶあき、ないとうしげひろ、かのひろみ

【材料及び方法】

試料:米は90%精米した白米を用いた。水分含量の調整は水蒸気圧既知の各種飽和塩溶 液を入れたデシケーター内に試料を入れ、水分平衡になるまで静置させて行った。

MRIイメージの測定: 300MHz高分解能NMRに装着したイメージング装置で径5mmのイメージングプローブを用いて、SPI法により測定した。測定はパルス角18°、phase encoding time 135μ s、TR = 5ms、64 x 64 x 8 のマトリックスで測定した後、128 x 128 x 8のマトリックスで画像再構築を行った。イメージの測定時間は約3minであった。

【結果及び考察】

Fig. 1 に水分含量を調整した米のSPIイメージを示した。相対湿度97%で平衡に達した 米の水分含量は34.0%でこれは水に浸漬させたときの米の水分含量に近い値となる。水分 が低下するに従いイメージ強度は減少し、水分9.5%でほぼ見えなくなった。この水分含量 以下の水は高分子などに強固に結合した水であり、SPI法によってもそのような水は観測 できないと考えられた。

Fig. 2に試料管内で水に浸漬させながら連続的にイメージ測定して、米の内部への水移 行を追跡した結果を示した。TR=5msと短い繰り返しにより測定を行っているため、米周辺 の水のシグナル(T1 = 約3s)は飽和により減少し、米内部に浸透した水(T1 = 約250ms) のイメージを強調して観察することができた。ここではさらに画像解析によりイメージの 閾値を上げることにより、米の周辺に残る弱い水のイメージを消している。

Fig. 2 Imaging of water distribution in Koshi-hikari rice during water absorption

Fig. 3 Change of images of Thai rice during soaking.

米の吸水は水に接している米周辺から始まるが、途中で米に亀裂が入ると亀裂に沿って 急激に水が米内部に浸透し、そこから周囲に広がることにより短い時間で全体に水がいき わたることがわかった。コシヒカリは吸水過程で多くの亀裂が入り、急速に水が浸透し、 30分程度で水は全体に行きわたった。一方、タイ米やモチ米のように吸水の遅い米は、 コシヒカリのように多くの亀裂が入らず、また亀裂が入ってもそこから米の組織内に水が 浸透する速度が遅く、米の組織構造に違いがあるものと考えられた(Fig.3)。また、イン ディカ米の中にも、吸水時に亀裂が多く入り短時間に水が浸透する種類もあり、インディ カ米と呼ばれている米の中でも組織構造の違いがかなりあると思われる。

白米は玄米から胚と種子の表面にある種皮及びアリューロン層と呼ばれる組織を削り落 とし、胚乳部分だけにしたものである。90%精米では、胚、種皮とアリューロン層の大部 分が削り落とされていると考えられる。これらの組織は生物的には、種子の発芽のための 主要組織と種子を外界から守るバリヤーである。これらを削り落とした白米では水は主に 物理的に内部に浸透していると考えられる。一方、玄米はこれらの生物的に重要な組織を 持ち発芽能力を持つため、水に浸漬したとき生物的にコントロールされた水の取り込みが 行われると考えられる。Fig.4にコシヒカリの玄米を水に浸漬したときのイメージ変化を 示した。

水はまず種子左上にある胚に速やかに取り込まれた後、種皮と胚を通してゆっくりと内 部に浸透していることがわかる。水の浸透は白米のように表面から急激に進むのではなく、 全体に少しずつ浸透しているように見える。約2時間かけて水は種子全体にほぼいきわた った後、その量を増やしている。また、途中で内部に亀裂が生じているが(Fig.4矢印)、 そこから水の浸透が急速に進むことはなく、水の浸透はコントロールされて進んでいるこ とがわかる。

Fig. 4 Changes of images of brown rice during soaking.

超並列型MRマイクロスコープを用いたヒト胚子 三次元撮像(2)ー画像コントラスト最適化の研究ー

〇小野真也、松田善正、半田晋也、巨瀬勝美、拝師智之* (筑波大学物理工学系、(株)エム・アール・テクノロジー*)

MR microscopy of a large human embryo collection (Kyoto collection) using a four-channel super-parallel MR microscope (2):Optimization of image contrasts S.Ono, Y.Matsuda, S.Handa, K.Kose, T.Haishi*

Institute of Applied Physics, University of Tsukuba, MR Technology Inc.,

It is very important to obtain good image contrasts among organs in 3D MR microscopic images of chemically fixed human embryos, because 3D image segmentations of organs will tremendously contribute to human embryology. To obtain good image contrasts for the human embryos, we measured distributions of T1 and T2 for a 19th Carnegie stage chemically fixed human embryo using 3D spin echo sequences. The results have shown that the T1 weighted 3D spin echo sequence with TR = 100 ms and TE = 10 ms, which has been used for image acquisition of 19th and 21st human embryos, gives nearly optimum image contrasts between organs.

1.はじめに

本プロジェクト(京都 4000 プロジェクト)では、取得されたデータを世界中の研究者に公開 し、ヒトの発生学の発展に寄与することを最終目標としている。よって 3DMR マイクロスコ ープ画像における組織間の良好な画像コントラストを得ることは、大きな課題である。

さて、MR 画像における画像コントラストは、試料が固有に持つ内部パラメーター(スピン 密度、T₁、T₂など)と、撮像シーケンスが有する外部パラメーター(TR、TE など)に複雑に依 存する。よって、良好な画像コントラストを得るためには、まず内部パラメーターを定量的 に計測し、その後に画像コントラスト/ノイズ比(CNR)が最適化されるように計測に使用す る外部パラメーターを決定する必要がある。

本研究では、化学固定されたヒト胚子を対象とし、最適な画像コントラストを得るために NMR パラメーターの計測を行なったので、その方法と結果を紹介する。

キーワード:T1計測、T2計測

おのしんや、まつだよしまさ、はんだしんや、こせかつみ、はいしともゆき

2. 試料と MR マイクロスコープ撮像

撮像と解析に使用した試料は、京都大学大学院医学研究科付属先天異常標本センター(セン

ター長:塩田浩平教授)より提供された、化学固定された 19 ステージのヒ ト胚子である¹⁾。この胚子を内径 10.5mm、外径 12mm の NMR 試料管 に入れ、10%ホルマリン溶液を満たした状態で、4CH の超並列型 MR マイクロスコープ²⁾を使用し、3D スピンエコー法を用いて撮像した。 シーケンスの繰り返し時間(TR)とエコー時間(TE)は、T₁の計測において は、TE = 10ms 一定とし、TR = 100ms、200ms、400ms、2000msと 変化させ、T₂の計測においては、TR = 2000ms 一定とし、TE = 10ms、 20ms、40ms、60ms とした。なお、画素数は 128×128×256、画素サ

Fig.1 Mid sagittal image of a 19th stage embryo. (TR/TE = 100ms/10ms)

3.3D データを用いた T₁、T₂の計測

<スライスデータの取得>

の画像(正中断面像)を示す。

MR マイクロスコープ撮像で得られた 3D データは、画素あたりの SNR が低く、しかも、 ヒト胚子試料は、試料管の中で x、y、z 軸より任意の角度傾いており、このままのデータを 用いて T₁、T₂の算出を精度良く行なうのは困難であるため、以下の前処理を行なった。

まず、胚子の正中断面(脊髄の中央断面と一致する面)像を精度良く求めるために、元画像 (128×128×256)を3 次元フーリエ変換し、そのフーリエ空間で、高周波領域にデータサイ ズが256×256×512 となるように0を埋め、それを逆3次元フーリエ変換することにより、 x、y、z方向にそれぞれ精度良く補間された256×256×512 画素の画像データを得た。そし て、この画像データを正中断面が xz 面(256×512 画素の面)となるように3次元回転させ、 正中断面に平行な多数の断層面を得た。

以上のようにして得られた正中断面像は、スライス厚方向に画素値を加算しても解剖学的 構造のボケが比較的少ないと考えられるので、正中断面を中心に 3~9 枚の画像加算を行なっ た。その画像を Fig.2 に示す。

Fig.2 Variation of a mid sagittal image with accumulation of successive slices. Three slice accumulation(left). Five slice accumulation(middle). Nine slice accumulation(right).

<T₁、T₂マップの計算>

 $T_1 = 2000 \text{ ms}, TR_2 = 100 \text{ ms}, 200 \text{ ms}, 400 \text{ ms} \ge 100 \text{ ms}$

 $\frac{I_1}{I_2} = \frac{1 - \exp(-TR_2/T_1)}{1 - \exp(-TR_1/T_1)} \cdot \cdot \cdot (1)$

の式を用いて算出した。T1マップをFig.3に示す。

T₁の計算においては、TR₁→∞、TR₂~T₁のときに、計測のノイズの影響が最も小さくな ることが知られているが、T₁は組織毎に異なるため、各組織毎に T₁マップ上の画素値の平均 値を画素値の標準偏差で除した CV 値を用いて、T₁マップの精度を評価した。その結果を Table1 に示す。組織によって違いはあるが、TR₂ = 100msの時の T₁マップが、概ね良好な CV 値を与えた。

Fig.3 Images (a), (b), and (c) were calculated from images with $TR_1 = 2000$ ms, and $TR_2 = 100$ ms, 200ms, and 400ms, respectively.

Table1 Variation of mean and CV of T_1 with TR_2 calculated for (a)liver, (b)spinal cord, (c)brain, and(d)tongue.

 T_2 マップは、TE₁ = 10ms、TE₂ = 20ms、40ms、60ms として

$$\frac{I_4}{I_3} = \frac{\exp(-TE_2/T_2)}{\exp(-TE_1/T_2)} \cdot \cdot \cdot (2)$$

の式を用いて算出した。T2マップの結果をFig.4に示す。

T₂マップの計測においても、どのような TE を使うかによって計測の精度が異なるため、 各組織毎の T₂値の CV 値を求めた。その結果を Table2 に示す。 組織毎に最小の CV 値を与える TE は異なることが明らかになった。

— 294 —

			TE ₂ (ms)	20	40	60	TE ₂ (ms)	20	40	60	
			Mean(ms)	14	21	86	Mean(ms)	45	36	34	
	interest of the second s	1.225	cv	0.34	0.21	1.08	cv	0.33	0.16	0.16	
			(a)			(b)					
A CONTRACTOR			TE ₂ (ms)	20	40	60	TE ₂ (ms)	20	40	60	
			Mean(ms)	52	48	43	Mean(ms)	40	33	41	
	(12)	(2)	cv	0.34	0.16	0.13	CV	0.35	0.2	0.22	
(a)	(a)	(0)	(C)			(d))			

Fig.4 Images (a),(b), and (c) were calculated from images with $TE_1=10ms$, and $TE_2=20ms$, 40ms, and 60ms, respectively.

Table2 Variation of mean and CV of T_2 with TE₂ calculated for (a)liver, (b)spinal cord, (c)brain, and(d)tongue.

4.考察

前節の結果から分かるように、ヒト胚子の組織の T₁は 100ms 前後、T₂は 30ms 前後に分 布していた。よって、TR = 100ms とし、T₂をできる限り短くした T₁強調シーケンスは、組 織間コントラストを得るためには、ほぼ最良のシーケンスであると思われる。これは、実験 的に求めた我々の結果とよく一致しており、現在、本プロジェクトで使用しているパルスシ ーケンス(TR/TE = 100ms/10ms)の妥当性を裏付けるものである。

5.むすび

ヒト胚子を対象とした T₁マップと T₂マップを計測する手法を開発し、19 ステージの試料 に対して計算を行なった。その結果、現在本プロジェクトで使用しているパルスシーケンス は、保存液を飽和させる点ばかりでなく、組織間の画像コントラストを得る上でも最適に近 いものであることが判明した。今後は新しい画像コントラストを与える拡散係数のマッピン グ等も行なう予定である。

Reference

- Nishimura H, Takano K, Tanimura T, Yasuda M.Normal and abnormal development of human embryos: First report of the analysis of 1, 213 intact embryos. Teratology, 1(1968)281-290.
- Yoshimasa Matsuda, Shin Utsuzawa, et al., Super-parallel MR microscope, Magnetic Resonance in Medicine, volume 50(2003).183-189
- 3. 松田善正,小野真也,半田晋也,拝師智之,巨瀬勝美「超並列 MR マイクロスコープを用いたヒト胚子三次元撮像(1)・システム開発と撮像実験・」平成 15 年 11 月,第42 回 NMR 討論会, 大阪

3テスラMR I 装置を用いた音楽脳機能画像の撮像と音楽賦活システムの開発 (国立循環器病センター研究所・放射線医学部¹,(㈱ビーエフ研究所²) ○飯田秀博¹⁾、林拓也¹⁾、豊雅子¹⁾、栗栖麗¹⁾、染谷芳明²⁾、 松井美詠子²⁾、澤田徹²⁾

Development of a music stimulation system for functional MRI during music perception with 3 Tesla MRI.

Hidehiro Iida¹, Takuya Hayashi¹, Masako Toyo¹, Rei Kurisu¹, Yoshiaki Someya², Emiko Matsui², Tohru Sawada².

¹Department of Investigative Radiology, Research institute, National Cardiovascular Center

²BF Research Institute, Inc.

A system that generates music stimuli and records performance of the perception has been developed, which can be of use under functional MRI study with 3T MRI scanner. This system consists of a Macintosh computer based MIDI-controlling program (Digital Performer 3), an audio system including a 3-Tesla guaranteed head phone set, and a switch recording unit including non-metal light-guide-operated switches. This system has been confirmed not to generate artifacts in the EPI images during the scan, and could be used for evaluating a performance of the music perception such as the reaction time and accuracy of the perception.

背景

音楽の認知、特に時間情報の認知の脳内機能局在に関してはまだ充分解明がされていない。 脳損傷患者を対象とした研究では、左半球の関与を示唆するものが多く、例えば Mavlov ら (1980)は、左頭頂後部領域損傷例において感覚モダリティーに関係なく、リズムパターンの弁 別及び再生の障害を認めた。また、Peretz ら(1985)は、左半球損傷例にリズム知覚の障害を認 めた。しかし、脳損傷患者を対象とする研究では、右半球の関与を示唆する報告もあり、いず れも対象数が少数例であること、また損傷部位が広範囲であること、さらに利き手の個人差な どの理由により一般化が困難であった。一方 Platel et al.6 (1997)は、functional PET を 用いたピアノ音列の異同検出の賦活パラダイムにおいて、時間刺激の符号化および検索処理に は、感覚連合野および前頭葉腹外側部、特に左ブローカー野前部と島の関与を示唆している。 また音色の認知には右下前頭回、右中心前回、左楔前部、左中後頭回の関与を、音列の親和性 の認知には左下前頭回、左上側頭回の関与を、さらに音程の認知には左楔部と左楔前部のの関与 を示唆している。しかし、ファンク所なる PET の時間解像度は、音楽フレーズの知覚を検討す るには不十分であり、さらに彼らの報告をはじめとする先行研究では、7つの音の信号列を一 定音量で発生させたモールス信号的な刺激に限られる故に、通常の「音楽」に対する認知機能 とは異なる可能性が考えられる。

定音量で発生させたモールス信号的な刺激に限られる故に、通常の「音楽」に対する認知機能 とは異なる可能性が考えられる。 ファンクショナル MRI (fMRI)は、PET よりも高い時間分解能および空間解像度を有し、 この点からは音楽知覚認知の研究に適していると考えられる。音楽性の高いフレーズを刺激パ ラダイムと利用することで、その機能プロセスの解明が期待される。しかし MRI の発生するノ イズと、高磁場中の検査故に、音楽認知に関わる高次機能の研究に応用するには課題が残る。 また、音刺激を実現するための音響装置、および課題遂行をモニタするための付随装置に磁性 体を使うことはできない。本研究では、高いレベルの音楽的な音列(フレーズ)に対する知覚 認知時の脳内血流分布の変化を観察できるような、刺激システムを開発した。本装置は、高磁 場中で良好な音質で音楽フレーズ刺激を提供するだけでなく、被験者が課題実施した際のパフ ォーマンス(正答率および反応時間)をモニターするためのスイッチ動作を記録する機能をも たせることとした。音楽構成要素(リズム、ピッチ、音色、音量)の認知機構と機能部位を、 fMRI により特定する実験に応用し、本システムの妥当性を評価する。

方法

~ 本システムでは、音楽フレーズを Macintosh (iBook) 上の MIDI シーケンサーブログラム (Digital Performer3) にて記録し再生させる。この時、音色はあらかじめサンプルした音色 をディスク上に記録させておき、これをシーケンサープログラムがフレーズとして再生させる。 また課題説明のためのナレーションもあらかじめデジタルデータ(MP3 フォーマット)として

キーワード

ファンクショナル MRI、音楽脳機能、MIDI

いいだひでひろ、はやしたくや、とよまさこ、くりすれい、そめやよしあき、まついえみこ、 さわだとおる サンプルしておき、シーケンサプログラムによって再生する。再生させた音(フレーズおよび ナレーション)は USB インターフェース (Edirol Audio CaptureUA-3) を介してオーディオミ キサーに出力し、アンプに接続する。超高磁場対応ヘッドフォンセット(日立アドバンストシ ステムズ株式会社 MRI 用非磁性ヘッドホーン)はアンプに接続する。

被験者の課題遂行をモニターするために、被験者のスイッチ操作システムを構築した。非 接触型光ファーバー装置(キーエンス社FS-V21、FS-V22、FU-35Z、MS -H50)を利用し、スイッチを制作した。この出力(On Off)を MIDI 信号に変換し、この 動作を上記 Macintosh 上の MIDI シーケンサープログラムでモニター記録した。後の解析によ る課題の達成率および反応時間のモニターを可能にした

本システムの妥当性を確認するために、10名の健常者(職業演奏家8名(35-45歳、男 性2名、女性6名)および非音楽家2名(40-47歳男性))に本システムを利用してfMRI検 査を実施した。使用したMRI装置はGE社製Signa3Tである。 刺激フレーズには、Platelら(1997)の選択的注意の方法を採用し、ペアーとなるフレーズ

刺激フレーズには、Platel ら(1997)の選択的注意の方法を採用し、ペアーとなるフレーズ の異同検出を行った。先行研究よりも良好な音質と音楽性を高めたフレーズの作製に努め、1 フレーズの音数は11±1音、音域は15度まで広げ、音価も変化(ベロシティー値:45~120) させた。それぞれのフレーズペアーは、リズム、ピッチ、音色、音量に関する変化を複数含み、 それぞれの要素に注意を向けながら異同判断し、手元のスイッチを押す課題とした。なお、こ のフレーズ課題は、別の被験者群(42名)に対する事前調査より、正答率80%になるように調 整した。さらに、MRIのノイズを軽減する目的で、すべてのフレーズに対して違和感を感じな いような同一の和音(GBbCEbF)を、実験を通じて提示した。1セッションのMRI検 査中に96ペアのフレーズを拝聴し、この間に注意課題をそれぞれ2回、疑似乱数化した順検 で提示し、これを3セッション繰り返した。MRI検査の事前および事後にアンケート法によ る課題の方略の調査の際に、背景に聞こえるMRIノイズが課題に与えた影響、提供したフレー ズ自身の音楽性(音質および全体的な印象)を調査した。

結果

10 例の全例において、T1—MRI 画像および EPI 画像に、ヘッドフォンおよびスイッチユニ ット由来のアーチファクトは認めなかった。全例 fMRI 画像収集と同時にスイッチ課題の記録 (正答率および反応時間)が実施できた。また全例が課題に集中できたと答え、10 例中の 9 例において、本システムにおいて MRI のノイズは気にならないとのアンケート結果であった。 特に音色および音の強弱については、詳細な変化の認知が可能であった。MRI 由来のノイズが 気になった1例は、顕著な絶対音感を有する音楽家であり、BPI 傾斜磁場の発生するノイズが 西洋音階に存在しない音階であったためだと答えた。課題に利用した音楽フレーズは、全例が 高い音楽性を有するものであることを認めた(音楽家の場合自身の即興演奏に利用したいフレ ーズであるなど)。

結論

本システムを使うことで、超高磁場 MRI 装置を使った音楽的フレーズ拝聴時の脳機能神経 性研究が可能になったと考えられる。

Fig. 1. The music stimulation- and perception-monitoring system for 3T fMRI experiment. The system consists of a mackintosh computer installed with MIDI sequencer program (Digital Performer-3), headphone audio-unit, and light-guide operated switching device.

¹³C 固体 NMR における XiX パルス系列を用いた

Recoupling の試み

(バリアンテクノロジーズジャパン¹、東京農工大²) 〇芦田淳¹、中澤靖元²、亀田恒徳²、朝倉哲郎²

An Application of the XiX Scheme for ${}^{13}C$ Solid State NMR II : ${}^{1}H/{}^{13}C$ Heteronuclear Recoupling.

<u>Jun Ashida¹</u>, Yasumoto Nakazawa², Tsunenori Kameda², and Tetsuo Asakura² Varian Technologies Japan Ltd.¹, Tokyo University of Agriculture and Technology²

For ¹³C solid state NMR, it is very important how to handle hetero- and homonuclear dipolar interaction. Many ¹H decoupling pulse techniques have been developed to decrease ¹H-¹³C heteronuclear dipolar interaction in order to obtain high resolution ¹³C spectra. On the other hand, also a lot of recoupling pulses have been developed in order to obtain structural information. XiX (X inverse-X) decoupling provided by Detken et al. is one of the most robust decoupling scheme. The interesting character of XiX scheme is that we can select decouple/recouple by changing the pulse length tp. In this work, we present some recoupling feature of XiX scheme by selection of tp = tr (tr : rotor spinning period) condition.

【緒言】

固体 NMR においては、異種核間および同種核間の双極子相互作用をどのように取り扱うかということは重要な問題である。特に¹³C 固体 NMR においては、高分解能スペクトルを得るためには邪魔者扱いされる一方で、核間距離を求めたりする場合には重宝がられている。

昨年 Detken らは新しい¹H decoupling scheme として XiX パルス(X inverse-X) を提唱している[1,2]。昨年の本討論会で、筆者も XiX decoupling と試料の運動 性との関連について考察を行った[3]。今年は、XiX パルスを decoupling だけで はなく recoupling においても有用であることを示す。

【実験】

NMR 測定は、Varian ^{UNITY}INOVA 400MHz および、Varian/Chemagnetics Infinity 400MHz で行った。プローブは、主に 3.2mm T3 HX MAS プローブを用いた。試料は[1,2-¹³C]グリシンを用いた。

XiX パルス、 固体 NMR、DARR

あしだ じゅん、なかざわ やすもと、かめだ つねのり、あさくら てつお

【結果と考察】

XiX scheme では、パルス幅 $tp=n \times 1/2 \times tr$ (tr は試料回転周期、 n は整数) の条件では CW と比較して ¹H-¹³C 間の recoupling が起き、その間の条件の tp で は decoupling が起こることがわかっている(昨年の本討論会要旨集 P125)。

竹腰らは、¹H CW decouplingを用いた¹³C-¹³C recoupling手法としてDARR (Dipolar-Assisted Rotational Resonance)を発表している[4,5]。そこで、DARRの 混合時間に照射するパルスにCWとXiX(tp=trの条件)を用いた場合での比較を 行った。

図1に[1,2-¹³C]グリシンを用いた 1D-DARR の測定結果を示す。この測 定では、C α のシグナルを選択的に180 度反転させた後で混合時間をおいて 磁化移動が起こる過程を観測してい る。Rotary Resonance 条件(試料回転 速度=¹H RF 強度=22kHz)では、XiX と CW ではほぼ同程度の磁化移動が 起こっていることがわかった。

図2に、CW およびXiX パルスを 用いた場合のスピン拡散の大きさの ¹H RF 強度依存性を示す。完全な Rotary Resonance 条件下(試料回転速 度=¹H RF 強度=22kHz)ではXiX も CW もほとんど差がないが、Rotary Resonance 条件から大きくずれた場合 には、XiX を用いた場合の方がより recoupling の効果があることがわかっ た。特に照射する ¹H RF 強度が低いと きに XiX の方が若干ではあるが磁 化移動効率が高いということは、プ ローブを放電から守るためには重 要なことである。

このように、XiX パルスはパル ス幅 tp を変えることで、decoupling

Fig.1 Dependence of the normalized difference magnetization, $\langle M_{C=0}-M_{C\alpha} \rangle (tmix)/\langle M_{C=0}-M_{C\alpha} \rangle (0)$ for [1,2-¹³C]glycine at 22kHz sample spinning speed on the mixing time. 1H RF-field strength for CW and XiX schems is 22kHz. tp=tr was used for XiX.

Fig.2 Dependence of the normalized difference magnetization, for [1,2-¹³C]glycine at 22kHz sample spinning speed on the ¹H rf-field intensity. The rigid line shows XiX scheme, and the dotted line shows CW scheme during mixing time.

にも recoupling にも利用できる便利なパルスであることが示された。

【参考文献】

- 1) A. Detken, E. H. Hardy, M. Ernst, and B. H. Meier, Chem. Phys. Lett., 356, 298 (2002)
- 2) M. Ernst, J. Magn. Reson., 162, 1 (2003)
- 3) J. Ashida and T. Asakura, J. Magn. Reson., in press
- 4) K. Takegoshi, S. Nakamura, and T. Terao, Chem. Phys. Lett., 344, 631 (2001)
- 5) K. Takegoshi, S. Nakamura, and T. Terao, J. Chem. Phys., 118, 2325 (2003)

固体高分解能¹³C-NMR 観測による¹H 間距離の定量的解析 及び局所構造解析への応用

(阪大蛋白研⁻¹、都立大院理²) 〇高橋大樹⁻¹、藤原敏道⁻¹、甲斐荘正恒⁻²、阿久津秀雄⁻¹

¹H-¹H distance measurements through high-resolution solid-state ¹⁸C-NMR and its application to the local structure analysis

Hiroki Takahashi¹, Toshimichi Fujiwara¹, Masatsune Kainosho² and Hideo Akutsu¹

¹Institute for Protein Research, Osaka University ²Graduate School of Science, Tokyo Metropolitan University

The measurement of ${}^{1}H{-}{}^{1}H$ distances is a useful method to characterize molecular structures. A ${}^{13}C$ -detected solid-state NMR experiment for quantitatively determining the ${}^{1}H{-}{}^{1}H$ distances under MAS conditions is demonstrated. The mechanism of the magnetization transfer between two protons in a ${}^{1}H{-}{}^{13}C{-}{}^{13}C{-}{}^{1}H$ moiety of an organic molecule is revealed based on the average Hamiltonian theory. The ${}^{13}C{-}{}^{13}C{-}{}^{1}H$ dipolar interactions reintroduce ${}^{1}H{-}{}^{1}H$ dipolar interactions during the ${}^{1}H{-}{}^{1}H$ magnetization transfer period. The pulse sequence for this experiment was applied to uniformly [${}^{13}C$, ${}^{15}N$]-labeled valine, stereo-array isotope labeled (SAILed) valine and adenosine. The obtained distances of 2.5 Å for H ${}^{\alpha}$ -H ${}^{\beta}$ and 3.0 Å for H ${}^{\alpha}$ -H ${}^{\gamma 1}$ allowed the distinction between conformers of valine. Increase of the signal intensity was seen for SAILed valine. C3'-endo and *anti* conformation of adenosine was determined by the distance constraints. This method can be extended to 2D NMR for protein structures determination.

"序"

溶液状態では NOESY 法で得られるような¹H 間距離情報は構造解析をする上で重要である。 隣接する¹³C 間距離情報は立体構造情報を持たないのに対し、¹H 間距離では二面角のような 構造情報を与える。固体 NMR においては双極子相互作用が強く複雑であるため、近接した ¹H 間の距離を決めるのは難しく、現在はドメイン間のような長い距離の測定がスピン拡散法 を用いて行われている¹。本研究では¹³C 標識した固体について 2D-NOESY 法と同様な¹H 間 距離情報を得る方法を開発した。高いスペクトル分解能を得るため¹H 間の磁化移動は MAS 条件下で¹³C を通じて観測し、そこで働く¹H⁻¹H 双極子相互作用を理論的に検討した。昨年 の発表ではその理論に基づき¹³C 均一標識バリンの H^α-H^β間距離を解析した。今回はさらに 長い距離の測定として H^α-H¹間距離解析を行い、応用として¹³C 均一標識アデノシンの立体 配座を決定した。また、重水素化を選択的に行った SAIL (stereo-array isotope labeled)バリンに ついても磁化移動効率の向上を検討した。

″理論"

高速 MAS 条件下で 4 スピン系 $I^1 - S^1 - S^2 - I^2$ に働く双極子相互作用をゼロ次の平均ハミルトニアンで近似すると下記のように表される。

キーワード: 固体 NMR、MAS、¹H 間距離測定、¹H スピン拡散、¹³C 標識アミノ酸

たかはしひろき、 ふじわらとしみち、 かいのしょうまさつね、 あくつひでお

$$\overline{\mathcal{H}}_{\text{DD}}^{(0)} = \frac{1}{\sqrt{6\tau_{\text{R}}}} \int_{0}^{\tau_{\text{R}}} A_{20,I_{1}I_{2}}^{\text{LAB}}(t) \left[I_{1z} I_{2z} - \frac{1}{2} \left\{ I_{12,x}^{\text{ZQ}} \cos \Phi_{12}(t) + I_{12,y}^{\text{ZQ}} \sin \Phi_{12}(t) \right\} \right] dt \tag{1}$$

$$\mathbb{Z}\mathbb{Z}\mathbb{C}, \quad \Phi_{12}(t) = \int_{0}^{t} 2\sqrt{\frac{2}{3}} \left\{ A_{20,I_{1}S_{1}}^{\text{LAB}}(t') S_{1z} - A_{20,I_{2}S_{2}}^{\text{LAB}}(t') S_{2z} \right\} dt'$$
(2)

 $I は {}^{1}H を S は {}^{13}C を表し、<math>A_{20,I_{12}}^{LAB}$ は核間ベクトルの配向に依存した実験室系の相互作用テン ソル要素である。また、 τ_{R} は試料回転の周期を、 $I_{12,x}^{2Q}$ はゼロ量子スピン演算子のx成分であ る。(1)式より、 $A_{20,I_{12}}^{LAB}(t) と \Phi_{12}(t)$ の時間依存性が干渉するため、 ${}^{13}C-{}^{1}H$ 双極子相互作用の 働きにより、高速 MAS 条件下においても ${}^{1}H-{}^{1}H$ 双極子相互作用は消失しないことを導ける。

 ${}^{1}H^{-1}H$ 磁化移動に対する ${}^{13}C^{-1}H$ 双極子相互作用および ${}^{1}H$ 間化学シフト差の効果を図 1 に示 す。 ${}^{13}C$ をデカップルし ${}^{13}C^{-1}H$ 双極子相互作用を取り除くと短い混合時間の間ではほとんど 磁化移動が起こらない。これは昨年の発表で実験でも確かめられた。したがって、 ${}^{1}H^{-1}H$ 間 磁化移動の計算においては ${}^{1}H^{-1}H$ の2スピン系だけではなく、 ${}^{13}C$ も考慮した多スピン系を考 える必要がある。

Figure 1. Magnetization transfer between two protons calculated on four-spin system ${}^{1}H^{-13}C^{-13}C^{-1}H$. The longitudinal axis is normalized by the initial magnetization value. Circles and crosses represent the calculations with decoupling and without decoupling, respectively. Solid and dotted lines indicate the chemical shift differences of 0 kHz and 1.3 kHz, respectively.

Figure 2. Pulse sequence used for the 1D ${}^{1}H{}^{-1}H$ magnetization transfer experiment with ${}^{13}C$ detection under MAS. The initial ${}^{13}C^{\alpha}$ magnetization is selectively prepared by the Gaussian pulse. The thick and thin dark pulses represent 90° and 54.7° pulses, respectively. TPPM: two pulse phase modulation decoupling, LG-CP: Lee-Goldburg cross polarization.

"方法"

1. 実験

今回用いた1次元のパルス系列を図2に示す。¹³C 磁化を CP で増幅し、その後の Gaussian パルスによって¹³C^oのみを選択励起させる。2つ目の CP では¹³C から¹H へ磁化移動させ¹H コヒーレンスを作り出す。このとき、¹H間で混合が起こらないように¹Hには Lee-Goldburg(LG) スピンロックを掛ける²。LG における有効磁場は静磁場からマジック角だけ傾いているため、 54.7^o パルスを混合期の前後に照射している。¹H を混合させたあと、LG-CP によって¹³C に 磁化が移される。最後に TPPM を用いて¹H をデカップリングさせながら¹³C を観測する。試 料として 20%塩酸中で結晶化させた u-[¹³C, ¹⁵N]-L-Val HCl、u-[¹³C, ¹⁵N]-SAILed L-Val HCl と u-[¹³C, ¹⁵N]-adenosine を用いた。

2. シミュレーション

¹H および ¹³C の双極子相互作用を含む時間依存ハミルトニアンを数値積分することで、多 スピン系における時間発展を計算した。アミノ基とメチル基はそれぞれ3つの ¹H を有するが、 回転の重心に仮想的な ¹H を1つ置き、代表させた。

"結果"

バリンの H^a→H^β、H^a→H¹間磁化移動の実験およびシミュレーション結果を図3に示す。 短い接触時間のLG-CPにおいては双極子結合の強さの違いから、CHでは80µs、CH₃では160µs の接触時間が効率がよい。そのため、C^a→H^aの磁化移動過程である1回目のLG-CPの接触時 間を80µs、H^{βh}→C^{βh}である2回目のLG-CPの接触時間を160µsに設定した。実験における磁 化移動はゴーシュ配座(H^a-H^β間距離:2.5Å、H^a-H¹¹間距離:3.0Å)に対する数値計算で得 られた磁化移動の結果と短い混合時間では一致している。ここで、H^βへの磁化移動計算には H^N-C^a(-H^a)-C^β(-H^β)(-H¹¹)(-H¹²)のスピン系を、H¹への計算にはC^a(-H^a)-C^β(-H^β)-C¹-H¹₃のスピ ン系を考えた。重水素化されていない試料では¹H-¹H 双極子相互作用が複雑なネットワーク を形成している。また、¹³C フルラベルの系では理論で見たように¹³C-¹H 双極子相互作用が ¹H-¹H 間磁化移動に大きく影響を及ぼしている。そのため、シミュレーションにはこのよう な多スピン系を考慮する必要がある。

Figure 3. The mixing time dependence of the $H^{\alpha}-H^{\beta}$ (left) and $H^{\alpha}-H^{\gamma}$ (right) magnetization transfer obtained by experiments (circles) and simulations (lines). Lines represent the magnetization transfer for cis, gauche and trans conformations (left) and $H^{\alpha}-H^{\gamma}$ at the distance of 3.0 and 4.1 Å (right).

Figure 4. 2D ¹³C-NMR spectra of fully ¹³C labeled value (left) and SAILed value (right) obtained with the magnetization transfer experiments. The sample spinning frequency and the proton mixing time are 12.5 kHz and 160 μ s, respectively. The first LG-CP contact time was adjusted to 80 μ s, the optimal value for α position. The second LG-CP contact times were switched to 160 μ s for value and 240 μ s for SAILed value to enlarge the signals of C⁴.

しかしながら、多スピン系の磁化移動ではその機構が複雑となり、スペクトルの分解能も 悪くなる。したがって、¹H 密度が高いところでは重水素化を行い、スピン系を単純にするこ とが望ましい。我々は重水素化された試料として SAILed valine を用いた。SAILed valine はバ リンの2つのメチル基が ¹³C¹¹HD₂と ¹³C¹²D₃によって置き換えられている。図2のパルス系列 を適用した valine と SAILed valine のスペクトルを図4に示す。SAILed valine ではより単純な スペクトルとなっており、対角・交差ピーク強度とも大きくなっている。

次に、この方法の応用として¹³C 均一標識されたアデノシンの立体配座の決定を行った。X 線回折の研究からリボース環は C2'-endo あるいは C3'-endo のコンフォメーションが知られて いる。それぞれのコンフォメーションは H1'-H2'と H3'-H4'の距離で決定できる。また、リボ ースに対する塩基の配向は H1'-H8 と H5'-H8 の距離で決定できる。図 2 のパルス系列におい て Gaussian パルスの代わりに、その部分を t₁展開期にしたパルス系列を用いて 2D-NMR を測 定したのが図 5 である。クロスピーク強度から H1'-H2'間距離は H3'-H4'間距離より短いため、 コンフォメーションは C3'-endo であると決定できた。また、H5'-H8 のクロスピークが観測 されて H1'-H8 のクロスピークが観測されていないことから、アンチ型の立体配座を取って いることがわかった。これらの結果は中性子線回折で得られている結果と一致している。ま た、H1'-H2'、H3'-H4'間距離はそれぞれ 2.7、3.0Åであり、この 2D-NMR 実験ではこれらの 距離の違いが区別された。

¹³C-NMR Figure 5. 2D spectrum of fully ¹³C-labeled adenosine. The sample spinning frequency and the proton mixing time are 12.5 kHz and 80 µs, respectively. LG-CP contact times were adjusted to 80 us. Chemical relative are to hexamethylbenzene at 17.17 ppm. The chemical shifts of the labeled adenosine are as follows: C1'(92.6), C2'(75.4), C4'(85.1), C3'(71.5), C5'(63.2), C2(154.8) and C8(138.1)³.

"考察"

今回の実験ではバリンの H^aから H^b、Hⁱ¹の距離それぞれ 2.5Å、3.0Åを定量的に求めるこ とができた。これは隣接 ¹³C も考慮した適切なスピン系を考えたからである。図 4 では H^a-Hⁱ²(4.1Å)のクロスピークも観測されており、4.0-5.0Åといった長距離の相関も測定でき る。長距離の情報を定量的に解析するには ¹H 密度を低くする必要があるが、そのためには SAIL アミノ酸などのような立体選択的に重水素化された試料が有効となってくる。また、ア デノシンの測定で示されたように、2D NMR 実験を行うことで様々な情報を同時に測定する ことができ、ペプチドやたんぱく質といった大きく複雑な分子の距離測定に適用することが できる。

参考文献

- K. Schmidt-Rohr and H. W. Spiess, "Multidimensional Solid-State NMR and Polymers," Academic Press, New York (1994)
- 2. B.-J van Rossum, et al, J. Am. Chem. Soc. 122, 3465-3472 (2000)

3. T. Fujiwara, et al, J. Am. Chem. Soc. 117, 11351-11352 (1995)

 固体 NMR による遺伝子相同組換えタンパク質 RecA の DNA 認識
 ダイナミクスの研究
 (理化学研究所 ゲノム科学総合研究センター¹、横浜市立大学大学院
 総合理学研究科²、理化学研究所 遺伝生化学³)
 ○畑中 稔¹、本多賢吉²、伊藤 隆^{2,3}、柴田武彦^{2,3}、山崎俊夫¹

Dynamics studies on DNA recognition of homologous genetic recombination protein RecA by solid-state NMR

(Genomic Sciences Center¹; Graduate School of Integrated Science, Yokohama City University²; Cellular and Molecular Biology Laboratory, RIKEN³)

OMinoru Hatanaka¹, Masayoshi Honda², Yutaka Ito^{2,3}, Takehiko Shibata^{2,3}, Toshio Yamazaki¹

RecA protein is essential to homologous genetic recombination and DNA repair. The molecular structure of RecA has been determined by X-ray crystallography in 1992. However the structure of two loop regions of the protein have not yet determined, which are thought to be DNA binding sites. In our research we prepared RecA(F203W) mutant protein to investigate interaction between the loop regions and DNA using solid-state NMR. Slight change of peak position in ¹⁵N-CPMAS spectra was observed and we are now checking whether the peak shifted is derived from the Trp203 or not. ³¹P-CPMAS measurements showed a broad envelope featuring several peaks upon binding of RecA to DNA while there is no peak in hydrated free DNA. This may support that DNA molecule is immobilized by RecA and the variation of chemical shift occurs due to the specific binding of the DNA.

【序】遺伝子相同組換えタンパク質 RecA とその類似タンパク質は真正細菌から真核生物ま で普遍に存在し、DNA の組換え、修復に重要である。大腸菌由来の RecA の構造は 1992 年 に Story らによるX線結晶構造解析により決定されたが、最初に結合する single-strand DNA (ssDNA)の結合領域と考えられている 2 本のループ(L1, L2 ループ)は低電子密度のために 現在も明かになっていない。その原因としてはループの運動性が考えられている。これまで にループが DNA の結合領域であることを示す実験が数多く行われてきたが、原子レベルで RecA-DNA の結合様式およびそのダイナミクスを議論するには至っていない。溶液 NMR は 原子レベルでそれらの知見を与えることができるが、RecA が比較的低濃度でフィラメントを 形成するためその力を発揮することができない。そこで本研究では、フィラメントのような タンパク質複合体においても実験が可能な固体 NMR を用いることで、RecA と DNA の結合 状態、さらにはダイナミクスを明らかにすることを試みた。

【実験】本研究では特に DNA と RecA の L2 ループの結合を調べるため L2 ループの 203 番 目のフェニルアラニンをトリプトファンで部位特異的アミノ酸置換した RecA(F203W)を用い た。大腸菌由来の野生型 RecA(WT)は Trp 残基を 2 個しか持たず、それらはループ領域に存 在しないので、RecA(F203W)と RecA(WT)の NMR スペクトルを比較することで L2 ループ の構造と運動を議論することができる。¹⁵N-CPMASの測定のためにトリプトファンの indole-窒素とアミド窒素を ¹⁵N で同位体標識した試料、[¹⁵N₂]Trp-RecA(WT)、[¹⁵N₂]Trp-RecA(F203W)を調製した。また ssDNA として RecA に対する親和性が高い Poly(dT)を用い た。NMR 測定試料は約 25mg の凍結乾燥した RecA を 10 μ L のグリセロールを加えた 20mM Tris-HCl 緩衝溶液で水和した後 4 ϕ のローターに封入した。¹⁵N-CPMAS、³¹P-CPMAS、³¹P-1pulse スペクトルの測定は Chemagnetics CMX Infinity 400 を用いて行った。

キーワード: 固体NMR、RecA、DNA結合タンパク質、¹⁵N-CPMAS、Tryptophan はたなか みのる、ほんだ まさよし、いとう ゆたか、しばた たけひこ、やまざき としお

【結果 & 考察】まず最初に、RecA(F203W)と Poly(dT)の結合前後の ¹⁵N-CPMAS スペ クトルを測定した。Malkov らの Photocross-link の実験からは Phe203 と ssDNA が近接 していることが示されており、Trp203 と Poly(dT)の相互作用によるスペクトル変化が期待 された。その結果、¹⁵N-CPMAS スペクトル上に indole-¹⁵N のケミカルシフト領域に小さ な変化が観測された。このピークが Trp203 に由来するものであるかどうかは、現在更なる 実験を行い検証している。興味深い結果としては、RecA と ssDNA の相互作用を ³¹P-CPMAS から検出することができた。Poly(dT)が free の状態では図 1-a のようにシャープな一本の ピークが検出されるだけであるが、RecA に結合することで図 1-b のように微細構造を持っ たブロードなスペクトルが現れた。仮に DNA が RecA にランダムに結合するのであれば、 微細構造を持たないブロードなピークとして検出されるはずであるが、微細構造が現れたこ とは Poly(dT)が RecA と特異的に結合していることを示唆していると考えられる。また、 Poly(dT)を RecA と同様の緩衝溶液で水和したところ ³¹P-CPMAS ではシグナルが観測され なかった。このことは水和状態に置かれた free な Poly(dT)は早い運動を行っているために ¹H から ³¹P への Cross Polarization が十分行われないために生じたと考えられる。これら のことから RecA の結合は Poly(dT)の運動を制限していることが示されたことになる。ま た、Cross Polarization なしで観測核³¹P を直接 π/2 パルスで励起したスペクトルは早い運 動を行う部位のシグナルを検出することで知られているが、この測定からは水和状態での Poly(dT)のシグナルを検出することことができた(図 1-c)。同様の測定を RecA-Poly(dT) 複合体について行う(図 1-d)と、弱いながらも特異的な結合を示す微細構造を持つスペク トルがここでも得られた。DNA が RecA と結合することにより DNA の自由度が抑えられ ることは Selmane らの RecA(F203W)を用いた蛍光測定で、結合により Trp203 の蛍光強 度が増加することや、蛍光ラベルされた DNA 塩基からの蛍光 anisotropy が増加すること からも示されており、今回の結果はそれらと一致する。また、微細構造を示すスペクトルは 更にそれらの結合が特異的なものであることを示唆し、具体的な特異性を明かにすることは 今後の課題である。

Fig. 1. (a) ³¹P-CPMAS spectrum of dried Poly(dT) and (b) of RecA-Poly(dT) hydrated by 20mM Tris-HCl buffer. ³¹P-One pulse (c) spectrum of hydrated Poly(dT) and (d) of RecA-Poly(dT). Both (c) and (d) samples were hydrated with 20mM Tris-HCl buffer. All experiments were performed with 10kHz of rotor frequency

【参考文献】

- R. M. Story et al., Nature 355, 318-325 (1992).
- V. A. Malkov et al., J. Biol. Chem. 270, 30230-30233 (1995).
- T. Selmane et al., FEBS Letters 446, 30-34 (1999).

¹³CのT₁およびT₁,に反映される凍結乾燥製剤の分子運動の実体は何か (国立衛研) 〇吉岡澄江、阿曽幸男、小嶋茂雄

The origin of molecular motion of freeze dried formulations as determined by ${}^{13}C T_1$ and $T_{1_{\rho}}$ (National Institute of Health Sciences) S. Yoshioka, Y. Aso, S. Kojima

The correlation time τ_c of main chain carbon in lyophilized dextran, isomalto-triose, poly(vinylpyrrolidone), and poly(hydroxyethyl asparagine) was calculated from observed values of $T_{1\rho}$, and compared with the structural relaxation time and dielectric relaxation time. The temperature dependence of the calculated τ_c was similar to that of the dielectric relaxation time related to a Maxell-Wagner like process. Furthermore, $T_{1\rho}$ values calculated from the spectral density of main chain carbon (that was calculated based on dielectric relaxation spectra) were coincident with the experimentally observed values. These findings suggest that changes in molecular motion on the time scale of 100s order associated with glass transition are reflected on changes in $T_{1\rho}$, which is known to reflect molecular motions of 10kHz order most effectively.

【目的】凍結乾燥製剤などの非晶質状態の成分を含有する製剤は、ガラス転移温度(T_g)付近に おいて分子運動性が著しく変化し、製剤の品質の安定性に大きな影響を与えることが知られ ている。その分子運動性の変化は、¹H や ¹³C の T₁および T_{1p}に反映され、それらを指標とし て評価できることを前回までに報告した。製剤の品質変化を引き起こす分子運動は、T_g付近 で 100 秒オーダーの周期の遅い運動であり、MHz あるいは 10kHz オーダーの分子運動を効率 的に測定する T₁あるいは T_{1p}には反映されにくい運動であると考えられるにも係らず、種々 の高分子添加剤を含有する凍結乾燥製剤について、T_g付近における運動性の変化が T₁あるい は T_{1p}によって観察されている。今回、T₁および T_{1p}の変化が、凍結乾燥製剤のどのような分 子運動の変化を反映しているのか、分子運動の実体を明らかにすることを目的として、凍結 乾燥したデキストラン、イソマルトトリオース(IMT)、ポリビニルピロリドン(PVP)およびポ リヒドロキシエチルアスパラギン酸(PHEA)について、主鎖の ¹³C の T_{1p}から計算される相関 時間τ_cを比熱に基づく構造緩和時間および誘電緩和時間と比較し、T_{1p}に反映される分子運動 の実体を考察した。

【実験】デキストラン(40k)、IMT 、PVP(K30)および PHEA の溶液(2.5%w/w)を凍結乾燥 し、水分含量を調節後、デキストラン、IMT および PVP のメチン炭素、および PHEA のα炭 素の T_{1p}を固体高分解能 ¹³C-NMR (Varian)を用いて測定した(5~65℃、57 ガウスのスピンロ ッキング磁場)。さらに、-20~200℃の温度領域において、高分子の誘電緩和時間を 0.01~ 100,000 Hz で測定した(TA)。

ガラス転移温度、凍結乾燥製剤、分子運動、緩和時間

よしおかすみえ、あそゆきお、こじましげお
【結果および考察】デキストラン、IMT 、PVP および PHEA のいずれの凍結乾燥品において も、主鎖の炭素の T₁,は T_gより約 20℃低い温度付近から温度の上昇とともに減少しはじめ、 T_g付近では著しい減少を示した。デキストランおよび IMT の凍結乾燥品について、観察され た T₁の極小値の値を用いて相関時間 τ_c を計算した結果、誘電緩和によって測定された

Maxell-Wagner 様プロセスの平均緩和 時間とほぼ同じオーダーの値を示した。 そこでさらに IMT について、 T_{1p} が Maxell-Wagner 様プロセスと同様のス ケールの運動を反映していると仮定し、 誘電緩和スペクトルに基づいて ¹³Cの スペクトル密度を計算した。すなわち、 Fig.1 に示すように、誘電緩和スペクト ルを(1)式にしたがって3つのτを仮定 して解析し、得られた3つのτとそれぞ れの比率 f を用いて(2)式に従ってスペ クトル密度 J(ω)を計算した。

T_g (120℃)を挟んだ温度領域における J(ω)の計算値を Fig.2 に示す。T_g (120℃) では 10kHz における J(ω)は 10⁻⁷オーダー の値を示した。

$$\varepsilon'' = \sum_{i=1}^{3} \frac{\Delta \varepsilon_i \omega \tau_i}{1 + \omega^2 {\tau_i}^2}$$
(1)
$$J(\omega) = \sum_{i=1}^{3} \frac{f_i \tau_i}{1 + 4\omega^2 {\tau_i}^2}$$
(2)

さらに J(ω)の計算値および T_{1p}の極小 値を用いて (3)式に従って T_{1p}を計算し た結果、実測値に近い値が得られた。 $\frac{1}{T_{1p}} = AJ(\omega) = \frac{1+4\omega^2 \tau_c^2}{T_{1p(min)}\tau_c} J(\omega)$ (3) ここで、 $\omega^2 \tau_c^2 = 0.5$ と仮定した。

ここで、 $\omega^{-}\tau_{c}^{-}=0.5$ と仮定した。

以上の結果から、T₁に反映された分

Fig.1. Dielectric relaxation spectrum of lyophilized IMT at 120°C

子運動は、Maxell-Wagner 様プロセスと同様のスケールの運動であると考えられた。さらに、 Maxell-Wagner 様プロセスの平均誘電緩和時間は、 T_g より約 20°C低い温度付近から温度の上 昇にともなう変化が大きくなりはじめ、 T_g 付近で著しく減少したが、これは主鎖の炭素の $T_{1\rho}$ から計算した τ_c の温度依存性とほぼ一致している。この結果からも、 $T_{1\rho}$ は 10kHz オーダーの 分子運動を効率的に測定するにも係らず、 T_g 付近で大きな変化を示す Maxell-Wagner 様プロ セスと同様の運動を反映することが裏付けられた。したがって、 $T_{1\rho}$ を指標としても、品質変 化に関連した分子運動を観察できることが明らかになった。

¹³C 核磁気緩和によるポリグルタミン誘導体のセグメント運動の解析 (北大院工) 〇 内野新一、平沖敏文、堤耀廣

¹³C NMR Relaxation Study of Segmental Motion of Poly Gultamine Derivative in Aqueous Solution

S. Uchino, T. Hiraoki and A. Tsutsumi

Department of Applied Physics, Graduate School of Engineering, Hokkaido University

For the backbone $C\alpha$ of poly (N^{ϵ}-hydroxyethyl L-glutamine) (PHEG) in aqueous solution, ¹³C spinlattice relaxation time (T_1) and the nuclear Overhauser enhancement (NOE) were measured at six resonance frequencies ($\omega_C/2\pi$) ranging from 15 to 150 MHz and at 100 MHz, respectively, at the temperatures from 20 to 90 °C. The well superposed master curve $\log(T_1/\omega_C)$ against $\log(\omega_C a_T)$ was obtained over the double-digit frequency range, a_T being the shift factor with the activation energy of 29.6 kJmol⁻¹ by time-temperature reducibility. The conformational transition characterizing the segmental motion and the distribution of the correlation time were discussed by use of the Dejean-Lauprêtre-Monnerie (DLM) model. The spectral density function $J(\omega)$ has the exponent to the correlation time τ_a as $\omega J(\omega) \sim (\omega \tau_a)^{0.614}$ in the region of $\omega \tau_a \ll 1$ while the DLM model gives the exponent of 0.5.

序: NMR 緩和による高分子の主鎖ダイナミクス研究において、最近 Dejean-Lauprêtre-Monnerie (DLM) モデル [1],[2] が良く用いられるようになった。DLM モデルでは、セグメント運動を single conformational transition (τ_0), correlated conformational tarnsition (τ_1) で記述し、結合角の微小揺ら ぎ(θ) による libration (τ_2) を取り入れている。相関時間の温度依存性に Arrhenius 型あるいは WLF 型を仮定するが、3 モードの相関時間の比は一定とし、多くの高分子溶液あるいはバルクでの NMR 緩和の温度依存性がよく説明されている。相関時間の比が一定であるということは、分子運動の相 関時間分布が一定としてとらえても良いかもしれない。しかし、分布関数に対する情報を得るため には広い周波数にわたる実験データが必要である。 このような試みは、力学測定や誘電緩和にお いては数多くなされているが、NMR 緩和測定を用いた実験ではほとんどなされていない。そこで、 本研究では ¹³C Larmor 周波数 $\omega_c/2\pi$ が 15 MHz から 150 MHz の 6 つのスペクトロメータを用い るとともに、時間-温度換算則を適用することで周波数範囲を広げ、DLM モデルの適合性および相 関時間分布について詳細に検討した。

ポリグルタミン誘導体、¹³CNMR 緩和、時間温度換算則、セグメント運動、相関時間分布

うちの しんいち、ひらおき としふみ、つつみ あきひろ

実験:サンフルとして、水溶液中でランダムコイルであるボリペプチド、Poly(N[¢]-hydroxyethyl L-glutamine)(PHEG)(重合度 220)を用いた,これを濃度 5-7 % (wt/v)の D₂O 溶液とし、¹³C T_1 測定を inversion recovery 法を用い、周波数範囲 $\omega_C/2\pi = 15, 25, 50, 100, 125, 150$ MHz、温度範囲 20°C - 90°C で行った,また、NOE は周波数 100 MHz で測定した,

結果:主鎖 C_a について測定した T₁/ ω_c の値を ω_c に対してプロットし、各々の測定温度 T で得られた曲線が滑らかに重なるように ω_c 軸に沿って移動させた。その移動因子 a_T の温度依 存性から求めた見かけの活性化エネルギー E_a は 29.6 kJmol⁻¹ であった。相関時間 τ_a は a_T と $a_T \sim \tau_a = \tau_{\infty} \exp\left(\frac{E_a}{RT}\right)$ (R:気体定数) なる関係にあるとし、DLM モデルを用いたデータフィッティ ングを行った (Fig.1)。その結果、得られたパラメータ値は $\tau_0/\tau_1 = 5$ 、 $\tau_2/\tau_1 = 100$ 、 $\theta = 21^\circ$ で あった、DLM モデルに対するセグメント運動の相関時間分布関数を計算したところ、分布関数の 幅は、パラメータ τ_0/τ_1 によって決定され、 $\tau_0/\tau_1 \rightarrow \infty$ の極限では、分布関数は Davidson-Cole 型 [3],[4] に漸近する。この場合、スペクトル密度関数 $J(\omega)$ は $\omega\tau_a \ll 1$ において $\omega J(\omega) \sim (\omega \tau)^{0.5}$ と なる。 τ_0/τ_1 が 1 程度のオーダーになると、 $\omega J(\omega) \sim (\omega \tau)^1$ をとるようになる。しかし、実験では $\omega J(\omega) \sim (\omega \tau)^{0.614}$ という指数則が得られた。以上の結果を整理し、報告する予定である。

Fig. 1: $\log(\omega_C/T_1)$ against $\log(\omega_C \tau)$ and temperature dependence of NOE for the three models.

参考文献

- [1] C. K. Hall and E. Helfand, J. Chem. Phys., 77, 3275 (1982).
- [2] Dejean de la Batie, F. Laupretre, and L. Monnerie, Macromolecules, 21, 2045 (1988).
- [3] P. A. Beckmann, Phys. Rep., 171, 85 (1988).
- [4] D.W. Davidson and R.H. Cole, J. Chem. Phys., 9, 1484 (1951).

¹²⁹Xe NMR 法を用いた高分子の分子運動性と自由体積の解明

名古屋工業大学工学部 〇村上隆史, 吉水広明, 岡本 茂, 辻田義治

Investigation of mobility and free volume of polymer by ¹²⁹Xe NMR spectroscopy

Department of Materials Science and Engineering, Nagoya Institute of Technology <u>Takafumi Murakami</u>, Hiroaki Yoshimizu, Shigeru Okamoto, Yoshiharu Tsujita

It has been found that ¹²⁹Xe NMR chemical shits are suitable for investigation of the microvoids in glassy polymer and free volume in rubbery polymer. But, the information at near glass transition temperature (T_g) is not enough. In this study, poly(vinyl acetate) (PVAc) was used for a sample. The ¹²⁹Xe NMR spectra of the Xe in PVAc above and below T_g were observed, in order to investigate the relationship between ¹²⁹Xe NMR and molecular dynamics of polymer at T_g . T_g of PVAc was determined to be 32.1°C by DSC. ¹²⁹Xe NMR peak width (FWHM) increased with decreasing temperature, especially, the increment of FWHM considerably increased at near T_g . This phenomenon is very close to that of micro-brownian motion of polymer's segment. On the other hand, ¹²⁹Xe NMR the chemical shift showed discontinuity at T_g . That is, the chemical shift decreased with increasing temperature above T_g . This is corresponding to the thermal expansion of the glassy polymers. Contrary, in glassy state, the chemical shift increased with temperature, indicating that the microvoid of PVAc becomes lager by cooling.

(緒言)

¹²⁹Xe 核は、数気圧程度でも比較的良好な NMR スペクトルが観測でき、また大きな 分極率を有するため、Xe 核をプローブとしてポリマー試料に収着させ、その¹²⁹Xe NMR シグナルよりポリマー試料の様々な情報を得られる.¹²⁹Xe NMR 化学シフト値 は高分子系では一般的に $\delta = \delta(S) + \delta(Xe)$ で表される.ここで $\delta(S)$ は Xe 原子と空孔 内壁との相互作用による項であり、 $\delta(Xe)$ は Xe 原子同士の相互作用による項である. 当研究室ではこれまでに、¹²⁹Xe NMR 化学シフト値からガラス状高分子における未緩 和体積即ちミクロボイドを、またゴム状高分における自由体積をそれぞれ別々に評価 し得る事実を報告してきた.本研究では、ガラス転移付近での¹²⁹Xe NMR 情報の変化 を観察し、理解を深めることを目的とした.サンプルにポリ酢酸ビニル(PVAc)を用い て、ガラス転移を介した高分子の示す¹²⁹Xe NMR 化学シフト値、スペクトル線幅等の 解析を行い、¹²⁹Xe NMR スペクトルのより詳細な検討を行う.

PVAc, T_{g} , ¹²⁹Xe NMR 化学シフト値,自由体積,ミクロボイド,ミクロブラウン運動 むらかみたかふみ,よしみずひろあき,おかもとしげる,つじたよしはる (実験)

PVAc は Aldrich Chemical Company, lnc.より購入し用いた. ガラス転移温度(T_g)は DSC で決定した.¹²⁹Xe NMR 測定は, NMR 管に約 1g 充填し, 十分に真空乾燥を行っ た後, 測定圧力 6atm, 各温度(20°C~70°C)で Xe を導入し, 収着平衡に達するまで少 なくとも 24 時間放置し, 観測周波数 110.5MHz にてシングルパルス法で測定した.ま た, ¹²⁹Xe NMR 化学シフト値は同時に観測される気相 ¹²⁹Xe のピークを内部基準とし て補正し, 決定した.

(結果と考察)

DSC 測定の結果, PVAc の T_g は 32.1 °C であった.¹²⁹Xe NMR 測定から得られた,¹²⁹Xe NMR ピーク線幅及び化学シフト値を測定温度 T と T_g との差(T- T_g)に対してプロット した(Figs. 1, 2). ゴム状態において温度低下とともに¹²⁹Xe NMR ピーク線幅は増大し, Tg に近づくほど急激に増大した. この線幅の挙動は高分子鎖セグメントのミクロブ ラウン運動の尺度として(例えば溶融粘度-温度)の関係と類似している. 今回の測定範囲では, ピーク線幅の温度依存性はゴム状態からガラス状態に冷却しても一定の連続性を示している. 一方, Xe 原子が存在する環境の情報を反映する化学シフト値は, T_g 付近で不連続性を示した. T_g 以上の温度域では PVAc の熱膨張を反映して化学シフト値は温度とともに減少した. これに対し, T_g 以下の温度域ではガラス状高分子特有 のミクロボイドが形成されるので,そのサイズの温度依存性を反映した結果,逆に温度とともに増加する. これらの結果は,¹²⁹Xe NMR スペクトルから高分子の分子運動 性と自由体積あるいは未緩和体積,双方の情報が読み取れる事を示している.

¹H-*T*₁に及ぼすPVA/モンモリロナイト中の 鉄イオン存在量の影響

(防大応化)○ 浅野 敦志、清水 美穂、黒津 卓三

Relation between 1 H- T_{1} and the composition of PVA/montmorillonite Atsushi Asano, Miho Shimizu, Takuzo Kurotsu Department of Applied Chemistry, National Defense Academy, Japan

The T_1^{H} values obtained from PVA/montmorillonite composites are largely affected by Fe³⁺-ions naturally contained in the montmorillonite clay minerals. We studied the relation between the montmorillonite contents in the PVA/ montmorillonite composites and the T_1^{H} values with the three kinds of montmorillonite having a different Fe content. The XRD patterns show that the montmorillonite in the PVA/montmorillonite composites obtained from the solvent cast of water solution is well exfoliated or intercalated in the PVA matrix. The T_1^{H} values for PVA in the PVA/montmorillonite composites decreased drastically with increasing the montmorillonite content. Furthermore, the degree of the decrease also depends on the amount of Fe content in montmorillonites. The DSC curves show that a new melting point of PVA's crystalline phase in the PVA/montmorillonite composites appears at ca. 10 K higher than that of the bulk PVA's crystalline phase, while it does not appear in the PVA/synthetic-clay composites.

【はじめに】ポリマー/粘土鉱物複合材料は、粘土層間にポリマーが入り込んだ状態 (intercalated) や完全に粘土層がポリマーに分散した (exfoliate) 状態において優れ た耐燃性、耐熱性、バリア特性、防水性を示すことが多い。したがって、このような 優れた物性を引き出すためには、ナノメートルのオーダーで層を構成している粘土層 の分散をコントロールすることが重要となる。最近、天然粘土(montmorillonite、モ ンモリロナイト)中に存在する鉄イオン(Fe³⁺)を利用して、固体NMR法からナイロ ン6/粘土ナノコンポジットのモルフォロジー解析がなされた¹)。また、Strawhecker とManias²は、モンモリロナイトとポリビニルアルコール (PVA)を共に水中で分散・ 溶解させ、溶媒キャストすることによりexfoliate状態のPVA/montmorilloniteコンポ ジットを作成できることを示した。さらにDSCとXRDの測定から、粘土層が混入する と耐熱性に優れた新たなPVA結晶相が現れることも示した。そこで我々は、このよう に非常によく分散した系を容易に作成できるPVA/montmorilloniteコンポジットを 用いて¹H核スピン格子緩和時間(T₁H)への鉄イオン(Fe³⁺)からの影響を検討する ことにより、粘土の分散性や混合割合について分析できるのではないかと考え研究を 行った。また、異なるPVA結晶相のモルフォロジー解析が固体NMR法を用いて行え るのではないかと考え研究を行っている。

Keywords:固体NMR、緩和時間 (T_1^H) 、モンモリロナイト、ポリビニルアルコール (PVA) あさのあつし、しみずみほ、くろつたくぞう 【結果と考察】図1に鉄イオン含有量の異なる3種類のモンモリロナイトで作成した PVA/montmorilloniteコンポジットと鉄イオンを含まない合成粘土サポナイトで作

成したPVA/saponiteコンポジット の¹H核の緩和時間(T_1 ^H)を、粘土混 入量(重量%)に対してプロットし た。ここで粘土の重量%は、例えば 10wt%はPVA/clay=100/10と定義す る。3種類のモンモリロナイト中の 鉄イオンの含有量はFe₂O₃換算で montmorillonite-1 から順に 3.5%

(●)、2.7% (□)、4.4% (△) で ある。図1から、鉄イオンを含まな い合成粘土サポナイトで作成したコ ンポジットのT₁H時間(O)は、元の PVAの値(×)と大差無いが、天然 粘土モンモリトナイトの場合、粘土 混入量に比例して急激にT1^H時間が 減少していることがわかる。このこ とは、モンモリロナイトが均一に分 散し、系全体に鉄イオンによる常磁 性効果が速やかに拡散していること を示している。また、モンモリロナ イト中の鉄イオンの含有量に応じて 減少量が増大していることも示され ている。緩和時間の減少量が、コン ポジット中の粘土混入量との間に単 一の指数関係があると仮定して式1 を用いて最小2乗フィットした。

Fig.1 ¹H- $T_1(T_1^{\text{H}})$ of PVA vs. weight (%) of clay against PVA: e.g., 10% means PVA/clay=100/10.

Fig.2 The *b*-factor vs. Fe₂O₃ conversion value for the present montmorillonites.

$$T_1^{n}(\varphi) = T_1^{n}(0) \cdot \exp(-b \cdot \varphi)$$
 -----(1)

ここで、bファクターは、PVAに対してモンモリロナイトを1.0 wt%だけ混入した場合 に、その混入したモンモリロナイトがTi^H時間を減少させる能力(減少定数)であり、 モンモリロナイトの種類に依存する、すなわち内在する鉄イオン量に比例する係数と なる。montmorillonite-1から順に実線、破線、1点破線が式1で最小2乗した結果を 表している。実験値を非常によく再現することが示された。求めたbファクターと Fe₂O₃換算で求められた各モンモリロナイトの鉄イオン化学組成比とを比較してみる と(図2)、それらの間には良い相関関係が得られることがわかった。

- D.L. VanderHart, A. Asano, J.W. Giliman, *Macromolecules*, 2001, 34, 3819-3822., Chem. Mater., 2001, 13, 3781-3795 & 3796-3809.
- K.E. Strawhecker and E. Manias, Chem. Mater., 2000, 12, 2943-2949., Macromolecules, 2001, 34, 8475-8482.

¹³C, ¹⁵N 化学シフト相関固体二次元 NMR 測定による均一標識

膜タンパク質 H⁺-ATP 合成酵素サブユニット c の信号帰属と構造解析 (阪大・蛋白研¹、JST CREST²)

○小林将俊^{1,2}、江川文子¹、藤原敏道¹、阿久津秀雄^{1,2}

Signal assignment and structural analysis of uniformly labeled membrane protein, H⁺-ATPase subunit c by two-dimensional ¹³C, ¹⁵N chemical shift correlated solid-state NMR experiments

Masatoshi Kobayashi^{1,2}, Ayako Egawa¹, Toshimichi Fujiwara¹, Hideo Akutsu^{1,2}

1) Institute for Protein Research, Osaka University, Suita 565-0871, Japan

2) CREST, Japan Science and Technology Corporation (JST)

Two-dimensional ¹³C, ¹⁵N chemical shift correlated solid-state NMR experiments for uniformly [¹³C, ¹⁵N] labeled membrane protein, H⁺-ATPase subunit *c* were carried out. The ¹³C signals of major amino acid residues in subunit *c* were partially assigned by 2D homonuclear magnetization transfer methods, RFDR and SPC5 experiments. The experimentally obtained overlapped cross-peak signals were analyzed using chemical shift prediction programs. The results indicate that 80 - 90% of Gly and Ala residues in subunit *c* take α -helix form.

【はじめに】 固体 NMR 法によるタンパク質の構造解析を行う上で安定同位体標識は不可欠である。しか しながら試料調製労力の低減と、タンパク質全体の構造を少ない実験回数で決定するために、均一標識 した試料を用いて一度に多くの構造情報を得ることが望まれている。これまでに我々の研究室ではアミノ 酸15残基からなる¹³C, ¹⁵N 均一標識ペプチド、マストパランX について、多次元固体 NMR 測定により信 号帰属を行い、構造解析が行えることを報告してきた^{1,2}。この手法をより分子量の大きいタンパク質、とり わけ X 線結晶解析や溶液 NMR 法での構造解析が難しい膜タンパク質に適用できれば、タンパク質科学 において大きな発展が期待できる。今回この固体多次元 NMR 測定法をアミノ酸79残基からなる膜タン パク質 H⁺-ATP 合成酵素サブユニットcに適用したので報告する。

【試料と実験】NMR 測定に用いた H⁺-ATP 合成酵素サブユニットc(以下サブユニットc)は大腸菌由来のものであり、¹³C, ¹⁵N 均一標識されたクロレラ培地を用いて大腸菌を培養した。得られた菌体をホモジナイズした後、クロロホルム/メタノール混合溶媒でサブユニットcの抽出を行い、ジエチルエーテル中で析出させた後、陽イオン交換カラムで精製した。得られたサブユニットcを溶媒中でゆっくり再析出させ、デシケータ中で乾燥させたものを試料とした。今回の報告で使用した試料は粉末状のサブユニットc単体であり、脂質二重膜への再構成は行っていない。この試料 5mg を 4mm 径の固体 NMR ローターにつめ測定に用いた。NMR 測定には Chemagnetics Infinity-plus 500 および 600 分光計を用いた。¹³C 共鳴周波数

固体 NMR RFDR 膜タンパク質 均一同位体標識 信号帰属

こばやし まさとし、えがわ あやこ、ふじわら としみち、あくつ ひでお

はそれぞれ 125.6MHz、150.7MHz である。プローブは 4mm 径スピナー用の二重共鳴および三重共鳴プ ローブを用い、マジック角試料回転は 12.5 – 15 kHz の速度で行い、測定中の試料温度が0℃程度になる よう温度制御を行った。また化学シフトの基準は IUPAC の推奨に従い DSS 基準とした。したがって¹³C 化 学シフト値は TMS 基準に比べて 2.7ppm 大きな値となっている。

NMR 実験で用いたパルス系列は、¹³C-¹³C 化学シフト相関スペクトル測定には、双極子結合した核間 での磁化移動を RFDR (Radio-Frequency Driven Recoupling) 法³および SPC5 (Super cycled POST-C5) 法⁴である。RFDR 法は試料回転に同期した 180°パルスを繰り返し照射することで、ゼロ量子双極子相互 作用を用いて広い化学シフト領域にわたる磁化移動を引き起こすことができる。一方、SPC5 法は比較的 狭い周波数帯域に対する2量子双極子相互作用による高効率磁化移動法であり、試料管が2回転する

間に照射するエレメントパルスの位相。を 72°ずつ増加させ、5回の位相変化でス ピン状態が一周期する方法である。今回 我々の研究室で改良したエレメントパル ス (30° 240° + 210°) 5を使用すること で高効率磁化移動を行った(図1)。この 方法を高磁場側のα,β,γ炭素の領域に 適用し、アミノ酸側鎖の化学シフト相関ス ペクトルを得た。¹³C-¹⁵N 化学シフト相関 スペクトル測定には、¹⁵Nから¹³Cへの磁 化移動をRamped RF amplitude CP法⁶で 行った。このとき狭いオフセット帯域特性 SPC5 から、¹³Cキャリア周波数を移動させること により、アミド窒素の磁化を選択的に Ca あるいは CO へ移動させることができ、こ れによりそれぞれ残基内相関および残 基間相関のスペクトルを得た。

Fig.1 The pulse sequence for 2D ¹³C-¹³C SPC5 experiment

【結果】 図2aにサブユニットσの2次元 RFDR スペクトル(混合時間 1.92ms)を全¹³C 化学シフト領域について示した。COとCα, Cβ間の交差ピークが非常に明瞭に観測されている。またα, β, γ炭素など脂肪族炭素間や芳香族炭素間でも交差ピークは観測され、全ての化学シフト領域にわたって磁化移動が生じていることがわかる。混合時間の異なるスペクトルの比較から、この混合時間では化学結合にして1ないし2結合の距離間での磁化移動が観測されていることがわかる。感度に関しては、2残基しか存在しない Arg 側鎖の Cδ-Cζ交差ピークが観測されており、残基数80程度のタンパク質において、均一¹³C 標識試料が5mg 程度あれば、ほぼ全てのアミノ酸残基の¹³C 化学シフト相関が観測できることがわかった。

図2bに混合時間 0.96ms の RFDR スペクトルの COとCα間の交差ピーク領域を示した。スペクトル上に 表示した点は有機溶媒中で溶液 NMR 法により測定されたサブユニットcの¹³C 化学シフト値である⁷。有 機溶媒中でサブユニットcは2本のα-ヘリックスがループ状の鎖によって結ばれているヘアピン構造をと っている。このときの化学シフト値と今回調製した固体試料の化学シフト値分布は全体的には比較的良く 一致しており、我々の調製した固体サブユニットc分子がヘリックスリッチな構造をとっていることがわかる。 しかし例えば Gly 残基の主要なピークは典型的な α-ヘリックス構造に由来する(176ppm, 48ppm)付近に存在するが、一部 β-シート構造とみられる(172ppm, 46ppm)付近に信号が現れている。タンパク質の

Fig.2 ¹³C-¹³C 2D RFDR spectra of U-[¹³C, ¹⁵N] H⁺-ATPase subunit c. (a) A RFDR spectrum at 1.92 ms mixing time. (b) The CO - C α region of the RFDR spectrum at 0.96 ms mixing time. (c) indicate CO - C α cross-peaks and × indicate CO - C β cross-peaks.

立体構造から¹³C 化学シフトを予測するプログラムによる解析からも、この二つの信号はα-ヘリックス構造、β-シート構造に由来することが確認できた。その存在比は信号強度比から見積もることができ、10 個存在する Gly 残基のうち1 つないし2 つ程度はヘリックス構造から崩れていることがわかる。同様な解析を Ala 残基の Cα-Cβ交差ピークについても行ったところ、13 個存在する Ala 残基のうち 11 個程度は典型 的なα-ヘリックス構造であるが、1つか2つはβ-シートに近い構造をとっていることがわかった。

図3にサブユニットcの2次元 SPC5スペクトル(混合時間1.92ms)を脂肪族炭素の化学シフト領域につい て示した。濃い線は位相が正、薄い線は位相が負である。図に主要なアミノ酸の側鎖の帰属を示した。 SPC5 法は2量子双極子相互作用を用いているので、Cα-Cβなど1ステップで磁化移動した信号は、符 号が反転して負の信号となるのに対し、Cα-Cβ-Cγなど2ステップで移動したものは、正の信号で現れ るため、帰属を行いやすい場合がある。例えば、正の信号として観測されている Ile の Cγ1-Cγ2 信号は Cβを介して磁化移動していることがわかる。また Leu の Cγ-C8信号は負の信号であるため、対角線付近 に信号が現れているにもかかわらず、明瞭に対角線ピークと区別されて観測されている。しかしながら分 子量の大きいタンパク質試料の場合、信号の重なり合いにより正負の信号が相殺されてしまうこともある。 したがって RFDR 法と併用して信号帰属を行う必要がある。

さらに詳細な NMR 信号の帰属を行う目的で¹³C-¹⁵N の2次元化学シフト相関スペクトル測定を行った。 アミド窒素から Ca, C β へ交差分極(CP)により磁化を移して得られる 2D¹³C-¹⁵N スペクトルからは、アミノ 酸残基内の相関が観測できた。¹⁵N 軸の化学シフトの分散に比べて信号の線幅が大きく、現在のところ詳 細な帰属はできていないが、Gly Ca-N や Ala C β -N、Pro Ca-N などの信号は、ブロードな信号の重 なりの中から分離して観測されている。また1残基しか存在しない Lys C ϵ -N ζ の交差ピークが観測されて

— 316 — ·

おり、感度的には¹³C-¹⁵N 相関ス ペクトル測定においてもサブユニッ トcを構成する全てのアミノ酸の信 号が検出できていることがわかる。 次にアミド窒素から一つ隣のアミノ 酸残基の CO へ交差分極(CP)によ り磁化を移し、その CO からさらに Ca, CBへ RFDR により磁化移動を 行なう測定法を試みた。この方法に より得られる 2D¹³C-¹⁵N スペクトル からは、アミノ酸残基間の相関が観 測できる。やはり¹⁵N軸の化学シフト の分散が線幅に比べて小さいため 信号の分離は良いとは言えないが、 GlyやProなど特徴的な¹⁵N化学シ フトをもつ残基の信号は区別しやす い。例えばサブユニットc中特異な アミノ酸連鎖として32Glv33Glvという 部分があるが、この測定法により 32G Ca - 33G N に由来する信号が

観測できた。また Arg の側鎖の Cζ-Nη, Cζ-Nεの信号は明瞭に観測された。

【まとめ】 有機溶媒中から析出させて得た固体粉末状 H⁺-ATP 合成酵素サブユニットc分子の固体 2D ¹³C-¹³C 化学シフト相関スペクトルから Ala, Leu, Gly, Ile, Val などサブユニットcの主要なアミノ酸残基に関してアミノ酸レベルで帰属できた。また Tyr や Arg に関しては側鎖の一部が帰属できた。Gly の CO-Ca交差ピーク、および Ala の Ca-Cβ交差ピークの信号強度解析から、我々の調製したサブユニットc分子中の Gly、Ala 残基は 80-90%程度 α -ヘリックス構造をとっていることがわかった。溶液中の構造と比較して、ヘリックスリッチであることは一致しているが、ヘアピン構造をとっているかどうかなど、より詳細な構造情報は現段階では得られていない。さらなる信号帰属と構造情報を得るための実験およびスペクトル解析を進行中である。

¹ 藤原敏道、柳下元、福島径、俵山みどり、戸所泰人、佐々健太郎、松木陽、河野俊之、若松馨、阿久津秀 雄, 第39回 NMR 討論会要旨集 64-65 (2000).

² 阿久津秀雄、藤原敏道, 蛋白質 核酸 酵素 47, 1144-1151 (2002).

³ A. E. Bennett, J. H. Ok, R.G.Griffin and S. Vega, J. Chem. Phy. 96, 8624-8627 (1992).

⁴ M. Hohwy, C. M. Rienstra, C. P. Jaroniec and R. G. Griffin J. Chem. Phy. 110, 7983-7992 (1999).

⁵ Y. Matsuki, H. Akutsu and T. Fujiwara J. Magn. Reson. 162, 54-66 (2003).

⁶ M. Baldus, D. G. Geurts, S. Hediger and B. H. Meier, J. Magn. Reson. A118, 140-144 (1996).

⁷ M. E. Girvin, V. K. Rastogi, F. Abildgaard, J. L. Markley and R. H. Fillingame, *Biochemistry* 37 8817-8824 (1998).

固体二次元 MAS NMR による三酢酸セルロースの構造解析

北大院工¹、ブルカーバイオスピン(株)² 〇沼田ゆかり¹、甲野裕之²、惠良田知樹¹、高井光男¹

Structural analysis of cellulose triacetate polymorphs by two-dimensional MAS NMR spectroscopies

Yukari Numata,¹ Hiroyuki Kono,² Tomoki Erata,¹ and Mitsuo Takai¹

¹Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan and ²Bruker BioSpin Company, Ltd., Tsukuba, Ibaraki 305-0051, Japan

Through-bond ¹³C-¹³C and ¹³C-¹H correlations of the two crystalline allomorphs of cellulose triacetate (CTA) were determined by using the refocused CP-INADEQUATE and MAS-J-HMQC experiments, respectively. On the CP-INADEQUATE spectrum of the CTA II, two sets of the ¹³C-¹³C correlations from C1 to C6 were observed. This indicated that the CP/MAS ¹³C NMR spectrum of CTA II is characterized to overlap of the ¹³C subspectra of two kinds of 2, 3, 5-triacetyl-anhydroglucopyranose units and that there are two magnetically inequivalent sites in the unit cell. In the case of CTA I, since the numbers of respective ¹³C and ¹H shifts of the CTA I agreed with the those of the glucose residue, it was strongly suggested that the asymmetric unit of CTA I is only one glucose residue. In addition, conformational difference in the exo-cyclic bonds between CTA I and II were strongly suggested by the notable difference in the ¹H as well as ¹³C chemical shifts at the C6 sites of these allomorphs.

1. 緒言 近年、固体 NMR の分野においてはハードウエアの進歩に伴って様々な多次元測定用パルス系列が開発されており、蛋白質を中心にその構造解析が盛んに行われている。我々はこれらの手法の一部をセルロースおよびその誘導体に適応し、結晶構造について新たな知見を報告してきた。今回は三酢酸セルロースの二つの結晶多形 CTAIと CTAIIの(結合を通じた)¹³C-¹³C, ¹³C-¹H 二次元相関スペクトルを測定し、これら二つの構造およびその違いを明らかにすることを目的とした。さらに、X線回折によって決定された結晶構造^{1,2}の再検討を行った。

2. 実験 酢酸菌 A.xylinum ATCC10245 株を(1-¹³C), (2-¹³C), (3-¹³C), (4-¹³C), (5-¹³C), (6-¹³C)グルコース をそれぞれ通常のグルコース量に対して 3%含む HS 培地中で培養し、¹³C₆-セルロースを得た。ラミー および ¹³C₆-セルロースから CTA I, II をそれぞれ調製した。これらの試料を N₂ 雰囲気下 210℃で加熱処 理を行い高度に結晶化し、NMR 測定に用いた。NMR 測定は Bruker AV300WB (7.1 T)分光計を用い室温 で行った。1D CPMAS ¹³C, 2D Reforcused-INADEQUATE (¹³C-¹³C 相関)、2D MAS-J-HMQC (¹³C-¹H 相関) 実験を既報³に準じて行った。

3. 結果と考察 Figure 1 に CTA I, II の 1D CPMAS ¹³C スペクトルのリングカーボン領域を示す。各 共鳴線は位置特異的に ¹³C ラベルされた CTA を 1D 測定することによって帰属されており、CTA I は各 炭素原子が Singlet、CTA II は積分強度比の等しい Doublet であることから、CTA I を構成するグルコー ス残基はすべて同一のコンフォメーションをもち、CTA II はコンフォメーションが異なる 2 種類の残

基が1:1の割合で存在することが示唆されている⁴。本研 究ではまず CTA II に含まれる二種類の残基の¹³C サブスペ クトルを導出することを試みた。Figure 2 に¹³C ラベル化 CTA II の INADEQUATE 実験によって得られた 2D¹³C-¹³C 相関スペクトルを示す。二量子遷移によって C1 一重線(99 ppm)は二つの相関ピークを示し、それぞれが直接結合した C2 との相関を示していることが確認できる。同様に、C1 から C6 までそれぞれ共有結合している¹³C-¹³C 相関の二つ の組(実線、点線)が観測できた。実線と点線で結ばれたそ れぞれの共鳴線は各グルコース残基の共鳴線であるため、 CTA II に含まれる二つのグルコース残基のサブスペクトル

Figure 1. CP/MAS ¹³C NMR spectra of CTAs. (A) CTA I and (B) CTA II

— 318 —

が導出できた。得られた¹³C 化学シフトを Table 1 に示す。

次に炭素原子と直接結合した水素原子帰属 のため、ラミーから得た CTA I, II の MAS-J-HMQC 実験を行った。Figure 3 に CTA II の MAS-J-HMQC スペクトルを示す。MAS-J-HMQC 実験は HETCOR タイプの(13 C, 1 H)核間の双極子相互作用ではなく、 スカラー(J)相互作用を介しているため、直接結合 した one-bond の 13 C- 1 H 相関が観測できる。 13 C 共 鳴線の帰属結果に従って CTA I, II の 1 H化学シフト の値を得た(Table 1)。

1970 年代に X 線回折によって決定された CTA の結晶構造によると、CTA I は二つの独立した 分子鎖で構成されている。しかし、CTA I の帰属結 果において天然セルロースに見られる¹³C,¹H 共鳴 線の分裂は確認されなかった¹。つまり、CTA I に 含まれるグルコース残基はすべて等価であること を意味し、X 線回折の結果と矛盾する。一方、CTA II では構成するグルコース残基の C5-C6 ねじれ角 はすべて gg であるが、グルコース残基の骨格構造 は分子鎖に平行して交互に異なると考えられてい た²。しかし、INADEQUATE 実験の結果より、CTA II 中に二種類の残基が存在することは明らかであ るが、C6 共鳴線の大きな分裂を考慮すると C5-C6 コンフォメーションがすべて等価(gg)とは考えに くい。研究報告時にはさらにメチル基の¹³C,¹H 化

Figure 2. Refocused INADEQUATE spectrum of CTA II.

right 5. MASS-THIQC spectrum of CTA is

学シフトの帰属結果も合わせて、CTA の二つの結晶構造とその違いについて報告する。

		¹³ C chemical shifts / ppm (¹ H chemical shifts / ppm)							
Allomorph		C1 (H1)	C2 (H2)	C3 (H3)	C4 (H4)	C5 (H5)	C6 (H6)		
CTA I		101.6 (4.1)	74.5 (3.5)	74.5 (3.5)	78.6 (2.2)	71.0 (2.9)	60.8 (3.8, 2.3)		
CTA II	Residue 1 (solid line)	99.4 (4.3)	74.6 (3.8)	72.9 (4.1)	78.2 (2.4)	73.9 (4.5, 3.4) ^a	63.0 (2.3)		
	Residue 2 (dotted line)	99.4 (4.3)	71.5 (3.7)	73.9 (4.5, 3.4) ²	76.9 (2.4)	70.5 (3.4)	65.5 (2.3)		

Table 1. ¹³C and ¹H chemical shifts of glucopyranose residues in CTA I and CTA II

Residues 1 and 2 indicate the two kinds of the 2, 3, 5-triacetyl glucose residues in the unit cell of CTA II, which was revealed by the refocused CP-INADEQUATE spectrum of ¹³C enriched CTA II (Figure 2). ^{a 1}H chemical shifts of the proton attached to C5 of residue 1 and that attached to C3 of residue 2 could not determined by the MAS-J-HMQC spectrum of CTA II because ¹³C resonance lines for these carbons overlap in the spectrum.

参考文献

 Stipanovic, A. and Sarko, A., Polymer, 19, 3-8, (1978), [2] Roche, E., Chanzy, H., Boudeulle, M., Marchessault, R. H., and Sundararajan, P., Macromolecules, 11, 86-94, (1978), [3] Kono, H., Erata, T., and Takai, M., Macromolecules, 36, 5131-5138, (2003), [4] Kono, H., Erata, T., and Takai, M., J. Am. Chem. Soc., 124, 7512-7518, (2002)

キーワード:三酢酸セルロース、固体 NMR、結晶多形、結晶構造

著者ふりがな:ぬまたゆかり、こうのひろゆき、えらたともき、たかいみつお

天然存在比 REDOR による精密原子間距離測定と

分子構造の解析

(横浜国大・院工) ○内藤 晶、虎谷秀一、西村勝之

Analysis of Molecular Structure based on Accurate Interatomic distances obtained from Natural Abandance REDOR

Akira Naito, Shuichi Toraya and Katsuyuki Nishimura, Graduate School of Engineering, Yokohama National University

Accurate interatomic distances were determined using natural abundance ¹³C REDOR coupled with ³¹P nuclei for α -D-glucose-1-phosphate crystals. 6 sets of interatomic distances were measured simultaneously for α -D-glucose-1-phosphate and α -D-glucose-1-phosphate diluted with urea. Slightly short distances were obtained for α -D-glucose-1-phasphate diluted with urea molecule because the intermolecular contribution was removed. Molecular structure was constructed using interatomic distances obtained from α -D-glucose-1-phosphate diluted with urea. It turned out that phosphate group takes an anti conformation that is the similar as that obtained from x-ray diffraction studies. It is emphasized that natural abundance ¹³C REDOR experiments can be useful to determine three dimensional structures of small molecules containing phosphorus nuclei.

【序論】 精密な原子間距離情報を基にして、分子の立体構造を正確に決定することが可能 である。異種核間原子間距離を測定する手法として REDOR (Rotational echo double resonance) は解析が容易であり、いくつかの注意点を守ることにより、精度の高い原子間距離が得られ ることを示してきた^{1),2)}。これまで REDOR では二重標識試料を用いて、標識された原子間 距離を精密に測定してきたが、分子の立体構造を決定するためには多くの原子間距離情報を 収集することが重要になる。多重標識により同時に複数の原子間距離を得る試みがなされて いるが多スピン系の解析や位相ツイストなどの問題点が存在する。我々はこれまで一重窒素 標識した試料において天然存在比の¹³C REDOR を観測して、全ての炭素核の窒素核との原 子間距離を同時に測定する方法を示した³⁾。今回我々はリン核を含む化合物を用いて、同位 体標識をすることなく分子中の全ての炭素核とリン核の原子間距離を同時に測定することが

REDOR, 原子間距離、立体構造、同位体標識、天然存在比

ないとう あきら、とらや しゅういち、にしむら かつゆき

【実験】 glucose-1-phosphate dipotassium の飽和水溶液を調製し、室温で徐々に溶媒を蒸発することによって、結晶を得た(試料 I)。この結晶を細かく粉砕してから外径 5 mm の NMR 用試料管に詰めて NMR 測定に使用した。Glucose 1-phosphate dipotassium に5倍当量の ureaを混合した水溶液を調製し、同様に徐々に蒸発することで結晶を得た(試料 II)。得られた結晶は同様に細かく粉砕した後、NMR 試料管に詰めて NMR 測定に使用した。

¹³C REDOR 測定は Varian CMX 400 infinity を用い室温でスペクトルの測定を行った。¹³C および ³¹P 核の 180 度パルス長はそれぞれ、11.3 μs および 11.0 μs に設定した。位相補償パ ルス系列に xy-4 パルスを用いて、³¹P 核を照射した。照射周波数は ³¹P 核に関してはリン酸 基の共鳴周波数に、信号を観測する炭素核については ¹³C NMR スペクトルの中心に設定し た。

REDOR 曲線はローターの回転数とパルス長を考慮して以前に報告した方法 ³を用いて解 析した。

【結果と考察】 図1に試料Iの Full echo 信号と REDOR 信号を信号の帰属 ⁹とともに示す。 REDOR 展開時間(NcTr)が4 ms において非常に大きな REDOR 効果が現れた。C1 炭素は2 結 合を介した位置にあるので非常に強い REDOR 効果が現れている。一方、C2, C3, C4, C5, C6 炭 素については比較的類似した REDOR 効果を示している。³¹P 核は ¹⁵N に比べて磁気回転比が 4 倍大きいので、短い REDOR 展開時間で効果が現れることが分かった。短い展開時間では T₂による信号強度の減少も少ないことから、より長距離の原子間距離を測定するのに有利で ある事を示している。また信号自身多重標識試料に比べてスピン系が孤立しているので分解 能の高い信号が得られた。図2に試料 II の Full echo 信号と REDOR 信号を示す。試料 I に比 べて類似した REDOR 効果を示したが、C3 に関しては試料 I に比べて REDOR 効果が小さく なっていることが観測された。これらの REDOR 効果を REDOR 展開時間(NcTr)に対してプ ロットを行った。図3に Glucose-1-phosphate dipotassium を urea で希釈した試料(試料 II) についてのプロットを示す。これらのデータを解析して得られた "P-"C 原子間距離を表1 に示す。特に C3 および C4 炭素にわずかの希釈効果が見られたが、他の炭素核では希釈効 果はほとんど見られなかった。Urea で希釈した試料の原子間距離には分子間の双極子相互作 用の寄与が除かれているので、試料 II の原子間距離が分子内の原子間距離を反映していると 考えられる。実際、試料 II の原子間距離を基に Chem Draw で分子構造を構築した。この構 造はリン酸基がシュガーに対して anti の配座を持っており X 線回折から決められた構造(図 4) ⁹と非常によい一致を示す事がわかった。しかし今回の構造解析では C6-P の原子間距離 のみが異常に短い値を示しており、この距離を採用すると、分子構造が構築できなかった。 この原因については現在考察を進めている。

Fig. 1. Naturally abundant ¹³C REDOR and full echo spectra of α -D-glucose-1-phosphate crystal at NcTr = 4 ms.

Fig. 2. Naturally abundamt ¹³C REDOR and full echo spectra of α -D-glucose-1-phosphate diluted with urea at NcTr = 4 ms.

Fig. 3. Plot s of REDOR factors against NcTr values and the best fit echo intensity curves for α -D-glucose-1-phophate diluted with urea.

【まとめ】 窒素の一重標識試料における天然 存在比¹³C REDOR 測定の場合、希釈により分 子間の寄与を取り除くことが難しかった。本実 験では urea により化学的に希釈することを試み た結果、分子間の寄与を削除して分子内の原子 間距離を多数同時に決定する事が可能になった。 特にリン核を含む化合物では同位体標識が必要 でなく、かつ比較的短い REDOR 展開時間で正 確に原子間距離を決定する事ができた。この方 法を用いることにより urea で希釈したα-Dglucose1-1-phosphate の立体構造を決定すること ができた。この方法はマトリックスに埋め込ま れた分子の立体構造決定に有用な方法となるこ とを示している。

Fig. 4. Structure of α -D-glucose-1-phosphate determined from X-ray diffraction study⁵).

Sample	¹³ C- ³¹ P interatomic distances (Å)								
	r(C1-P)	r(C2-P)	r(C3-P)	r(C4-P)	r(C5-P)	r(C6-P)			
I.	2.85	4.05	4.10	4.20	4.20	4.15			
II	2.90	4.05	4.20	4.30	4.20	4.20			

Table 1. ¹³C-³¹P Interatomic distances of α -D-glucose 1-phosphate dipotassium,

I: a-D-Glucose-1-phosphate dipotassium monohydrate

II: Mixture of α -D-glucose-1-phosphate and urea with the molar ration of 1:5.

【文献】

1) A. Naito, K. Nishimura, S. Kimura, S. Tuzi, M. Aida, N. Yasuoka, H. Hashimoto, H. Saito, J. Phys. Chem. 100, 14995 (1996).

2) K. Nishimura, A. Naito, S. Tuzi, H. Saitô, C. Hashimoto, M. Aida, J. Phys. Chem. 119, 7476 (1998).

3) K. Nishimura, K. Ebisawa, E. Suzuki, H. Saito and A. Naito, J. Mol. Struct. 560, 29 (2001).

4) C.A. McDowell, A. Naito, D.L. Sastry, and K. Takegoshi, J. Magn. Reson. 78, 498 (1988).

5) C.A. Beevers and G.H. Maconochie, Acta Crystallogr., 18, 232 (1965).

多孔性金属錯体の固体高分解能 NMR-ゲスト分子の吸着挙動2

(京大院工¹、金沢大理²) ○中西 康哲¹、堀毛 悟史¹、遠藤 一央²、北川 進¹

Solid-State NMR for porous coordination polymers – Dynamics of guest molecules 2 OYasunori Nakanishi¹, Satoshi Horike¹, Kazunaka Endo², Susumu Kitagawa¹

¹ Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University ² Department of Chemistry, Kanazawa University

Porous coordination polymers constructed from transition metal ions and bridging organic ligands are new type of porous materials, providing very high adsorption capacity of gases. In this work, high resolution solid-state NMR spectra, in particular spin-lattice relaxation times T_1 , were measured for guest molecules adsorbed in diamagnetic porous coordination polymers. Dynamic feature of guest molecules was closely related to the interaction between the frame molecules and guest molecules, showing characteristic phenomena depending on the pore size and shape.

【緒言】 遷移金属と有機配位子からなる多孔性金属錯体は、均一なミクロ細孔を持ち、分子を効率的に閉じ込めることが可能で、従来の多孔性物質を上回る吸着能を示すものも合成されてきた。今まで多孔性金属錯体の吸着能に関する研究は、吸着種とその吸着量を中心に測定が行われてきたが、ごく最近、吸着に応じて構造が柔軟に変化する現象も見られるようになってきた^{1,2}。このようにゲスト分子は単なる吸着質としての役割だけでなく、 錯体構造の構築にも大きな役割を担っていることが認識されはじめ、機能性錯体の形成においてホスト骨格とゲスト分子との相互作用を詳細に調べる必要性が増している。当研究室では様々な多孔性錯体に分子を吸着させて、その挙動を調べてきた。本研究では、特に反磁性の多孔性金属錯体を用いて、その細孔中の分子を固体¹³CNMR および²HNMRで解析を行い、特異的な細孔場での分子吸着の挙動を調べた。

【実験】

(1)多孔性金属錯体の合成とゲスト吸着

 $[Cd_{2}(azpy)_{3}(N0_{3})_{4}] \cdot (CH_{3})_{4}CO(azpy=4, 4' -azopyridine)^{3)}(1 \cdot (CH_{3})_{2}CO) の合成は Cd(N0_{3})_{4} \cdot 4H_{4}O のアセトン溶液に azpy のエタノール溶液をゆっくりと滴下することによってオレンジ色の粉末として得た。また、 <math>[Cd(dpds)_{2}(H_{4}O)_{2}] \cdot 2NO_{3} \cdot 2EtOH(dpds=4, 4' -dipyridyldjsulfide)^{4)}(2 \cdot 2EtOH \cdot 2H_{2}O) の合成は Cd(N0_{3})_{2} \cdot 4H_{2}O の水溶 液に dpds のエタノール溶液でゆっくりと滴下させることにより、白色の粉末として得た。これらの構造は単結晶 構造解析、粉末 X 線構造解析および元素分析によって同定を行った。錯体 1 へのゲスト分子の吸着は試料を 100℃ で真空乾燥したのちに、室温常圧下でのゲスト分子の蒸気拡散によって調製した。一方、錯体 2 はゲスト溶媒に 浸して 1 日撹拌したのち、取り出して適度に表面を乾燥させることにより、調製した。$

キーワード:多孔性金属錯体、固体 NMR、吸着、分子挙動

なかにしやすのり、ほりけさとし、えんどうかずなか、きたがわすすむ

(2)固体NMRによる測定

¹³C 測定は日本電子社製の JNM-LA300WB を、²H 測定は Chemagnetics 社製の CMX-300 を使用した。¹³C のスペクトルは CP-MAS 法(回転周波数 4.0~4.3kHz)で、²H のスペクトルは四極子エコー法により測定を行った。また、スピンー格子緩和時間(T_1)は反転回復法によって測定した。

【結果と考察】 1の構造は中心金属の Cd と配位子の azpy が二次元シートを作り、これが積層することによって 5×5Å²の一次元チャンネルを持つ強固な骨格を形成する(Figure.1(a))。この細孔への吸着を様々なゲスト分子で試 み、¹³CNMRスペクトルを測定した。結果としてメタノール、エタノール、アセトニトリルなど極性の高い比較 的小さい分子は吸着されて、無極性のアルカンや嵩高い分子は吸着しなかった。一方、2の構造は中心金属の Cd と配位子の dpds が一次元鎖を作り、この鎖が規則正しく配列することにより 5×4Å²の一次元チャンネルを形成

している(Figure.1(b))。1の構造とは異なり、 ゲスト分子を完全に除去すると骨格が崩れて しまう柔軟な骨格であるが、吸着の選択性に 関しては同じような傾向を示した。その中で メタノールを吸着させた¹³CNMRスペクト ルを比較してみると、バルク状態の化学シフ トに対して1に吸着した分子は 2.4ppm の低 磁場シフトを示し、2は 1.9ppm 高磁場シフ トを示した(Figure.2)。これは同じようなサイ ズ・形の一次元チャンネルを持つ2つの錯体 でも違った環境の吸着サイトと相互作用して いることを示唆している。

また、細孔内に閉じ込められた分子の挙動 を調べるために、²HNMRでゲスト分子の スペクトルの温度依存性を調べた。Figure.3 に示す1中のメタノール-d₁のスペクトルは 温度を上げていくにつれてピークが次第に尖 鋭化していくが、室温でも幅広いピークを示 した。これより、ミクロ孔内のメタノール分 子は異方的な運動状態にあることが分かった。 また、スペクトルパターンからこの運動は

Figure.1 Structures of porous coordination polymers (a) 1 (b) 2

Figure.2 ¹³CNMR spectra of methanol adsorbed in (a) 1 (b) 2 *--- spinning side band

C-O 軸回りの C_2 回転であると考えられ、 T_1 の温度依存性のプロットから運動パ ラメーターを求めた。活性化エネルギーは 12.6kJ/mol であり、同じくらいのチャンネルサイズを持つゼオライト H-ZSM-5 と比較しても大きい値となった。

このようにミクロ細孔を持つ多孔性金属鍇体は骨格とゲスト分子の間に密接 な関係があり、大きな空孔を持つ物質には見られない制限を受けた運動状態が 観測された。各鍇体における細孔中でのゲスト分子の挙動についてもその詳細 を報告する。

- 325 -

【参考文献】

1) R.Kitaura et al., Angew. Chem. Int. Ed. 2002, 41, 133-135

- 2) R.Kitaura et al., Angew. Chem. Int. Ed. 2003, 4, 428-431
- 3) M.Kondo et al., Chem. Mater. 2000, 12, 1288-1299
- 4) M.Kondo et al., J. Solid State Chem. 2000, 152, 113-119

of Methanol- d_1 adsorbed in 1.

高温超伝導バルク磁石を用いた NMR 信号の検出

(理化学研究所) 〇仲村 高志、鵜澤 洵(イムラ材料開発研究所) 伊藤 佳孝(アイシン精機) 岡 徹夫

Acquire NMR Signal using High Tc Superconducting Bulk Magnet ¹RIKEN, ²IMURA Material R&D CO., LTD., ³AISIN SEIKI CO., LTD.

Takashi Nakamura¹, Jun Uzawa¹, Yoshitaka Itoh², Tetsuo Oka³

We developed the NMR Magnet using High Tc Supercunducting(HTS) Bulk Material. This Magnet operated field strength 3T, bore size 4.2mm with the method that used stacked $\phi 36mm \times 20mm \times 2$ HTS bulk. HTS Bulk magnet drove a 58K using the pulse tube refrigerator. And we succeeded in observing a ¹H signal of silicon rubber. This magnet has capable of very high stability and homogeneity. We want to examine whether we can use this magnet as a magnet of a NMR device in the future.

はじめに

ベトノルツとミュラーの高温超伝導発見以降始まった高温超伝導の研究はこの 17 年あまりで理論及びその応用で急速な進歩を続けてきている。しかし、まだ Tc が 100K であることなどから実用的な応用は未だに無いのが実情である。 さて、この応用面 で最初に期待されたものが既に超伝導で実用化されている NMR や MRI であること は想像に難くない。しかし、この場合もコイルにするための技術開発が困難である ため7T の磁石が開発されているが NMR 装置としての供与はされていない。そこで 我々は、線材以外のアプローチで磁石を開発することを試みた。高温超伝導体の主 な応用形態は、既にあげた線材以外に薄膜、バルクが挙げられる。薄膜は主にエレ クトロニクスの分野での応用が考えられており、バルクは永久磁石を強力に代替す るものとして考えられている。そして、この応用として磁気分離等では既に成果が 上がっている。我々はこのバルクに着目し、強力な磁石の作製に成功している。¹⁾

また、製造にかかるコストも線材の作成より安価に出来ることが考えられるため、 コンパクトでかつ強力な磁石が創造できる可能性があり、移動も可能な新しい NMR 装置を生み出すことの出来る磁石として大いに注目できるのではないかと考えてい る。

キーワード 高温超伝導、磁石

なかむら たかし、うざわ じゅん、いとう よしたか、おか てつお

実験

高温超伝導体には Bi 系と Y 系があるが、バルク体は Y 系である RE-Ba-Cu-O 系で 作成される。これは RE-Ba-Cu-O の高温超伝導体の結晶相図において 123 相と 211

相が共存する相が存在するため である。123 相の超伝導相中に 211 層が均一に分散することで 211 相が超伝導を示さない点と してピン止め点として働き、強 力な磁場を捕捉することが出来 る。我々は SmBaCuO において Top-seeded melt-growth(TSMG method)法によりバルク体を 作 製した。この結果、Sm-Ba-Cu-O では 25K で 9T という高い磁 場を捕捉出来ている。²⁾材料を 作成する上で、重要な問題とし て材料の強度の問題がある。こ れは材料がセラミックであるこ とで強力な磁場を捕捉する事に より、自身が電磁力を受けて破 壊してしまうためである。我々 は、サンプルに20% wの AgO 2を添加することで強度を強化 することを見出し、これを利用

Fig.1 Trapped magnetic field distribution at 77K for Sm123 sample 36mm in diameter with 10% wt.% Ag₂O addition.

して**Φ36mm**の単一な領域を持ったバルク体の作製に成功した。このようなバルク 磁石は特徴的な磁場の分布を持つ(FIG.1)。単一の領域が出来ている場合には単一の ピークを持つ円錐形となり、何らかのクラックが発生し、単一の領域が出来なかっ た場合にはいくつかのピークが出来る。我々は、バルク体を用いた磁石を製作する にあたり、この単一のピークを持つバルク体を用いて作製した。

NMR を測定しようという場合、磁石の設計で重要なことに磁場の均一度がある。 特に、溶液の高分解能 NMR の場合には、シミング装置を用いることにより 10⁹から 10¹¹ 程度の均一度を達成している。高温超伝導バルク磁石は、先に述べたように表 面には単一のピークを持った円錐形の磁場分布を持つため、永久磁石の表面のよう な均一な磁場の分布を持たない。このため従来の永久磁石を用いた対向型の配置で は均一な磁場空間を形成できない。したがって、均一磁場を形成する方法が必要に なる。我々はこのバルク体の円の中心に穴をあけ、さらにこの穴をあけたバルク体 を 2 個重ねることにより、この穴の中に通常の SCM と同様の磁場均一空間が形成さ れるよう配置した。このバルク体は FIG.2 にあるように真空容器内に設置され、

Fig.2 A schematic drawing of NMR Magnet using HTS Bulk Material.

パルス管冷凍機と呼ばれるきわめて振動の少ない冷凍機により、超伝導遷移温度以 下に冷却される。バルク体は線材ではないので通電による励磁は行えない。したが って、着磁する方法は、磁場中で冷却する(Field cooling: FC)と呼ばれる方法とコンデ ンサ等に充電した高電圧を瞬時にコイルに流すことによるパルス着磁(Pulsed-Field Magnetization: PFM)の方法が挙げられる。我々は、JASTEC 製 JMTC-400/89 (9.4T.Wide Bore)の SCM を用いた FC 法による着磁を行なった。バルクの強度の問題、またパ ルス管冷凍機の性能を 55K 程度とした場合に、着磁を行うときのバルク体の温度を 60K に設定すること(このことで着磁後の安定性を確保している)から、励磁する 強度は 3T とした。FC 法による着磁は、次の通りである。 1) SCM の磁場をゼロに する。2)常温状態のバルク体磁石の磁石中心を SCM の磁場の中心に正確に設置す る。3) SCM をターゲットの磁場強度(3T)に設定する。4) バルク体を 60K まで冷 却し、およそ2時間安定させる。5)SCM の磁場をゼロに戻す。6)超伝導体の温 度制御を停止し、冷凍機の最大能力(56~54K 程度)で運転する。これで、バルク体に 3T が着磁される。着磁後、バルク磁石の中心を基準に Hahn のスピンエコー法を用 いて Chemagnetics 社製の CMX-400 Infinity を用い、自作のソレノイドΦ3mm のプロ ーブにサンプルとしてガラス製のキャピラリに直径 1.2mm 長さ 1.5mm のシリコンゴ ムを設置し、¹H の信号を探索したところ、装置の穴の上端より 83mm(バルク体の 中心より 5mm 上方) にて共鳴周波数 123MHz の信号を観測した (Fig.3)。半値幅 1800ppm で 10²程度の均一度しかないため、今回の実験では高分解能のスペクトル は望めなかった。

Fig.3 ¹H NMR spectra measured at 81-85mm position from the magnet top edge. Spectrum was obtained 4000 accumulation, 1sec pulse delay, $\tau = 20 \mu$ sec, 90-degree pulse width 1.2 μ sec.

結論

高温超伝導バルク体を使用した NMR 用磁石を作製し、NMR 信号を観測できた。今回の着磁では、着磁に用いた SCM の磁場の分布を観測していなかったため、着磁後の磁場の分布に対しての評価が困難である。次回以降の実験で分布のメカニズムを解明し、高温超伝導バルク磁石の性能の評価向上を図る予定である。

Reference

1) T. Oka, Y. Itoh, Y. Yanagi, M. Yoshikawa, H. Ikuta and U. Mizutani, *Physica* C 335 (2000) 101-106

2) U. Mizutani, A. Mase, H. Ikuta, Y. Yanagi, M. Yoshikawa, Y. Itoh and T. Oka, Mat. Sci. Eng. B65 (1999) 66-68

演題名:高偏極 Xe129 によるラット頭部の MR スペクトル 秋田県立脳血管研究センター

〇若井篤志、中村和浩、Kershaw Jeff、近藤靖、Wright David、菅野巖

Title : MR spectra of Rat Head using Hyperpolarized Xe-129 Akita Research Institute of Brain and Blood Vessels

OAtsushi Wakai, Kazuhiro Nakamura, Jeff Kershaw, Yasushi Kondoh, David Wright, Iwao Kanno Abstract: Xenon has a high solubility in blood and lipids and the polarization of ¹²⁹Xe can be enhanced to about 5-orders larger than the thermal equilibrium polarization by using an alkali metal optical pumping method. Therefore, ¹²⁹Xe may be an excellent MR probe for brain tissues. To establish whether Xe is effective as such a probe, we inserted an endotracheal tube into the trachea of an anesthetized rat and obtained ¹²⁹Xe spectra from the rat head using a 4.7T MRI magnet and a hand-made surface coil. A 20cm3 volume of Xe gas with 5-7% polarization was produced by our home-made optical pumping system. The observed spectra contained a peak chemically shifted 194.8ppm from the gas phase peak, this being accepted as a signal from Xe inside the brain tissue. In addition, there were two peaks at 210ppm and 188ppm that may be attributed to blood and fat in the head, respectively.

要旨: キセノン 129 (¹²⁹Xe)は、アルカリ金属原子をもちいた光ポンピング法により、熱平衡状態の 10 万倍に偏極率を高めることができる(超偏極)。このことは、微量の MR 計測が可能であることを意味する。 また、キセノンは、脂質成分に対し高い溶解性を示し、このとき原子周辺の環境の影響を受け、顕著なケ ミカルシフト(200ppn 程度)やスピン緩和を引き起こす。このような性質により、生体組織とくに脳組織内 でのMRプローブとしての使用が期待されている。ケミカルシフトの温度依存性から脳組織温度の定量評 価や常時性分子の存在により緩和時間 T₁ の低下がみられることから、組織酸素飽和度の定量化や Free Radical 物質の分布調査への使用が期待できるものと考えている。

このような目的のため、いくつかの研究グループがすでに取り組んでいるが、未だ満足できる結果は得られていない。組織中のキセノン 129 の緩和時間が 10 秒程度と短いため、生体内においては急速にその偏極率を低下させ、十分な信号強度の検出が難しいためであると考えている。これを避けるためには、高い偏極ガスの効率的な導入と迅速な計測が必要となる。

今回、生体への導入手法技術の確立のため、麻酔下のラットに、キセノンの偏極低下を引き起こす酸素 との混合を極力抑えるため、二重管による挿管を施し、キセノンガスを吸入し、頭部での MR スペクトル計 測をおこなった。

キーワード: Hyperpolarized Xe, Laser polarized Xe, 129Xe, Rat brain, MR spectra

著者:わかいあつし

キセノンの偏極装置として、図1に示す生成装置を製作した。アルカリ金属としてルビジウムを、内容

積 80cc の偏極用ガラスセルの中にあらかじめ封 じ込め、外部からの熱風(100℃)により加熱、ガ ス内にルビジウム原子を蒸気として混入させて いる。光ポンピングの光源として、コヒーレント 社 FAP system DU0(794.7nm 60W 円偏光)を使用し ている。偏極用ガスとして、Enriched ¹²⁹Xe(91% 濃縮)に窒素を20%加えた混合ガスを使用し、偏極 率5~7%のガス、20 cc をラットに与えた。MR 計測には、4.7T 動物用 MR 装置(Varian INOVA)を 使用し、コイルには、¹H⁻¹²⁹Xe dual surface coil を製作し使用した。ラットの肺には、20cc/30s の割合でガスを肺に送り込んだ。MR 計測は、送 り込みの前からはじめ、終了後 10 秒以上にわ たり計測を続けた。ラットの体温は、温水ヒータ により 37℃に維持されていた。

1秒間隔の60回計測スペクトルを積算すること により、詳細にわたるスペクトルが得られた (Fig.2)。メインのピークは、ガス相の信号を基 準として、194.8ppmの位置に確認できる。このピ ークは、脳組織内部のキセノンからの信号である と指摘されている¹。その他に、210ppm と 188ppm にも小さなピークを確認することができるが、 各々、血液成分中および頭部脂質部中のキセノン からの信号であると推測している。

また、これら顕著な Xe スペクトルが得られて いることから、導入手法としての二重管挿管によ る導入は効果的であったと判断している。

Fig. 1 : Schematic of the optical pumping/spin exchange system.

Fig. 2 : NMR spectra of hyperpolarized 129Xe in rat head.

¹ SD. Swanson et al., "Brain MRI with Laser-Polarized 129Xe" Magn. Reson. Med. 38 (1997) 695-698.

天然有機化合物の NMR データベース "CH·NMR·NP"

システムの展開

(NMRDBTech) 〇早水紀久子、(東大農) 降旗 一夫

Development of the NMR database for organic natural products "CH-NMR-NP"

K. Hayamizu (NMRDBTech), K. Furihata (Tokyo Univ.)

An NMR spectral database for natural products, CH-NMR-NP, has started to build since April, 2002 by compiling the NMR spectral data of the natural compounds from the literatures (*Chem. Pharm. Bull., J. Antibiotics, Tetrahedron, Tetrahedron Letts., Magn. Reson. Chem., J. Nat. Prod., J. Org. Chem., Eur. J. Org. Chem.* and others) issued in 2002. The number of the data collected from the Journals in 2002 was about 1150 in the CH-NMR-NP. The accumulation of the data is continuing for the Journals issued in 2003 and the total number of the compiled data is 1,600 at the end of September 2003.

The search and display systems had been improved to distinguish C, CH, CH₂, CH₃ signals.

1. 緒言 有機天然物の構造決定における NMR の役割は重要であり、天然物の研究では NMR は不可欠な研究手段になっている。構造の多様性から NMR データはデータベース化する価値が 高いのにもかかわらず、¹HNMR と ¹³CNMR データを同時に収録したデータベースはみあたらな い。昨年の NMR 討論会で発表したように、我々は 2002 年 4 月頃からデータベース構築の構想 を策定して構築活動を開始し、データ収録作業を行った。1 年半あまりの経験からデータベース 作成方針がほぼ確定したので報告する。

2. データベース項目の追加 NMR の帰属を化学構造式に論理的に書きこむ機能がある ISIS/Base を化学用 DBMS としている。化合物名、化学構造式、分子式(化学構造式から自動発 生)、分子量(自動発生)、NP 番号、溶媒、シフト基準、NMR 装置名、文献、正式な化学名(IUPAC 名)、コメントに加えて、¹HNMR 測定周波数、参照著者と E·mail アドレスを追加した。文献か ら引用するので、化学構造式は必須データであるが、他のデータ項目の欠落は許容することにした。 ¹H と¹³CNMR のシフト値並びに¹HNMR の分裂パターンや結合定数などの主として数値データ は Macrosoft Excel で入力している。昨年の NMR 討論会以降に炭素に結合している水素数を追 加データ項目とした。このデータは ¹³C スペクトルパターン表示において、C,CH,CH₂,CH₃の識 別(DEPT)のために用いるも目的であったが、入力ミスのチェックに非常に有効である。

3. 文献からのデータ入力 文献としては、Tetrahedron, Tetrahedron Letts., Magn. Reson. Chem., J. Antibiotics, J. Org. Chem., Eur. J. Org. Chem., J. Natural Products で開始したが、 日本薬学会の Chem. Pharm. Bull を追加した。.天然物の研究分野でのわが国の強さがわかる。 データベース化の対象は天然物ならびに関連する化合物でデータベース採用基準は以下の通りで ある。原則として NMR データの質に重点をおき、化合物の選別は行っていない。

1. 化学構造式が明確に描かれていて、テキストに書かれている分子式と矛盾しない。

2. ¹Hと¹³Cのシフト値が帰属を含めて表形式で記述されている。

3. 化合物名(trivial name あるいは正式な化学名)があること。化学構造式と Compound 1 などの記述だけのデータは採用しない。

4. NMR スペクトルに明らかな間違えがないこと。

5. 文献データを収録するので、化合物あるいは NMR に重大な間違えがあればデータベースに 入力しない。些細な間違えやデータ不足の場合にはコメント欄に帰属を変えた、データが記述さ れていない、あるいは一部削除したと書いて入力している。

6. NMR スペクトルが類似している場合には重複入力しないようにしている。

NMR データベース、有機天然物、データ入力、検索、表示

はやみず きくこ、ふりはた かずお

4. 検索と表示

現在のところ、PostgreSQL を Web 方式の DBMS としている。入力ツール ISIS/Base と EXCEL で入力したデータを upload して検索に用いている。検索項目は

- 1. 名前 部分一致、大文字小文字区別なし
- 2. 分子式 部分一致 例 C30 炭素数 30 の化合物
- 3. 分子量 範囲指定可能 例 1400·(分子量 1400 以上の化合物)
- 4.NP_No 範囲指定可能
- 5. ¹³C シフト値と ¹H シフト値

検索ロジックは AND、部分一致検索、範囲検索である。

Figure 1. An example of the display on a Web system.

帰属のついた化学構造式はイメージデ ータで表示項目は名前、分子式、分子量、 溶媒、シフト基準、¹H 観測周波数、文献、 化学名、コメントである。Excel で入力し たスペクトル情報は¹³C シフト値と¹H シ フト値、HNMR に関する情報(分裂パタ ーン、J 値、位置情報(α 、 β 、endo,exo 等)、NH,NH₂,OH など)を表形式で示す。 ¹³CNMR のパターンを棒グラフで Java 表示(拡大可能)した(例図1)。等価な 炭素がある場合には強度を炭素数に比例 するように表示した。また C, CH, CH₂, CH₃ シグナルを識別して表示できる。

5. データ収録の現状

上記の文献の 2002 年度発行のジャーナ ルからのデータ収録件数は約 1150 件であ る。2003 年発行のジャーナル、我々の研 究論文などから 9 月末現在で総計 1600 件 のデータを収録している。収録化合物の炭 素数による分布を図2に示す。C20 と C30 がとりわけ多いことに自然界の不思議さ を感じる。

6. 今後の課題

— 333 —

有機天然化合物の教科書に載っている 基本的に重要な化合物のデータを収録し たいが、データを探すことが容易でないこ とがわかった。

検索システムにおいて、部分構造検索が 必須であるが、その方式については模索中 である。検索・表示システム開発には資金 が入用なので、この点についても解決しな ければならない。またデータの拡大、ユー ザ獲得などの課題は多い。

なお、モニター用のホームページは稼動 している。

固体 NMR のテクニックの液体試料への応用

(金沢大理¹、Princeton University²) ○水野元博¹、Warren S. Warren²

Applications of Solid NMR Techniques to Liquid Samples

Motohiro Mizuno¹ and Warren S. Warren²

¹Department of Chemistry Faculty of Science Kanazawa University Kanazawa 920·1192 ²Department of Chemistry Princeton University Princeton New Jersey USA 08544·1009

In the intermolecular multiple-quantum coherences (iMQCs) experiments, the distant-dipolar field (DDF) gives inhomogeneous broadening in the F_2 dimension and limits the data acquisition time. We show that solid-state NMR techniques can be applied to iMQCs experiments in order to obtain high-resolution spectra. Magic angle spinning (MAS), which is frequently employed in solid NMR, is expected to suppress DDF and inhomogeneous broadening. However, suppression of DDF makes it difficult to observe iMQCs signal concurrently, since iMQCs signal is generated by DDF. We propose a new pulse sequence to overcome this difficulty. This pulse sequence reintroduces DDF by multiple pulses synchronized with MAS while the iMQCs signal is being generated. Simulations of 2-quantum CRAZED measurements using dipolar recoupling (DRAMA) and MAS were performed.

【序】

通常の液体の NMR 測定では磁気双極子相互作用はキャンセルされてスペクトルに影響しないが、 磁場勾配パルスを用いて磁化の分布の対称性を崩すことにより、液体でも遠隔の磁気双極子相互 作用 (Distant Dipolar Field : DDF)を復活させることができる[1,2]。典型的な例が CRAZED

(COSY Revamped with Asymmetric Z-gradient Echo Detection) シーケンス (Fig.1) を用い た測定で、復活した DDF は分子間多量子コヒーレンスのピークを F_1 次元に与える。液体試料に おける¹H NMR の分子間多量子コヒーレンス実験において、DDF は F_2 次元のスペクトルに数 Hz の不均一線幅を与える。このため、信号検出時間に制限が生じるとともに J カップリングなど の詳細な解析が困難になる。これらの困難に対処し、分解能を上げ信号強度を増大させるために、 固体 NMR のテクニックの応用が期待される。本研

究では MAS 及び dipolar recoupling を用いた液体の 2 量子 CRAZED スペクトルのシミュレーションを行った。

Fig.1 CRAZED sequence

【シミュレーション】

CRAZED シーケンスにおける磁化ベクトルの時間発展は磁気双極子相互作用を含んだ以下の modified Bloch equation を用いて計算した。磁気双極子相互作用の計算においてプロトンの密度 は水の値を用いた。

$$\frac{d}{dt}\vec{M}(\vec{r},t) = \gamma \vec{M}(\vec{r},t) \times \left\{ \left[\frac{\Delta \omega(\vec{r})}{\gamma} \hat{z} + G(\vec{r} \cdot \hat{s}) \hat{z} \right] + \vec{B}_{\rm d}(\vec{r},t) \right\} + D \nabla^2 \vec{M}(\vec{r},t) - \frac{\vec{M}_{\rm x}(\vec{r},t) \hat{x} + \vec{M}_{\rm y}(\vec{r},t) \hat{y}}{T_2(\vec{r})} + \frac{\vec{M}_0(\vec{r},t) - \vec{M}_{\rm z}(\vec{r},t) \hat{z}}{T_1(\vec{r})} \hat{z} \\ \vec{B}_{\rm d}(\vec{r}) = \frac{\mu_0}{4\pi} \int d\vec{r}' \frac{1 - 3\cos^2 \theta_{\rm rr'}}{2|\vec{r} - \vec{r'}|^3} \left[3M_{\rm z}(\vec{r}') \hat{z} - \vec{M}(\vec{r}') \right]$$

Intermolecular multiple quantum coherence, CRAZED sequence

【結果と考察】

Fig.2 に 2 番目の磁場勾配パルス直後から MAS を開始したときの 2 量子 CRAZED 信号のシミュ レーションを示す。(b)は static すなわち従来の 2 量子 CRAZED 信号を示す。2 量子 CRAZED 信 号は DDF によって生成され、エコー信号として観測される。シミュレーションでは 200ms 付近 にエコーの最大が現れた。Fig.2(c)と(d)は MAS 速度が 1 Hz と 10 Hz の結果を表す。MAS の速 度が増すにつれて、信号強度は急激に減少していった。この結果は、CRAZED 信号生成時の MAS による DDF の消去が信号の強度を急激に減少させることを示している。そこで、CRAZED 信号 が生成される間 dipolar recoupling 用の multi-pulse によって DDF を復活させることを試みた。 Fig.3(a)に MAS 及び DRAMA シーケンスを用いた 2 量子 CRAZED シーケンスを示す。このパル スシーケンスを用いて 2 成分系 (化学シフト値 8Hz, 18Hz) における 2 次元 2 量子 CRAZED ス ペクトルのシミュレーションを行った (Fig.3(b))。ここで、 4 は MAS と同期して変化させた。 Fig.3(c)に MAS と dipolar recoupling を行わない従来の 2 量子 CRAZED シーケンスによる 2 次元 スペクトルのシミュレーションを示す。これらのシミュレーションから、MAS による F₂ 次元の スペクトルの先鋭化及び DRAMA シーケンスによる MAS 中での CRAZED 信号の生成が確かめ られた。

Fig.2 (a) The 2-quantum CRAZED sequence with MAS, used in investigation of effect of MAS in t_2 period on signal. MAS starts just after second field gradient pulse in this pulse sequence. (b), (c) and (d) show simulated 2-quantum CRAZED signal with MAS using the sequence of (a) for MAS speed of 0 Hz, 1 Hz and 10 Hz, respectively. Simulation was made with following parameters: t_1 =99 ms; T_1 =4.0 s; T_2 =2.0 s; D=1.3x10⁻⁵ cm²/s; G_z =2.0 G/cm T=1 ms for GT; G_z =4.0 G/cm, T=1 ms for 2GT.

Fig.3 The 2-dimensional 2-quantum CRAZED spectra for 2-components with chemical shifts 8 and 18 Hz. (a) The 2-quantum CRAZED sequence with MAS and dipolar recoupling for 2-dimensional measurements. (b) Simulated spectrum with MAS (ν_r =100Hz) and DRAMA (duration 400 ms), (c) Conventional 2-quantum CRAZED spectrum simulated under same conditions as (b) except for MAS and DRAMA. Simulation was made with following parameters: T_1 =4.0 s; T_2 =2.0 s; D=1.3x10⁻⁵ cm²/s; G_z =2.5 G/cm, T=1 ms for GT; G_z =5.0 G/cm, T=1 ms for 2GT.

W. S. Warren, W. Richter, A. H. Andreotti, B. T. Farmer II, *Science* <u>262</u> (1993) 2005.
S. Lee, W. Richter, S. Vathyam, W. S. Warren, *J. Chem. Phys.* <u>105</u> (1996) 874.

ポスター発表要旨

第三日

11月28日(金)

21.6T で測定した卵白リゾチウムの H-H 2次元 NOESY スペクトル

○ 根本暢明¹、氣田佳喜¹、末松浩人¹、朝倉克夫¹、穴井孝弘¹、栗原範 明¹、竹内茂²、吉川正敏³、木吉司³、和田仁³、前田秀明⁴⁵、廣田洋⁴⁵、 横山茂之⁴⁶⁷

¹日本電子、²日本電子データム、³物質・材料研究機構、⁴理研 GSC、⁶横浜市立大院、⁶理研播 磨、⁷東大院理

¹H-¹H two-dimensional NOESY spectrum of hen lysozyme measured at 21.6T

<u>Nobuaki Nemoto¹</u>, Yoshiki Kida¹, Hiroto Suematsu¹, Katsuo Asakura¹, Takahiro Anai¹, Noriaki Kurihara¹, Shigeru Takeuchi², Masatoshi Yoshikawa³, Tsukasa Kyoshi³, Hitoshi Wada³, Hideaki Maeda⁴⁵, Hiroshi Hirota^{4,5} and Shigeyuki Yokoyama^{46,7}

¹JEOL LTD., ²JEOL DATUM LTD., ³National Institute of Material Sciences, ⁴RIKEN Genomic Sciences Center, ⁵Graduate School of Integrated Science, Yokohama City University, ⁶RIKEN Harima Institute, ⁷Graduate School of Science, the University of Tokyo.

National Institute of Material Sciences, RIKEN and JEOL LTD. developed an NMR system working at 21.6T ([']H frequency is 920MHz). On this spectrometer, we obtained a very beautiful two-dimensional [']H-[']H NOESY spectrum of hen lysozyme solution using a triple resonance probe working at room temperature.

21.6T、920MHz、NOESY、卵白リゾチウム

ねもとのぶあき、きだよしき、すえまつひろと、あさくらかつお、あないたかひろ、くりはら のりあき、たけうちしげる、よしかわまさとし、きよしつかさ、わだひとし、まえだひであき、 ひろたひろし、よこやましげゆき これまでに、物質・材料研究機構、理化学研究所、日本電子は共同で、21.6T ('H の共鳴周波 数で 920MHz) で動作する NMR 装置を開発した。この装置を用いて、文部科学省の"タンパ ク3000プロジェクト"への適用を目指し、1mM 卵白リゾチウムの 'H-'H 2次元 NOESY スペクトルを測定したところ、非常に美しい2次元スペクトルを得ることに成功したので報告 する。卵白リゾチウムは購入品を用いた。90%H₂O/10%D₂O (体積比)の溶媒に溶かし、1mM の水溶液とした。試料管にはシゲミ製水溶液用対称ミクロセルを用いた。プローブは、5mm φ の 'H 観測、¹³C 及び ¹⁵N 照射の三重共鳴プローブを使用し、25℃で測定を行った。パルスシー ケンスは、W5 シーケンスを使用した WATERGATE 法で溶媒消去を行い、混合時間は 100ms とした。総測定時間は約1時間40分である。スペクトルを以下に示す。

Figure 'H-'H two-dimensional WATERGATE-NOESY (mixiging = 100ms) spectrum of 1mM hen lysozyme measured at 21.6T.

DPFGSE-NOESY/TOCSYスペクトルの解析に有益なデカップリング法

(理研 PSC) 〇鵜澤 洵、吉田 茂男 (日大薬学部) 藤本 康雄

Useful decoupling technique for the analysis of DPFGSE-NOESY/TOCSY spectra

Jun UZAWA¹, Shigeo YOSHIDA¹ and Yasuo FUJIMOTO²

(RIKEN PSC¹, College of Pharmacy; Nihon Univ.²)

We demonstrate that the combination of Double Pulsed Field Gradient Selective Exitation (DPFGSE)-NOESY/TOCSY and Homo Spin Decoupling (HSD) or Selective Population Transfer (SPT) are useful for structural determination of complex molecule such as triterpene glycoside (ex. digitoxin). As shown in Fig.2, the proton signals due to H-4 of dig-1 (dig-1-4) and dig-2 were clearly discriminated by application of the combination method of DPFGSE-ROESY and HSD (Fig. 2, c and d) in spite of very small chemical shift differences (0.02 ppm) between H-dig-1-3 and H-dig-2-3. On the other hand, in the combination spectrum of DPFGSE-NOESY and SPT (Fig.3), SPT interaction appeared for a proton with or without regard to NOE.

We had good results in the structural elucidation of natural products from plant resources by application of the present methods.

1. 緒言

天然有機化合物や関連する合成化合物など複雑な化合物の構造解析の分野では二次元NM Rばかりでなく、一次元のSelective-COSYをはじめ、TOCSYやNOE、ROEが頻繁に使われ ており、重要な役割をになっている。高度な多次元測定法を適用することが困難な場合が多 い一方で、これらの化合物は類似の化合物が混在する場合も多い。ある程度化合物の大きさ や性質が違えば、LC-NMRや自己拡散係数の違いを検出するDOSYが有効であるが、構造が 微妙に異なる場合や類似のものが混在する場合は不可能となりかねない。これらの試料では 分離した特定の信号を手掛かりに部分構造や立体構造を見付けることが有効な手段となる。

化合物が大きくなり構造が複雑になると共にTOCSYやNOEによって記録されるプロトン の数も増え、その帰属に迷うことも出てきた。このようなときに確実な帰属法として、 TOCSY-COSYなど、1D-TOCSY展開後に二次元COSY展開を行う方法も発表されている¹。 1D-ROESYにホモスピンデカップリングを組み合わせる試みもなされている³。スピン系全

DPFGSE-NOESY/ROESY、DPFGSE-TOCSY、SPT、微量試料、ステロイド配糖体

うざわじゅん、よしだしげお、ふじもとやすお

- 338 ---

体の相関が得られなくても、特定のプロトンとの相関が確実に判れば構造上の必要な情報が 得られる場合が多いので、感度と信号の重なりの問題も考え合わせ、一次元と二次元の適切 な使い分けが賢明である。今回、優れたプロトン選択照射法であるDouble Pulsed Field Gradient Selective Excitation (DPFGSE) 法による一次元のNOESY、TOCSY、ROESYにスピンデカッ プリングやSelective Population Transfer(SPT)法を組み合わせる方法について検討した結果 を報告する。SPT法はスピン結合定数の符号を決定する手段として知られているが、スピン デカップリング法と同様にスペクトルの帰属にも使われてきた。SPT法は多重線のうち1本 でも重なり合った信号から分離していれば良いので、プロトン照射の選択性が勝っている。 2.実験法

装置はJNM-α400を使用した。パルス系列は第1図を用いた。前段のDPFGSE 照射は観 測チャンネルを用い、デカップリングまたはSPT照射を照射チャンネルとした。これによっ て、DPFGSEとSPTの照射パワーの最適値を(c)、(d)を使って独立して求めることが できる。ソフト180°パルスにはガウスパルスを用いたが、矩形波でも他の関数パルスでも

本質的に変りはない。スピンデ カップリングタイプの照射強度 は通常のデカップリングで決め た値を用いた。SPTタイプの PI2としては、選択性と緩和時 間による減衰を考慮して、100 ms程度とした。選ばれたPI2で 特定のピークが反転するように 照射パワー (IRATN)を決めた。

(b)では、mixing timeとPI2後の観測パルスを45°とした。

3. 結果

Digitoxin のシフト値入り構造式とDPFGSE_ROEのホモスピンデカップリングの結果を第 2図に示す。この試料の場合、通常の糖鎖では別れて出るアノメリックプロトンが3個共重 なってしまう。ここでは、アノメリックプロトンからROEが観測される2個の4位プロト ンに対する3位をデカップリングした結果を示す。このように小さなスピン結合定数(3Hz) の場合はかなり近接したシフト差(0.02ppm)でも分離して観測することができた。

— 339 —
Fig. 2

SPTタイプの実験例はストリキニーネの結果を第3図に示す。ある特定のプロトンから NOEがあるプロトンの分裂した1本のピークを照射すると、それとスピン結合のあるプロ トンに磁化の移動が起こる。第3図(c)に示すように、H-11aを照射するとH-11b、H-8、H-12に対してNOEが見られるが、H-11bの1本のピークを照射すると、H-11bの磁化 がH-12に移動し、H-12が大きく変化する。このSPTによる磁化の移動は前段のNOEが有る 無しとは関係ない。(d)に示すように、H-18aを照射すると、H-8に大きなNOEが見られ るが、H-8の1本のピークを照射するとH-18aからNOEのないH-13があらわれてくる。

Fig. 3

4. まとめ

本測定法は重なり合った信号でもNOESY/ROESY/TOCSYによって表れた信号だけを対象に解析できるという特徴を持っている。DPFGSE-NOE(ROE)にスピンデカップリング法を組み合わせる方法はNOEの無いプロトンを照射してもスペクトル変化が見ることができる。一方、SPT法は、特定のプロトンからNOEによって表れたプロトンからスピン結合を経て特定のプロトンへの磁化の移動を見る。この場合、NOEのないプロトンへも磁化移動を行う。演者らは植物から得られた様々な化合物の構造解析を行っているが、既知試料やそれらの混合物について本報告で述べた測定法を検証し、好結果を得ている。参考文献

(1) 瀬戸治男、降旗一夫、佐々木徹、第31回天然有機化合物討論会要旨集、316 (1989).

J.M.Nuziland and G.Massiot, J.Magn.Reson.,91,380(1991).
(2) 越野広雪、鵜澤 洵、第34回NMR討論会要旨集、207(1995)。

シェープドパルスを用いた選択的緩和法の改良 - 水溶液 中でのウリジン誘導体のコンホメーション解析 -

(神戸薬大¹, 阪大院工²) ○杉浦眞喜子¹, 和田健彦², 井上佳久²

Modification of Selective Relaxation Method using Shaped Pulse. – Application to the Conformational Analyses of Uridine Derivative –

Kobe Pharmaceutical University¹ and Graduate School Engineering, Osaka University²

Makiko Sugiura, Takehiko Wada, and Yoshihisa Inoue

The selective relaxation method has been modified, in which the selective shaped pulse is incorporated in the pulse sequence (Fig. 1) for the selective non-inversion T_1 (T_1^{SNI}) measurement. The high selectivity has been achieved by using i-SNOB-3 shaped pulse and then more accurate r_{ij} value is expected to be obtained. This new modified method has been applied to the conformational analyses of 5²-amino-5²-deoxyuridine (I) in phosphate buffer and borate buffer. The estimated r_{ij} values suggest that the conformations in these two buffers are different from each other. The predominant conformations of I in phosphate buffer and borate buffer seem to be Anti and Syn, respectively.

【はじめに】

選択的緩和法は、¹H の Selective Non-inversion T_1 (T_1^{SNI}) と Non-selective T_1 (T_1^{NS})の 差から交差緩和 σ_{ij} を求め、それを用いて H-H 間距離を得て分子のコンホメーション解析を 行う方法である。比較的 ¹H T_1 の長い低分子の化合物には有用なコンホメーション解析法の 一つであるが、 T_1^{SNI} 測定時の選択的 180° パルスの選択性が、実験の成否を左右する。事 実シグナルの接近した系では、うまく T_1^{SNI} の測定が出来なかったり、正しい H-H 間距離

が得られなかったりすることがあった。 今回 T_1^{SNI} 測定用の パルスシーケンスに,選択的 180°パルスとして選択性の高い シェープドパルスを組み込み, T_1^{SNI} の測定精度を上げること によって選択的緩和法の改良を試みた。また, D_2O 溶媒など で大きな残存 ¹H のシグナルが存在すると T_1 測定の精度が悪 くなるため, Fig. 1 のパルスシーケンスのように溶媒のシグ ナルをデカップルパワーで消去しながら測定することとした。

選択的緩和法 シェープドパルス 緩和時間 コンホメーション解析 5'-アミノウリジン

すぎうらまきこ, わだたけひこ, いのうえよしひさ

今回この改良法を適用したのは, 5'-アミノウリジン(I)である。この化合物は, リン酸 バッファー中とホウ酸バッファー中では, コンホメーションが変化することが示唆されてい る。¹⁾

【実験】

I をそれぞれリン酸バッファー,ホウ酸(共に PH 7.2)に 溶解し,脱ガス,溶封して測定サンプ ルとした。サンプル濃度はそれぞれ 5.4x10⁻²M, 4.3x 10⁻²M であった。

NMR 測定は, Varian INOVA-500 (¹H: 499.8 MHz, ¹³C: 125.7MHz) を用い, T_1^{NS} はデカップリング側 で溶媒を消去しながら Inversion-recovery 法で,

Fig. 2 A series of spectra for the T_1^{SNI} measurement of Ia using the pulse sequence of Fig. 1. Note that the signal for H1' is not inverted.

【結果と考察】

いた。

biochemical

applications)²⁾を 選び,シグナル幅

に合わせてバンド

幅を変化させて用

I のリン酸バッファー溶液 (Ia), ホウ酸バッファー溶液 (Ib) 共に, その ^IH スペクトル は, H5 と H1', H3' と H4' のシグナルがかなり接近しているが, Fig. 1 のパルスシーケン スによって測定したスペクトルは, Fig. 2 の例のごとく, 隣接したシグナルにほとんど影響 を与えずに目的のシグナルのみを選択的に反転させることが出来ている。(スペクトル上は, 選択的 180°パルスを予め照射されたシグナルのみ, 反転していない。)得られた T_1^{NS} , T_1^{SNI} の 値を Table 1 及び 2 に示したが, 期待通り, 隣接したシグナル同士においても妥当な T_1 の 値が得られている。

 selc.180*
 180*
 90*

 Obs.
 τ
 τ

 Cw
 cw
 cw

 Dec.
 Cw
 Cw

Fig. 1 The new pulse sequence for measurement of T_1^{SNI}

					observed i				
		H5	H6	H1'	H2'	H3'	H4'	H5'a	H5'b
T ₁ ^{NS} /S		4.14	1.52	2.91	2.16	2.01	2.53	0.76	0.72
	selected j								· · ·
T ₁ ^{SNI} /S	H5		1.71	2.75	2.07	1.94	2.43	0.73	0.70
T_1^{SNI}/S	H6	4.88		3.21	2.30	2.05	2.51	0.76	0.73
T_1^{SNI}/S	H1'	4.01	1.59		2.23	1.97	2.58	0.75	0.72
T₁ ^{SNI} /S	H2'	4.03	1.62	3.01		2.22	2.53	Q.76	0.73
T₁ ^{SNI} /S	H3'	4.08	1.53	2.92	2.39		2.55	0.77	0.74
T_1^{SNI}/S	H4'	4.11	1.51	3.00	2.19	2.04		0.78	0.73
T_1^{SNI}/S	H5'a	4.02	1.51	2.87	2.16	2.06	2.63		0.90
T ₁ ^{SNI} /S	H5'b	4.08	1.53	2.89	2.19	2.09	2.57	0.96	

Table 1. The observed T_1^{NS} and T_1^{SNI} values for I in phosphate buffer (Ia).

Table 2. The observed T_1^{NS} and T_1^{SNI} values for I in borate buffer (Ib).

		observed i							
		H5	H6	H1'	H2'	H3'	H4'	H5'a	H5'b
T_1^{NS}/S		2.62	1.05	1.73	1.17	1.35	1.60	0.53	0.50
	selected j	1,. <u></u>							
T₁ ^{sni} /s	H5		1.17	1.72	1.17	1.34	1.61	0.53	0.50
<i>Τ</i> 1 ^{SNI} /S	H6	2.88		1.92	1.24	1.35	1.60	0.53	0.50
T₁ ^{sNI} /s	H1'	2.58	1.11		1.19	1.34	1.64	0.53	0.50
T ₁ ^{SNI} /S	H2'	2.66	1.08	1.77		1.44	1.61	0.53	0.50
T_1^{SNI}/S	H3'	2.58	1.03	1.72	1.27		1.65	0.53	0.51
T₁ ^{SNI} /S	H4'	2.60	1.03	1.79	1.17	1.37		0.54	0.50
T ₁ ^{SNI} /S	H5'a	2.65	1.05	1.73	1.16	1.38	1.74		0.59
T ₁ ^{SNI} /S	H5'b	2.62	1.03	1.73	1.15	1.39	1.62	0.61	

これらの値から交差緩和を得,別途 ¹³C T_1 から得られた分子の回転相関時間 τ_c とから H-H 間距離 (r_{ij})を求めた。得られた r_{ij} の値を Table 3 に示したが,これら 2 つのバッファ ー中での値を見比べると,コンホメーションに微妙な差があることが示唆される。Ia, Ib いずれも,この得られた r_{ij} を完全に満足するコンホメーションを組み立てることは難しい

- 344 -

P	p V		(,		
Hi	Hj	la	lb		
H5	H6	2.4 - 2.6	2.4 - 2.8		
H6	H1'	2.6 - 2.8	2.5 - 2.6		
H6	H2'	2.6 - 2.7	2.6 - 3.0		
H6	H3'	3.2 - 3.5	a)		
H1'	H2'	3.0 - 3.1	3.1 - 3.2		
H1'	H4'	3.2 -3.4	3.1 -3.2		
H2'	H3'	2.4 -2.5	2.5 - 2.6		
НЗʻ	H4'	a)	3.0 - 3.2		
H3'	H5'a	2.6 - 3.1	3.0 - 3.4		
H3'	H5'b	2.7 - 2.8	2.9 - 2.9		
H4'	H5'a	2.6 - 3.1	2.5 - 2.6		
H4'	H5'b	a)	3.5 - 3.5		
H5'a	H5'b	1.8 - 1.8	1.9 -1.9		
		a > 40Å			

Table 3. The estimated r_{il} values (Å) of I in phosphate (Ia) and borate (Ib) buffer.

ことから,共にコンホメーションに揺らぎがあると考えられる。しかし,H6-H1':Ia>lb, H6-H2':Ia < Ib, H6-H3':Ia < Ib の関係にあることから,グリコシル結合廻りのコンホメ ーションについては,Ia では Anti, Ib では Syn 配向を優先的にとっていることが予想され る,さらに糖部分のコンホメーションについても,差があることが示唆されるが,詳細につ いては,現在検討中である。

【参考文献】

- T. Wada, N. Minamimoto, Y. Inaki, Y. Inoue, Chem. Lett., 1025 (1998); T.Wada, N. Minamimoto, Y. Inaki, Y. Inoue, J. Am. Chem. Soc., 122, 6900 (2000).
- 2) E. Kupce, J. Boyd, I. D. Campbell, J. Magn. Resn., B, 106, 300 (1995).

酵母 DSK2 の UBA ドメインとユビキチンとの

相互作用解析

 (財団法人木原記念横浜生命科学振興財団¹、横浜市大・院総合理²、 理化学研究所³、愛媛大・院理工⁴、九州大・院医⁵)
 ○大野綾子^{1,2}、廣明秀一²、藤原健一朗²、Jee JunGoo^{2,3}、天野剛志^{2,4} 栃尾豪人²、小林英紀⁵、白川昌宏²

NMR study on the interaction between the UBA domain of budding yeast DSK2p and the ubiquitin.

(¹Kihara Memorial Yokohama Found., ²Yokohama City Univ., Graduate School of Integrated Sci., ³RIKEN GSC, ⁴Ehime Univ., Graduate School Sci. Eng., ⁵Kyushu Univ., Graduate School Med. Sci.) ^OAyako Ohno^{1,2}, Hidekazu Hiroaki^{1,2}, Kenichiro Fujiwara², Jee JunGoo^{2,3}, Takeshi Tenno^{2,4}, Hidehito Tochio², Hideki Kobayashi⁵, Masahiro Shirakawa²

Ubiquitination, an attachment of a single molecule or chains of ubiquitin to a lysine residue of substrate proteins, act as regulatory signals that mediate a variety of cellular processes. These mono- or multi-ubiquitin tags are thought to be recognized by certain ubiquitin-binding motifs, such as UBA (ubiquitin-associated) domain, UIM (Ubiquitin-interacting motif) and CUE domains. UBA domains, consisting of approximately 45-residues, are conserved in a number of proteins involved in proteasomal degradation and intra-cellular trafficking. Solution structures of unliganded UBA domains are known to adopt a compact fold of a three-helix bundle. Nevertheless, structure of UBA domains in complex with ubiquitin has not been reported so far, although that of ubiquitin complex of CUE domain, which shows structure similarity with UBA domain, was recently reported. We analyzed the solution structure of the UBA domain of budding yeast DSK2p in complex with ubiquitin, and will discuss how the UBA domain recognizes ubiquitin.

ユビキチンは、基質蛋白質のリジン残基側鎖にイソペプチド結合を介して付加し、蛋白質タグとして機能する。このユビキチン化は、プロテアソームの蛋白質分解システム、DNA 修復、シグナル伝達や蛋白質輸送などにおいて重要な 役割を果たしていることが知られている。ユビキチン化のシグナルは、ユビキ

キーワード:蛋白質複合体、立体構造、相互作用解析

おおのあやこ、ひろあきひでかず、ふじわらけんいちろう、じーじゅんぐ、てんのたけし、 とちおひでひと、こばやしひでき、しらかわまさひ

キチン結合モチーフを介して結合することによって伝達される。これまでに、 UBA (ubiquitin-associated)ドメイン、UIM (ubiquitin interacting motif)を含む数種 類のユビキチン結合モチーフが同定されている。このうち UBA ドメインは、最 初に同定された約45残基からなるユビキチン結合モチーフ¹で、ユビキチン結 合酵素、脱ユビキチン化酵素、ヌクレオチド除去修復に関与している蛋白質な ど様々な蛋白質の中で見つかっている。いくつかの UBA ドメインでは、モノお よびテトラユビキチンとの結合が in vitro で確認されている^{2,3,4}。立体構造に関 しても、UBA ドメイン単独の溶液構造が既に解かれており、三本の αヘリック スバンドルからなることが報告されている⁵。最近になって、UBA ドメインと 類似していると考えられている CUE ドメインとユビキチンとの複合体の構造が 報告された⁶。しかし、UBA ドメインとユビキチンの複合体構造は報告されて いない。そこで本研究では、UBA ドメインのユビキチン認識機構について調べ るために、NMRを用いて出芽酵母のDSK2蛋白質のUBAドメインとユビキチ ンとの複合体構造解析を行った。DSK2は、373アミノ酸残基からなる蛋白質で、 N 末端側に UBL(ubiquitin-like)ドメイン、C 末端側に UBA ドメインを持っている。 N 末端の UBL ドメインがプロテアソームと結合することと、C 末端側の UBA ドメインが K48 リンクのポリユビキチンと結合することが明らかになっている ⁴。これより、DSK2 がユビキチン化された基質をプロテアソームに輸送する機 能を持つことが議論されている。しかし、UBA ドメインが如何にしてユビキチ ン鎖を認識するかは、詳細な知見が得られていない。

本研究ではまず初めに、NMR によるタイトレーション実験と表面プラズモン 共鳴法を用いた相互作用解析を行い、DSK2 の UBA ドメインがモノユビキチン に対しても結合することを確認した。次いて、それぞれ単独に発現・精製した ¹³C/¹⁵N 標識及び非標識の DSK2-UBA とユビキチンを用いて、標識パターンの異 なる二種類の複合体試料(¹³C/¹⁵N 標識 DSK2-UBA と非標識ユビキチン、非標識 DSK2-UBA と¹³C/¹⁵N 標識ユビキチン)を作製した。これらの試料を用いて、各 種 NMR 測定(測定温度 25℃)と解析を行い、分子内及び分子間の NMR 構造情 報の集積を行った。現在、これらの構造情報に基づき、複合体の構造計算を進 めている。構造計算には CYANA を使用した。発表では、この複合体構造と、 既に報告されている他のユビキチン認識モチーフとモノユビキチンとの複合体 溶液構造と比較し、相互作用様式の違いについて検討する予定である。なお、 この研究は、JST の支援のもとに行われたものである。

参考文献

- 1. Hofmann, K. et al. Trends Biochem. Sci., 21, 172-173 (1996)
- 2. Caroline R. M. et al. Nat. Cell Biol., 3, 939-943 (2001)
- 3. Bertolaet, B. L. et al. Nat. Struct. Biol., 8, 417-422 (2001)
- 4. Funakoshi, M. et al. Proc. Natl. Acd. Sci. USA, 99, 745-750 (2002)
- 5. Dieckmann, Y. et al. Nat. Struct. Biol., 5, 1042-1047 (1998)
- 6. Kang, S. R. et al. Cell, 113, 621-630 (2003)

フィブロイン遺伝子転写制御タンパク質における DNA 結合ドメインの立体構造解析

(北大院理¹、北大先端研²)
 o八卷 健¹、川口恭輔¹、相沢智康¹、滝谷重治²、出村誠¹、新田勝利¹

Structure analysis of DNA binding domain of fibroin gene transcriptional regulatory protein Takeshi Yamaki¹, Kyosuke Kawaguchi¹, Tomoyasu Aizawa¹, Shigeharu Takiya²,

Makoto Demura¹, Katsutoshi Nitta¹

¹Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, ²Center for Advanced Science and Technology, Hokkaido University

Fibroin-modulator binding protein (FMBP-1) consisting of 218 amino acid residues correlates with the expression of the *Bombyx mori* fibroin gene for temporal and spatial specificity in the silk gland cells. In this study, solution structure of the DNA binding domain composed of a tandem repeat amino acid sequence was studied using two dimensional ¹H nuclear magnetic resonance (NMR) techniques and circular dichroism measurements. The model peptides were prepared to assign NMR signals and to clear structural flexibility and stability of these local conformation in water and trifluoroethanol aqueous solution.

[序論]

カイコ幼虫の絹糸腺器官は構造と機能の点で明確に識別される前部、中部、後部より成り、フ ィブロインタンパク質は後部絹糸腺細胞、セリシンタンパク質は中部絹糸腺細胞でのみ合成さ れ、明瞭な組織特異的な発現制御を受けている。また、これらのシルクタンパク質合成は発生 過程で変化し時期特異的な制御も同時に受ける。このようなフィブロイン遺伝子やセリシン遺 伝子の組織特異的かつ時期特異的発現は主に DNA から mRNA が合成される転写の段階で制御 されている。*Bombyx mori フィブロイン* H 遺伝子の転写制御因子である fibroin-modulator binding protein (FMBP-1)は 218 残基から成り、転写制御領域の上流やイントロン内エレメン トに結合する因子で、フィブロイン遺伝子の組織特異的かつ時期特異的な発現に関与している と推定されている。FMBP-1 の C 末端側約半分の極めて特徴的な 23 残基の 4 回繰り返し構造 が DNA 結合ドメインを構成している。全体構造と相同性の高い他のゲノムシークエンスは報 告されてないが、DNA 結合ドメインと同様の特徴的な繰り返し構造が線虫、ショウジョウバエ、 マウス、ヒトに保存されている。しかし、これらの遺伝子の機能・構造解析は行われていない。 本研究では FMBP-1 の DNA 結合部位と予想される 1,2 番目の繰り返し配列のモデルペプチド を作製して立体構造解析および DNA オリゴマーとの相互作用の解析をて立体構造解析および DNA オリゴマーとの相互作用の解析を NMR 測定ならびに円二色性(CD)測定を用いて行い、

キーワード:転写因子、DNA 結合ドメイン、繰り返し配列、カイコ、フィブロイン

著者ふりがな:やまきたけし、かわぐちきょうすけ、あいざわともやす、たきやしげはる、 でむらまこと、にったかつとし 各繰り返し配列の特徴とタンデムリピート構造の DNA 結合能について考察した。

[実験]

モデルペプチド (ペプチド1, ペプチド2, 各 23 残基) はそれぞれ Boc 法による固相合成によっ て作製した。¹H·NMR 測定は Bruker DRX-600, Jeol alpha 600 NMR 測定装置を用い、TOCSY (mixing time: 80 msec), NOESY (mixing time: 150, 250 msec), DQF-COSY 測定を温度 20[°] で行った。NMR 信号の帰属は連鎖帰属法により行った。NMR 測定のペプチド濃度 1.5 mM と し、水系 (10% D₂O/90% H₂O, pH 6.2) と TFE 系 (30% TFE-d₂, 70% H₂O) の二条件で行った。 NMR データの解析は NMRpipe 及び XEASY を用い、立体構造計算は NOE 制限、二面角制限、 水素結合制限を用いて CNS1.1 で行った。CD 測定は Jasco J-725 装置を用い、TFE 水溶液濃 度を 0~50%に変えて 200~250 nm で行った。

[結果・考察]

DNA フリー条件では、繰り返し配列のモデルペプチド 1,2 は CD 測定の結果より水中でそれぞ れ helix パターンを示した。TFE 濃度の増加に伴い helix 含量も増大することが示された。一 番目の繰り返し配列ペプチド 1 の NMR スペクトルの帰属より得られた H_{α} の化学シフトイン デックスは、TFE (30%)では helix 領域が全域で出現するものの、水中では N 端側に偏ってい た。mixing time 150 msec で測定した NOESY スペクトルの NOE 相関ピークは TFE 中での NOE は 170 個が得られたが水中では 146 個だけであった。NOE 制限の他に二面角制限、HD 交換による水素結合制限を用いて CNS で立体構造計算を行った(Fig.1)。水溶液中においては N 末端 4~9 残基は α helix を形成しているが C 末端はディスオーダーな構造であるという結 果が得られた。一方 TFE 系溶媒中では 3~20 残基で長い一本鎖の両親媒性 α helix を形成して おり、20%以上の TFE 水溶液中で CD 値が最大となる結果とよく一致する。水中でディスオー ダーな C 末端側は水溶液中でも疎水的環境の接触によって α helix を形成するのではないかと 考えられる。タンデムリピート構造からなる 1 番目と 2 番目のアミノ酸配列のホモロジーが高 いにも関わらず、CD スペクトルの測定結果で示したように helix 形成能が異なっていた。ペプ チド 2 の立体構造の refinement と共にそれぞれの helix 形成能とタンデムリピート構造、DNA オリゴマーの認識部位については現在検討中である。

Fig.1 Superpositions of 15 best structures of model peptide.1 in TFE (a), water (b).

交差飽和法による生体膜ーペプチド間の相互作用解析

(JBIC・JBIRC¹、産総研・BIRC²、東大・院薬系³、三菱化学生命研⁴、群大工⁵) 〇中村壮史¹、高橋栄夫²、竹内恒³、河野俊之⁴、若松馨⁵、嶋田一夫^{2⁻³}

NMR Studies of Membrane-Peptide Interaction by Cross-Saturation Methods

(JBIRC/JBIC¹, BIRC/AIST², The University of Tokyo³, Mitsubishi Kagaku Institute of Life Science⁴, Gunma University⁵)

OTakefumi Nakamura¹, Hideo Takahashi², Koh Takeuchi³, Toshiyuki Kohno⁴, Kaori Wakamatsu⁵, and Ichio Shimada^{2,3}

Membrane active peptides (proteins) induce crucial biological and pharmacological activities. In studying the interaction mechanism of membrane peptide complexes, traditional NMR methods that relay on chemical shift perturbation and H-D exchange have been used. NMR cross-saturation method, which detects the more direct information on through-space interactions between the two molecules, can adapt to identify the interfaces of membrane peptide complexes. In this report, we analyses the interaction between isotropic phospholipids bicelle and mastoparan for the purpose of clarifying the mechanism of membrane-peptide interaction.

[序]

ペプチドまたはタンパク質と生体膜間の相互作用は、膜を介したシグナル伝達など生命現象におい て重要な役割を果たしている。これまでに多くの分光学的および物理化学的手法によって、水溶液中 における生体膜ーペプチド相互作用様式が調べられてきた。すなわち、蛍光プローブを用いた生体膜 中におけるペプチドの疎水性の評価やスピン標識を行った脂質による生体膜とペプチドの相対位置の 評価、さらに化学シフト変化やプロトン交換速度に基づく相互作用解析などが挙げられる。我々の開 発した NMR 交差飽和法¹は、分子間の距離に依存した双極子--双極子相互作用を利用するため、生体 膜-ペプチド相互作用界面を直接的に求めることが可能な方法である。

本研究では、生体膜ーペプチド間の相互作用機構を明らかにする目的で、生体膜側のモデルとして 等方性バイセルを、ペプチド側のモデルとして mastoparan を題材として解析を行った。

mastoparan はスズメバチ由来の14アミノ酸残基からなる両親媒性ペプチドであり、マスト細胞からのヒスタミン放出など、多くの生物活性を持つことが知られている。これまでに、生体膜ーペプチド間の相互作用解析の研究においては mastoparan が多く用いられてきた。今回、交差飽和法の有用 性を検証するという観点からも、mastoparan を使用することにした。

[方法]

(1) 等方性バイセルの調製

DMPC および DHPC を凍結乾燥した後、それぞれ NMR 測定溶媒に溶解し、8.7% DMPC 溶液および 11.3% DHPC 溶液を得た。両液を混合して 10% DMPC/DHPC 溶液(q=0.5)を調製し、等方性バイセルを得た ²。

(2) mastoparan の調製

mastoparan は、His10 ubiqutin mastoparan Gly 体として発現を行った。ベクターは pET 19b(+)、 宿主には BL21(DE3)を用いた。融合タンパク質の発現には、M9 培地の組成をもとに、²H₂O、¹⁵NH₄Cl、 および glucose ⁻²H₇ または glucose ⁻¹³C₆ を添加した標識培地を用いた。大量発現を行った後、Ni²⁺アフ ィニティークロマトグラフィー、 yeast ubiquitin hydrolase 処理、および逆相 HPLC を行って

交差飽和法、mastoparan、bicelle

なかむらたけふみ、たかはしひでお、たけうちこう、こうのとしゆき、わかまつかおり、しまだい ちお mastoparan Gly を得た。得られた Gly 体において a アミド化、および逆相 HPLC を行い、 [2H, 15N]mastoparan または[2H, i3C, 15N]mastoparan を得た 3。

[結果と考察]

等方性バイセルーmastoparan 結合状態における ¹H·15</sup>N HSQC スペクトルの帰属 (1)

等方性バイセルと[2H,13C,15N]mastoparan を混合し NMR 測定を行った。HNCACB、HN(CO)CACB、 および¹⁵N·NOESY·HSQCの各3次元測定から得られた情報をもとに、¹H·¹⁵N HSQC スペクトルの帰 属を行った(図)。3 次元測定から得られた Cαと Cβの化学シフト、および Vold らによる Hαの化学 シフト²を基に、CSI を用いた 2 次構造予測を行ったところ、mastoparan はバイセル結合状態で 3L 以降の残基においてヘリックス構造を持つことが示唆された。また、¹⁵N·NOESY HSQC から得られ た結果も構造予測の結果と矛盾しなかった。

(2)¹H^{·15}N 異核 NOE 法を用いた結合状態における mastoparan の運動性の解析

¹H⁻¹⁵N NOE 実験(¹H 共鳴周波数 600 MHz) により、結合状態における mastoparan の運動性の解 析を行った。3L~14L までの領域について、NOE 値は 0.6~0.75 の値であり、バイセル結合状態で mastoparan は比較的強固な構造を有していることが明らかとなった。しかしながら、ヘリックス両端 付近に近づくにつれて、その値は顕著に小さくなる(~0.6)傾向が見られた。このことから、バイセ ルに結合した mastoparan は明確な α ヘリックス構造を有しているが、その運動性は均一ではなく、 ヘリックス両端ではヘリックス中央ほどその構造が強固ではないと推測される。

(3) 交差飽和法を用いた mastoparan – 等方性バイセル間の相互作用界面の解析

交差飽和法を用いて、mastoparan-等方性バイセル間の相互作用解析を行った。測定は脂質のアル キル鎖を中心に照射し、照射時間 3.0 秒にて行った。その結果、脂質のアルキル鎖からの明確な飽和 移動が観測された。その飽和移動の程度は、異核 NOE 実験による運動性を反映しつつも、mastoparan 両親媒性ヘリックスの疎水面に集中していることが明らかとなった。したがって、mastoparan は疎水 的な相互作用で脂質二重膜と相互作用していることが実験的に確認できた。

以上の結果より、生体膜ーペプチドの相互作用解析に交差飽和法が有用であることが示唆された。

「参考文献]

- (1)Takahashi, H. et al. (2000) Nature Struct. Biol. 7(3) 220-223.
- (2)Vold. R. R. et al. (1997) J. Biomolec. NMR 9 329-335.

(3)Kohno, T. et al. (1998) J. Biomolec. NMR 12 109-121.

mastoparan の 1H-15N HSQC スペクトル

マウス構造プロテオミクス:

Transgelin の Calponin Homology ドメインの溶液構造
(理研・GSC¹、東大・院理²、理研・播磨³)
○富澤 忠¹、小柴生造¹、井上 真¹、白水美香子¹、寺田貴帆¹、矢吹 孝¹、
青木雅昭¹、松田貴意¹、関 英子¹、布川絵未¹、平川典子¹、佐藤深雪¹、
安田聡子¹、廣田 洋¹、好田真由美¹、長内 隆¹、田仲昭子¹、荒川貴博¹、
Piero Carninci¹、河合 純¹、林崎良英¹、Peter Güntert¹、木川隆則¹、

横山茂之^{1,2,3}

Mouse Structural Proteomics: Solution structure of calponin homology domain from transgelin.

(RIKEN Genomic Sciences Center¹, University of Tokyo², RIKEN Harima Institute³)
(T. Tomizawa¹, S. Koshiba¹, M. Inoue¹, M. Shirouzu¹, K. Terada¹, T. Yabuki¹, M. Aoki¹,
T. Matsuda¹, E. Seki¹, E. Nunokawa¹, N. Hirakawa¹, M. Sato¹, S. Yasuda¹, H. Hirota¹,
M. Yoshida¹, T. Osanai¹, A. Tanaka¹, T. Arakawa¹, P. Carninci¹, J. Kawai¹, Y. Hayashizaki¹,
P. Güntert¹, T. Kigawa¹, S. Yokoyama^{1,2,3}

Mouse transgelin is a 201 amino acid residue protein which is found in smooth muscle cell. Although a functional role of transgelin family is unclear, it was reported that transgelin associates with F-actin and forms gel. Calponin homology (CH) domain known as the F-actin binding motif exists in the N-terminal region of transgelin. We determined the solution structure of the CH domain of transgelin (residues 24-154) by using multidimensional NMR spectroscopy. Uniformly ${}^{13}C{-}/{}^{15}N{-}$ labeled CH domain was expressed by the cell-free expression system. NOE assignment and structure calculation have been determined using CYANA-CANDID 1.0.7. The calculated structure has six helices, four of which dominate a protein core. The CH domain of utrophin or spectrin is known to bind to F-actin on the surface of N- and C-terminal helices. Basic residues are conserved on the N-terminal helix of these CH domains. However, acidic residues are conserved on the N-terminal helix of transgelin CH domain. Therefore, it is suggested that the CH domain of transgelin could not directly bind to F-actin.

構造プロテオミクス、 transgelin、 CH ドメイン、 マウス cDNA、 無細胞タンパク質合成

とみざわただし1、こしばせいぞう1、いのうえまこと1、しろうずみかこ1、てらだかほ1、 やぶきたかし1、あおきまさあき1、まつだたかよし1、せきえいこ1、ぬのかわえみ1、ひ らかわのりこ1、さとうみゆき1、やすださとこ1、ひろたひろし1、よしだまゆみ1、おさ ないたかし1、たなかあきこ1、あらかわたかひろ1、Piero Carninci1、かわいじゅん1、は やしざきよしひで1、Peter Güntert1、きがわたかのり1、よこやましげゆき1, 2, 3 【序論】

マウスの transgelin は、平滑筋細胞から見つかった 201 アミノ酸残基からなるタンパク質であ る。Transgelin ファミリーの機能はまだ明らかになっていないが、アクチンと結合してゲル化 させることが報告されている。この transgelin の N 末端領域には、アクチン結合モチーフ知ら れている Calponin Homology(CH)ドメインが存在する。我々は、transgelin の CH ドメイン (24·154)の溶液構造を、多次元 NMR 法によって決定した。

【方法】

¹³C, ¹⁵N 標識体 CH ドメインの発現には無細胞タンパク質合成系を用いた。Bruker 社製 AVANCE600 を用いて主鎖、側鎖帰属用の測定をおこない、AVANCE800 を用いて、¹³C・NOESY、
¹⁵N・NOESY 測定を行った。NMR スペクトルは、NMRpipe によるデータ処理を経た後に小林 らが開発した Kujira (ポスター2P6 参照)をもちいてシグナル帰属を行った。CYANA・CANDID
1.0.7 による NOE 自動帰属と立体構造計算を行った。

【結果】

決定した構造は、6本のヘリックスからなり、そのうち4本のヘリックスがタンパク質のコアを 形成している。この構造は、典型的なCHドメインの構造だった(Fig.1)。spectrinやutrophin などのCHドメインは、N末端およびC末端ヘリックスの表面でアクチン結合していることが 知られている。これらのタンパク質のCHドメインのN末端ヘリックスには、塩基性残基が多 く保存されている。しかし、われわれが解析したCHドメインは、N末端ヘリックスに多くの 酸性残基が露出している。このことから、このCHドメインはアクチンと直接結合できないこ とが示唆された。

(A)

(B) ·

Figure 1 Structure model of the CH domain.

(A)Superposition of 20 best structure out of 100 calculated NMR structures. (B)Ribbon model of CH domain of transgelin (24-154).

Solution structure of the DEP domain of Mus musculus pleckstrin (RIKEN GSC)

○ 井上匡子、好田真由美、八田玲子、林文晶、白水美香子、寺田貴帆、木川 隆則、井上真、矢吹孝、青木雅昭、関英子、松田貴意、廣田洋、田仲昭子、長 内隆、松尾洋、荒川貴博、Piero Carninci、河合純、林崎良英、横山茂之

Solution structure of the DEP domain of Mus musculus pleckstrin (RIKEN Genomic Science Center)

K.Inoue, M.Yoshida, R.Hatta, F.Hayashi, M.Shirouzu, T.Terada, T.Kigawa, M.Inoue, T.Yabuki, M.Aoki, E.Seki, T.Matsuda, H.Hirota, A.Tanaka, T.Osanai, H.Matsuo, T.Arakawa, P.Carninci, J.Kawai, Y.Hayashizaki, S.Yokoyama

Pleckstrin is the major substrate of protein kinase C. DEP domain is contained in the central region of pleckstrin and is flanked by pleckstrin homology domains on both sides. In order to characterize the DEP module and its role in pleckstrin, we have undertaken a structural and functional study of DEP domain from the RIKEN mouse cDNA library. The NMR structural determination work has done on the mouse pleckstrin. The solution structure of DEP domain is basically composed of a helix bundle with three α -helices, a β -hairpin 'arm' composed of two β -strands, and two short β -strands in the C-terminal region. Comparison with the structure of DEP domain of DEP domain of DEP domain of mouse pleckstrin has one more short α -helix. The differences of the electric potential surface is observed in the membrane localization region.

【序】

Pleckstrin は protein kinase C の重要な基質であり、中央に DEP domain (Domain found in <u>D</u>ishevelled, <u>Egl-10</u> and <u>Pleckstrin</u>) が PH domain (<u>Placstrin homology domain</u>) に挟ま れて存在する。DEP domain は約 100 残基からなり、多くのシグナル伝達系タンパク質に見い だされているドメインであるが、pleckstrin 中での機能は両側の PH domain とは独立 していると考えられており、DEP domain の機能についてまだ不明確である。本研究では、 DEPdomain の機能と pleckstrin 中での役割を推察するため、RIKEN mouse cDNA library から mouse 由来の pleckstrin を用い、DEP domain の NMR による立体構造解析をおこなった。

キーワード: THREE-HELIX BUNDLE, BETA-ARM, PLECKSTRIN

○いのうえきょうこ、よしだまゆみ、はったれいこ、はやしふみあき、しろうずみかこ、てらだたかほ、きがわたかの り、いのうえまこと、やぶきたかし、あおきまさあき、せきえいこ、まつだたかよし、ひろたひろし、たなかあきこ、お さないたかし、まつおよう、あらかわたかひろ、Carninci Piero、かわいじゅん、はやしざきよしひで、よこやましげ ゆき

【実験】

無細胞タンパク質合成系により13C,15N 標識体 DEP domain を発現させた。Varian 社製 Unity INOVA 600MHz と 800MHz を用い 25℃で多核多次元 NMR spectrum を測定した。 試料溶液は、 0.7mM DEP domain を 20mM phosphate buffer、 50mM NaC1、 4mM d-DTT、 0.5% NaN3 (92% H20/8% D20)に溶解し、pH=6.5 とした。 測定は ¹⁶N-HSQC、HNC0、HCACONH、HN (CO) CA、HNCACB、CBCA (CO) NH、 ¹³C-HSQC、C (CO) NH、 HBHA (CO) NH、 HBHANH、 HCCH-COSY (2D)、 HCCH-TOCSY、 ¹⁵N-edited NOESY、 ¹³C-edited NOESY (mixing time=75ms)をおこなった。 スペクトルの処理、解析及び構造計算に は、NMRPipe、NMRView-Kujira、CYANA/CANDID を用いた。

【結果と考察】

DEP domain の構造は、以前 Dishevelled (Dvl) protein において報告されている¹⁾。この Dvl の DEP domain は $\alpha \beta \beta \alpha \alpha \beta \beta$ のトポロジーを持ち、N-端の β -sheet 構造は β -hairpin arm と名付けられている。今回おこなった解析の結果、mouse pleckstrin の DEP domain は、 $\alpha \beta \beta \alpha \alpha \beta \alpha \beta$ 構造 (Fig. 1) であり、Dvl の DEP domain 構造とほぼ同じ基本構造を持って いることがわかった。Dvl の DEP domain と比べ、mouse pleckstrin ではC端の β -strand 間 に短い α -helix が挿入されている。タンパク質表面の電化分布の比較から、mouse pleckstrin の DEP domain もタンパク質相互作用部位の存在が示唆されるが、Dvl の DEP domain に推察 された様な membran localization site で違いが認められた。

Fig.1

Ribbon model(left) and 20 SA structures (right:cross_eye) of the mouse pleckstrin DEP domain

1) Wong, H. C. et al. (2000) Nature Struct. Biol. 7, 1178-1184.

p47^{phox}のタンデム SH3ドメインと p22^{phox} PRR の相互作用 (北大院薬¹, タンパク 3000², 九大生医研³) 〇小椋賢治¹, 湯沢 聴², 鳥飼真之介¹, 住本英樹³, 稲垣冬彦^{1,2}

Interaction between tandem SH3 domain of p47^{phox} and p22^{phox} PRR

Kenji Ogura¹, Satoru Yuzawa², Shinnosuke Torikai¹, Hideki Sumimoto³, and Fuyuhiko Inagaki^{1, 2} Graduate School of Pharmaceutical Sciences, Hokkaido University ¹, P3K project ², and Medical Institute of Bioregulation, Kyushu University ³

Activation of the superoxide-generating NADPH oxidase of phagocytes is controlled by interaction between p47^{phox} and p22 ^{phox}. A tandem SH3 domain of p47^{phox} connected with a 17 residues-linker is thought to cooperatively interact with a proline-rich region (PRR) of p22phox. To investigate such a novel inter-molecular recognition, we approached the analysis of solution structure of p47^{phox} tandem SH3 domain complexed with p22^{phox} PRR.

We prepared ¹³C/¹⁵N-labeled tandem SH3 domain of p47^{phox} (138 residues) by E. coli. To determine the essential sequence of p22^{phox} -PRR, several p22phox-derived PRR peptides were synthesized. The essential sequence of p22^{phox} -PRR was determined by ¹H-¹⁵N HSQC titration experiments of several peptides to labeled p47^{phox}. The titration experiment of the optimized p22^{phox} -PRR peptide showed that many signals of p47^{phox} were purterbed by the peptide binding. This result suggests that two SH3 domains cooperatively bind to p22^{phox} -PRR.

A set of triple resonance and isotope-filtered exeriments were carried out on a Varian UNITY INOVA 600 spectrometer for the NMR sample of tandem SH3 domain of p47^{phox} complexed with the optimized p22^{phox} -PRR peptide. The spectral analysis, solution structure of the molecular complex and interaction mechanism will be discussed.

【序論】好中球の活性酸素発生系にて活性酸素発生を触媒する NADPH オキシダーゼは細胞質因子と膜タンパクの複合体である.その複合体形成の中心的役割を担う分子間相互作用は、細胞質因子のひとつ p47^{phox}と膜タンパク質サブユット p22^{phox}の結合である.活性酸素発生系の休止状態に

おいては、 p47^{phox} のふたつの SH3 ドメイン領域 (タンデムSH3)は、分 子内マスクされていて p22^{phox} と結 合できないが、 p47^{phox} の C 末端側 領域のリン酸化により、分子内マス クが解除され、 p47^{phox} のタンデム SH3 が p22^{phox} と結合し、活性酸素 発生系がオンになる(図1).その 結合様式は、 p47^{phox} のタンデム SH3 が、 p22^{phox} の1ヶ所のプロリン に富む領域 (PRR)を共有して結合

Fig.1 Interaction mechanism of p47^{phox} and p22^{phox}

p47^{phox}, p22^{phox}, SH3

おぐらけんじ、ゆざわさとる、とりかいしんのすけ、すみもとひでき、いながきふゆひこ

するとされており, SH3 ドメインによるリガンド認識機構として他に例のないユニークな相互作用様 式である. 本研究の目的は, p47^{phox}のタンデム SH3 ドメインと p22^{phox}の PRR の相互作用を NMR を 用いて解析することである.

【実験】¹⁵N, ¹³C/¹⁵N および ²H/¹⁵N ラベル p47^{phox} タンデム SH3(138 残基)は, GST 融合タンパク質として大腸菌により発現し, アフィニティー, イオン交換およびゲルろ過クロマトグラフィーにより精製した. NMR 滴定実験および蛍光滴定実験のための各種 p22^{phox} 由来ペプチドはシグマジェノシス社のペプチド合成サービスにより入手した. ¹³C/¹⁵N ラベル p22^{phox} 由来ペプチド(25 残基)は GST 融合タンパク質として大腸菌により発現し, アフィニティーおよび逆相クロマトグラフィーにより精製した. NMR 測定は, Varian Unity Inova 800, 600 および Unity Plus 600 分光計を用いて 25°Cにておこなった. ¹H-¹⁵N 間の RDC 測定は, PEG(C12E5)/hexanol (r=0.85)による液晶配向媒体にておこなった. 立体構造計算には, 3D ¹³C-および ¹⁵N-edited NOESY 由来の距離制限, TALOS 由来の二面角制限, および ¹H-¹⁵N RDC 制限を用いて, Red Hat linux 9 で動作する PC クラスター (Athlon 2400+ X 10 CPUs)にて ARIA ver.1.2 および CNS ver.1.1 を使用した.

【結果】¹⁵N ラベル p47^{phox} タンデム SH3 に対して数種類の合成 p22^{phox} PRR ペプチドを滴定し、¹H⁻¹⁵N HSQC スペクトルの化学シフト変化および信号数の充足を目安にペプチドのスクリーニングをおこなった. その結果,両者の結合には, p22^{phox}の PRR 部位(10 残基)だけでなく,それに続く塩基性アミノ酸領域も必須であることがわかった. NMR 滴定実験で判明した p22^{phox}の必須領域ペプチド(20 残基)と p47^{phox} タンデム SH3 の affinity を蛍光滴定実験で測定したところ, K_d=640nM であった. この K_d値は, SH3 による標的分子認識としては異例に強い数値である.

p47^{phox}タンデム SH3 のペプチドフリー状態および p22^{phox}PRR ペプチド結合状態にて三重共鳴多次 元 NMR スペクトルを測定し, 主鎖連鎖帰属をおこなった. その結果, ペプチド結合にともない p47^{phox} タンデム SH3 は分子全体にわたって化学シフト値が大きく変化することがわかった. さらに, ペプチ

ドフリーおよび複合体状態 における p47^{phox} タンデム SH3 の{¹H}⁻¹⁵N NOE を測定 したところ,複合体では SH3 ドメインを連結するリン カー部(17 残基)の運動性 が抑えられることがわかっ た(図2). これらの結果は、 ふたつの SH3 ドメインが協 同的に p22^{phox} ペプチドを 認識して結合することを強 く示唆する.

¹³C/¹⁵N ラベル p47^{phox} タンデム SH3+ノンラベル p22^{phox} ペプチド複合体試料を用いて, 三重共鳴 多次元 NMR 測定をおこない, 複合体形成時における p47^{phox} タンデム SH3 ドメインの信号帰属を完 了した. また, ノンラベル p47^{phox} タンデム SH3 + ¹³C/¹⁵N ラベル p22^{phox} ペプチド複合体試料を用いて, 複合体形成時における p22^{phox} ペプチドの信号帰属を完了した(図3).

Fig.3 ¹H-¹⁵N HSQC spectra of p47^{phox} tandem SH3 domain complexed with p22^{phox} peptide. (Left) ¹⁵N-p47 + nonlabeled p22, (right) nonlabeled p47 + ¹⁵N-p22.

つぎに、²H/¹⁵N ラベル p47^{phox} タンデム SH3 とノンラベル p22^{phox} ペプチド複合体試料を用いた交差 飽和実験をおこない、分子複合体 における相互作用界面を同定し た(図4).その結果、(1) p22^{phox}ペ プチドの認識には、N 末端側およ び C 末端側 SH3ドメインの両方が 関与していること、(2) SH3ドメイン のカノニカルなリガンド認識に重 要な Trp 残基(193 および 263)が p22^{phox}ペプチドの認識においても 重要な役割を担っていること、の 2点が強く示唆された.

さらに, 交差飽和実験の測定試料(²H/¹⁵N-p47 + nonlabel p22)を用いて, 3D ¹⁵N-edited NOESY スペクトルを測定して, 分子間 NOE 情報を取得した(図5). P47 分子は交換性水素以外は重水素

化されているので, H^N-H^N のクロ スピーク以外はすべて分子間 NOE を示すことになる. この NOESY スペクトルにより, 分子 間 NOE 情報を効率的に取得す ることができた.

NMR 情報より得られた p47^{phox} タンデム SH3 ドメインと p22^{phox} ペ プチド複合体の溶液中での立体 構造を図6および図7に示す. こ の立体構造では, ふたつの SH3 ドメインは, nsrc loop 部位 と 3₁₀-helix 部位でお互いに組み 合っていた. そして, ふたつの

SH3 ドメインが対向するように配置して 形成されたドメイン間の溝に,ちょうど p22^{phox} ペプチドが挟みこまれるように結 合していることがわかった. RDC 解析 (図 8)の結果から,ふたつの SH3 ドメイ ンは,まったく同じ配向テンソルを持って いた.このことから,両ドメインは固定さ れた相対配置を有していると考えられ る.

これまでの実験結果から、p47^{phox} タン デム SH3ドメインは、p22^{phox}ペプチドが存 在しないときには、ふたつの SH3ドメイン は自由な配置をとることができるが、リガ ンド分子を結合するときに、ある固定 されたドメイン間相対配置をとり、リガ ンド結合面を形成することができるこ とがわかった.このことは、p47phox が、分子内マスキング状態から分子 間相互作用に至る過程でどのような 中間段階を経ているかを考察するう えで興味深い.

Fig.7 Ribbon diagram of solution structure of p47phox tandem SH3 complexed with p22phox-peptide.

Fig.8 Correlation of observed (Dobs) and back-calculated (Dcalc) values for H-N RDCs.

MAP-LC3 蛋白質の立体構造解析

(富山医薬大薬¹、順天堂大医²)

○ 河野隆英¹、谷田以誠²、上野隆²、木南英紀²、水口峰之¹、河野敬一¹

Structural analysis of the microtubule-associated protein light chain 3, MAP-LC3

¹ Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan

² Department of Biochemistry, Juntendo University of Medicine, Tokyo 113-8421, Japan

Microtubule-associated protein light chain-3 (MAP-LC3) is a human homologue of Apg8p/Aut7p included in yeast Apg/Aut (autophagy) family. Apg/Aut family is involved in autophagy induced under nutrient-starvation condition in yeast and is composed of a number of Apg/Aut mutants. Apg8p/Aut7p is cleaved at its C-terminal glycine residue by Apg4p, another member of Apg/Aut family. In addition, the cleaved Apg8p/Aut7p is covalently attached to phosphatidylethanolamine at the glycine residue by interaction with Apg3p and Apg7p. Thereby the modified Apg8p/Aut7p is able to interact directly with membranes. MAP-LC3 is also modified to MAP-LC3-I and MAP-LC3-II in cells and only MAP-LC3-II binds to membrane surface.

In the present study, we prepared ${}^{15}N$ - labeled and ${}^{13}C/{}^{15}N$ - labeled proteins and analyzed the solution structure with NMR experiments.

【はじめに】

Autophagy は細胞内消化に不可欠な過程であり、細胞内分画を取り込んだベシクルのリソソームへの輸送として観察される。酵母を用いた変異体実験により、この過程には数多くの蛋白質が必要であることが明らかになり、Apg/Aut (autophagy)ファミリーと呼ばれている (1)。microtuble-associated protein light chain-3 (MAP-LC3) はこのファミリーに属する Apg8p/Aut7p ヒト類似体であり、他のものとして GABA_A receptor associated protein (GABARAP) や Goldi-associated ATPase enhancer of 16 kDa (GATE-16) が同定されている。これら3つのヒト類似体は高い配列同一性を有するが、細胞

MAP-LC3、貪食、結合活性、蛋白質立体構造解析

こうのたかひで、たにだいせい、うえのたかし、こみなみえいき、みずぐちみねゆき、かわのけいい ち

— 360 —

内局在性はそれぞれ異なる (2,3)。また MAP-LC3 を含む Apg8p/Aut7p ヒト類似体は、いずれも膜との 相互作用において C 末端プロセシングにより制御されている (4)。GABARAP、GATE-16 については既に 構造解析が行われているものの、それらの機能の全容は未だ明らかになっていない。

本研究では MAP-LC3 のプロセシング前後の配列を持つ、それぞれの蛋白質の発現系を構築し、NMR 法による構造解析を試みた。これにより未だ不明な Apg8p/Aut7p ヒト類似体の立体構造を明らかにす るとともに、MAP-LC3 のベシクル相互作用が如何に制御されているのかを分子レベルで解明する。更 に MAP-LC3、GABARAP、GATE-16 の生理的役割やそれぞれの細胞内局在性を決める因子の特定を目標と する。

【実験】

大腸菌 BL21 株を用いて MAP-LC3 を GST 融合タンパク質として発現し、破砕して可溶性画分を回 収した。GST 親和性カラムを用いて GST 融合蛋白質を精製し、プロテアーゼ処理により MAP-LC3 のみ を得た。更にイオン交換クロマトグラフィーによる最終精製を行った。また最小培地を用いて、¹⁵N-、 ¹³C/¹⁵N-ラベル体を調製した。NMR サンプル溶液の組成は次のように設定した;25 mM sodium phosphate (pH 7.0)、 100 mM NaC1、 0.1 mM EDTA。NMR 測定は Bruker DMX-500 を用いて 25℃の条件で行った。

【結果と考察】

MAP-LC3 の 'H-^{I5}N HSQC スペクトルは個々の信号がよく分離した良好なものであった。主鎖の連鎖 帰属は P28 残基を除いて完全に行うことができ、H^a、C^a、C^b、C^oの化学シフトを基にした chemical shift index は GABARAP のものと類似していた。更に X-PLOR を用いた構造計算により求めた立体構造も GABARAP および GATE-16 によく類似するものであった。また主鎖化学シフトの比較から、MAP-LC3 は プロセシング前後で全体的な構造変化は見られないものの、一部でコンフォメーション変化を起こし ていることが示唆された。

【参考文献】

1) M. Tsukada & Y. Ohsumi, FEBS Lett. 333, 169-174 (1993).

2) H. Wang, F. K. Bedford, N. J. Brandon, S. J. Moss & R. W. Olsen, *Nature* 397, 69-72 (1999).

3) Y. Sagiv, A. Legesse-Miller, A. Porat & Z. Elazar, EMBO J. 19, 1494-1504 (2000).

4) I. Tanida, M. Komatsu, T. Ueno & E. Kominami, *Biochem. Biophys. Res. Commun.* 300, 637-644 (2003).

大腸菌 Orf135 タンパク質の構造解析とその基質認識

〇米山 桃子¹、三島 正規¹、紙谷 浩之²、紙谷(村田) 尚子³、原島 秀吉²、児嶋 長次郎¹
 (¹奈良先端大・バイオ、²北大院·薬、³北大・遺制研)

Structural studies of E. coli Orf135 protein and its substrate recognition

OMomoko Yoneyama¹, Masaki Mishima¹, Hiroyuki Kamiya², Naoko Murata-Kamiya³, Hideyoshi harashima², Chojiro Kojima¹

(¹Graduate School of Biological Science, Nara Institute of Science and Technology, ²Graduate School of Pharmaceutical Sciences, Hokkaido University, ³Institute for Genetic Medicine, Hokkaido University)

E. coli Orf135 protein is a 15.4 kDa protein, a member of the Nudix hydrolase, which hydrolyzes 5-methyl-dCTP (Besseman et al, J. Biol. Chem., 276, 5421-5426, 2001) and an oxidized nucleotide 2-OH-dATP (Kamiya et al., Biochem. Biophys. Res. Commun., 288, 499-502, 2001). Orf135 protein appears to be involved in the prevention of mutations induced by these nucleotides.

In this study, we tried to determine the structure of Orf135 protein by using solution NMR. We made the main-chain assignments from HNCACB, HN(CO)CACB, HN(CA)CO, and HNCO, and the side-chain assignments from the H(CCO)NH, C(CO)NH, HCCH-TOCSY, 4D HC(CO)NH. The NOE analyses suggest that the secondary structure of Orf135 is very similar to that of MutT except for lack of the fifth strand. 3D structure of Orf135 protein and the mechanism of its substrate recognition are discussed.

<背景>

自然界には変異を引き起こす様々な要因が存在する。ラジカルの攻撃によって生じる酸化損傷ヌク レオチド 2-OH-アデニンは、チミンだけではなくグアニンやシトシンとも塩基対を形成するため、 GC-AT 置換を引き起こす強力な変異原であることが近年分かってきた。これまでに見つかっている 2-OH-ATPを特異的に認識する酵素は哺乳動物のhMTH1のみだったが、紙谷らによって原核生物に おいて 2-OH-dATP に特異的に触媒活性を持つ酵素として Orf135 タンパク質が示唆された (Kamiya et al., Biochem. Biophys. Res. Commun., 288, 499-502, 2001)。

大腸菌由来の Orf135 タンパク質は、分子量が約 15kDa、135 アミノ酸残基からなる可溶性タンパク 質で、Nudix 加水分解モチーフを有するヌクレオチド加水分解酵素である。この酵素は細胞内の 2-OH-dATP を特異的に加水分解することで、複製時におけるこれら変異原の取り込みを防いでいると 考えられる。そこで、我々は Orf135 タンパク質の構造を溶液 NMR を用いて解析し、その基質認識機 構を調べることを目的として研究を行なった。

keywords:タンパク質、立体構造解析、DNA 酸化損傷、Nudix 加水分解酵素 ふりがな:よねやまももこ、みしままさき、かみやひろゆき、かみや(むらた)なおこ、

はらしまひでよし、こじまちょうじろう

- 362 ---

<実験手法および結果、考察>

Fig.1

Orf135 は安定同位体標識 (¹³C、¹⁵N) を行ない GST 融合タンパク質として大腸菌の発現系を用いて 大量発現させた。その後、Glutathione sepharose カラムを用いて単離し、Precission protease によるGST の切断後、ゲルろ過により Orf135 を精製した。

HNCACB と HN(CO)CACB の測定を行ない、得られたデータから主鎖の帰属を完了した。さらに、 HNCO と HN(CA)CO の測定から、帰属の確認を行なった。次に主鎖の帰属に基づいて、基質結合部 位の推定を行なった。2-OH-dATP よりも加水分解反応の遅いと考えられる、2-OH-dADP を用いて、 Orf135 と 2-OH-dADP を 1:1 の比率で混合し過剰量の Mg²⁺を加えた試料で¹H-¹⁵N HSQC を測定し、 control のスペクトルと比較した。dADP を加えた試料のスペクトルには変化が見られなかったが、 2-OH-dADP を加えた試料のスペクトルでは消失、あるいは移動している信号が観測された。相同性は あまり高くないが構造は類似していると思われる MutT (identity 30%, by CLUSTAL W)を基に Orf135 の homology modeling によって立体構造を作成し、Perturbation 実験における信号の変化を分子表面 にプロットしたところ、ベータシート上部のポケット部分に集中し、この部分が基質結合部位と考えられ た(Fig.1)。また、特にポケットの奥に存在するアスパラギン酸 (D118) が基質の認識に重要であると推 測された。

さらに、2-OH-dATP の分子認識機構に関してより精度の高い議論をするため、Orf135 の立体構造 決定を目指している。¹⁵N-edited TOCSY-HSQC、H(CCO)NH、C(CO)NH、HCCH-TOCSY、4D HC(CO)NHから側鎖の帰属をほぼ完了しており、中距離のNOE 情報から二次構造を決定した(Fig.2)。 その結果、Orf135 は大腸菌の修復酵素 MutTと一次配列の相同性は約30%であるが、MutT で比較 的表面に位置する5番目のストランド以外はほぼ同様の二次構造のトポロジーを有していることが明ら かになった。現在さらに立体構造解析を進めている。

Fig.2

Fig.1 Chemical shift perturbation. The molecular surface was built based on the homology model. Observed chemical shift perturbations were plotted onto the surface.

Fig.2 Middle-range NOEs in the β -strand region. Schematic representation of the β -sheet. Observed NOEs were shown by arrows

マウス構造プロテオミクス:広範に保存された新規の ubiquitin-fold

タンパク質の溶液構造

(¹理研・GSC、²理研・播磨、³東大・院理)

○趙晨華¹、小柴生造¹、井上真¹、白水美香子¹、寺田貴帆¹、濱名宏章¹、矢吹孝¹、青木雅 昭¹、松田貴意¹、関英子¹、布川絵未¹、坂上紀子¹、廣安文子¹、鞆康子¹、廣田洋¹、好田真 由美¹、長内隆¹、田仲昭子¹、荒川貴博¹、Piero Carninci¹、河合純¹、林崎良英¹、Peter Guntert¹、 木川隆則¹、横山茂之^{1,2,3}

Mouse structural proteomics: Solution structure of a widely conserved hypothetical 9.1 KDa protein with a ubiquitin-like fold

(¹RIKEN, Genomic Science Center, ² RIKEN, Harima Institute, ³Graduate School of Science, University of Tokyo)

OChenhua Zhao¹, Seizo Koshiba¹, Makoto Inoue¹, Mikako Shirouzu¹, Takaho Terada¹, Hiroaki Hamana¹, Takashi Yabuki¹, Masaaki Aoki¹, Takayoshi Matsuda¹, Eiko Seki¹, Emi Nunokawa¹, Noriko Sakagami¹, Fumiko Hiroyasu¹, Yasuko Tomo¹, Hiroshi Hirota¹, Mayumi Yoshida¹, Takashi Osanai¹, Akiko Tanaka¹, Takahiro Arakawa¹, Piero Carninci¹, Jun Kawai¹, Yoshihide Hayashizaki¹, Peter Guntert¹, Takanori Kigawa¹, Shigeyuki Yokoyama^{1,2,3}

Hypothetical 9.1KDa protein belongs to a widely conserved eukaryotic protein family, which has about 100 amino acid residues. The biological function of this protein family is presently unknown. In this study, we describe the 3D structure of hypothetical protein 1810045K17Rik which belongs to this family by nuclear magnetic resonance (NMR) spectroscopy. It is clear that it adopts an ubiquitin-like fold, which cannot be predicted from only the amino acid sequence. From the structural similarities with other proteins, some clues to its potential biochemical functions are expected to obtain.

キーワード:構造プロテオミクス,マウス cDNA, 無細胞タンパク質合成, ubiquitin-fold, 溶液 NMR

ちょうしんか、こしばせいぞう、いのうえまこと、しろうずみかこ、てらだたかほ、はまな ひろあき、やぶきたかし、あおきまさあき、まつだたかよし、せきえいこ、ぬのかわえみ、 さかがみのりこ、ひろやすふみこ、ともやすこ、ひろたひろし、よしだまゆみ、おさないた かし、たなかあきこ、あらかわたかひろ、Piero Carninci、かわいじゅん、はやしざきよし ひで、Peter Guntert、きがわたかのり、よこやましげゆき [序論] Hypothetical 9.1 KDa protein は、幅広い真核生物において保存された約 100 残基 のタンパク質であるが、その機能は全く明らかになっていない。本研究では、このファミリ ーに属するマウス由来の機能未知タンパク質である hypothetical protein 1810045K17Rik に ついて、NMR 法を用いた立体構造解析を行った。立体構造が解明されたことにより、本ファ ミリーの機能解明が進展することが期待される。

[方法] マウス由来の機能未知タンパク質である hypothetical protein 1810045K17 Rikの 安定同位体標識試料は無細胞タンパク質合成系によって調製した。すべでの NMR 測定は Bruker 社製 Avance600 および Avance800 を用いて 25℃で行った。主鎖の帰属用に ¹⁵N-HSQC, HNCO, HNCOCA, HNCA, HNCACO, CBCACONH, HNCACB、側鎖の帰属用に HBHACONH, CCCONNH, HCCCONNH, HCCH-TOCSY, ¹³C-HSQC, HCCH-COSY を測定した。また、距離制限情報としては ¹⁵N-edited-NOESY と ¹³C-edited-NOESY(mixing time 80ms)を測定した。スペクトルの処理や構 造計算には NMRpipe, NMRView, Kujira(ポスター2P6 参照), TALOS, CYANA-CANDID を用いた。

[結果と考察] マウス由来の機能未知タンパク質である hypothetical protein 1810045K17Rik の立体構造を図は Fig.1 に示す。一次配列からは全く予想できなかったが、 本タンパク質の立体構造は Ubiquitin super fold に属することが明らかになった。DALI に よりすでに PDB に登録されているタンパク質との構造類似性を検索したところ、 ubiquitin(1UBI)や Ras 結合タンパク質 RalGDS(1LFD-A)と Rap-1a(1C1Y)などとの類似性が認 められた。また、アミノ酸一次配列からも相同性が見られた。これらのことに基づいて、本 タンパク質の機能推定は可能性だと考えられる。

1J0G

1LFD-A

1UBI

Fig. 1 Ribbon representations of this protein (1J0G) and two similar structures (the RalGDS Ras binding domain; 1LFD-A and ubiquitin; 1UBI) identified from Dali search.

溶液中におけるポリユビキチン鎖の四次構造の解析

(横浜市立大・院総合理¹、愛媛大・院理工²、大阪市立大・院医³、 愛媛大・総合科学研究支援センター⁴、愛媛大・無細胞生命工学研 究センター⁵、都立臨床研・分子腫瘍⁶)

○天野剛志^{1,2}、藤原健一朗¹、杤尾豪人¹、岩井一宏³、森田勇人⁴、 林 秀則⁵、廣明秀一¹、田中啓二⁶、白川昌宏¹

NMR analysis of quaternary structure of polyubiquitin chain

(¹Grad. Sch. Integrated Sci., Yokohama City Univ., ²Grad. Sch. Sci. Eng., Ehime Univ.,
 ³Grad. Sch. Med., Osaka City Univ., ⁴Integrated Center for Sci., Ehime Univ., ⁵Cell-Free Sci. and Tech. Res. Center, Ehime Univ., ⁷Dept. Mol. Oncol., Tokyo Metro. Inst. Met. Sci)
 <u>Takeshi Tenno</u>^{1,2}, Kenichiro Fujiwara¹, Hidehito Tochio¹, Kazuhiro Iwai³, E. Hayato Morita⁴,

Hidenori Hayashi⁵, Hidekazu Hiroaki¹, Keiji Tanaka⁶, Masahiro Shirakawa¹ Ubiquitin, which consists of 76 amino acids, is a post-translational modifier protein conserved from yeast to mammal. Conjugated ubiquitins can serve as signals that mediate various cellular processes including protein degradation by proteasome, endocytosis, DNA repair, and transcription. Unlike other post-translational modifiers, ubiquitin can often form polyubiquitin chain by conjugating through isopeptide bond between lysine side chain and C-terminal glycine. Some distinct polyubiquitin chains, which conjugate through Lys 29, Lys 48, and Lys 63, are observed *in vivo*, and suggested that they participate as different signals in distinct cellular processes. To understand the mechanism of ubiquitination signals, we have analyzed the quaternary structure of Lys 48- and Lys 63-linked polyubiquitin chain in solution by NMR. The results indicate that the quaternary structure of polyubiquitin chain formed through different isopeptide bonds is distinct from each other.

ユビキチンは 76 残基から成る真核生物に高度に保存されている翻訳後修飾タン パク質である。ユビキチンが関与している細胞内過程は、プロテアソームによるタ ンパク質分解、エンドサイトーシス、DNA 修復、転写など数多く報告されているが、 いずれもユビキチンが基質タンパク質のリジン残基の側鎖にイソペプチド結合する ことによって、それらの過程を調節するシグナルとして機能している。

キーワード:イソペプチド結合、四次構造シグナル、翻訳後修飾、ユニット特異的 ラベル、ユビキチン

てんのたけし、ふじわらけんいちろう、とちおひでひと、いわいかずひろ、もりた はやと、はやしひでのり、ひろあきひでかず、たなかけいじ、しらかわまさひろ

-366-

リン酸基や糖鎖のような翻訳後修飾因子と違うのは、ユビキチンは自身のリジン 残基の側鎖アミド基と、別のユビキチンの C 末端カルボキシル基がイソペプチド結 合することで、ユビキチンが多数結合したポリユビキチン鎖を形成できることであ る。実際に細胞内では、異なるリジン残基でイソペプチド結合を形成しているポリ ユビキチン鎖が確認されており、それぞれが別々の細胞内過程に関与していること が明らかになってきている。また、ユビキチンを認識する下流因子の構造解析の結 果から、Leu 8、Ile 44、Val 70 から成る疎水性パッチを含む表面が相互作用に重要で あることが分かっている。これらは、疎水性パッチの相対配置、すなわちポリユビ キチン鎖の四次構造自身がシグナルである可能性を示唆している。

我々は、溶液中におけるポリユビキチン鎖の四次構造を明らかにするために、ユ ニット特異的に安定同位体ラベルを導入した Lys 48 リンクおよび Lys 63 リンクのポ リユビキチン鎖(二量体と四量体)を作製した。そして、それぞれのユビキチンユ ニットの相互作用部位を chemical shift perturbation、cross saturation などの方法で決定 することで、それぞれのポリユビキチン鎖の四次構造を調べた。

Lys 48 リンクの二量体のそれぞれのユニットの HSQC スペクトルを単量体のス ペクトルと比較すると、どちらのユニットも疎水性パッチを構成している残基およ びその周辺の残基の化学シフトが変化していた。また、cross saturation においても、 同様の残基のシグナル強度が減少していた。したがって、これらの結果は、Lys 48 リンクの二量体が、互いの疎水性パッチをユニット間の相互作用面とする四次構造 であることを示唆している。

Lys 63 リンクの二量体についても同様の解析を行ったところ、Lys 48 リンクの二 量体とは対照的な結果が得られた。すなわち、chemical shift perturbation では、大き く化学シフトが変化するのは、イソペプチド結合をしている残基とおよびその周辺 の残基のみであった。また、cross saturation においても、明確にシグナル強度が下が っている残基はなかった。したがって、これらの結果は、 Lys 63 リンクの二量体は、 Lys 48 リンクの二量体のようなユニット間の相互作用面をもたないフレキシブルな 四次構造であることを示唆している。

四量体についても、それぞれの二量体と同様の結果を示すことから、ポリユビキ チン鎖はイソペプチド結合の様式によってその四次構造が異なっていることが示さ れた。

クロレラユビキチンの局所構造の NMR 解析
 都立大・理¹、CREST/JST²、クロレラ工業(株)³
 ○吉田均¹、小神将¹、野村薫¹、菅向志郎³、松林恒夫³、甲斐荘正恒^{1,2}

Local structural analysis of chlorella ubiquitin by NMR

Graduate School of Science, Tokyo Metropolitan University¹, CREST/JST², Research Department, Chlorella Industry Co., Ltd.³

 \bigcirc Hitoshi Yoshida¹, Masaru Kogami¹, Kaoru Nomura¹, Koushiro Suga³, Tsuneo Matsubayashi³ and Masatsune Kaninosho^{1,2}

The amide protons of E24 and G53 of *chlorella* ubiquitin exhibit peculiar broad peaks at the lowest part of the amide proton resonance region around the neutral pH. At lower pH's, where the side-chain carboxyl groups become protonated, these peaks show significant upfield shifts and become narrower. Interestingly, the chemical shifts of these peaks show the identical pH dependence. Since E24 and G53 are in close proximity, the phenomena may indicate that the amide protons of these residues are in the same hydrogen network. We will present some evidences to support this hypothesis.

【序論】

クロレラユビキチンの E24 と G53 のアミドプロトンは、中性付近において顕著な低 磁場シフトを示し、且つ非常に線幅の広いシグナルを与える。このような E24 と G53 の示す特異的な現象は、アミノ酸配列、立体構造共に高い類似性を持つヒト・クロレ ラユビキチンにおいても観測され、これらの残基が空間的に近接しているために何ら かの特異的相互作用がその原因であろうと思われる。ユビキチンに観測されるこのよ うな NMR シグナルの異常がどのような局所構造、相互作用によって生じているのかを 明らかにすることは、今後ユビキチンをモデルタンパク質として用いていく際の知見 としても重要であろう。従来も、NMR 法を用いた構造解析の開発のモデルタンパク質 として広く用いられてきたユビキチン類であるが、E24 及び G53 は、それらのシグナ ルが広幅化しているために、構造・運動性に関する報告は数少ない。本研究では、ク ロレラユビキチン及び E24、G53 周辺の残基を置換した変異体を用いて、NMR スペクト ルの pH 依存性やアミドプロトンの水との NOE/交換スピードの解析等を行い、E24 と G53 周辺の局所構造、及び関連する相互作用を解析した。

キーワード:クロレラユビキチン、局所構造、水素結合 よしだひとし、こがみまさる、のむらかおる、すがこうしろう、まつばやしつねお、 かいのしょうまさつね

【実験】

大腸菌を用いた大量発現系により¹⁵N-及び¹³C/¹⁵N-標識クロレラユビキチンとその 変異体を調製した。NMR 測定は Bruker DRX 800, DRX 600, AV 500 を用いて測定した。 スペクトルの pH 依存性等は、¹H-¹⁵N HSQC 及び一次元¹H スペクトルの解析により得た。

【結果ならびに考察】

結晶構造中において、E24 のアミド基は D52 のカルボニル基と水素結合を形成して いる。また G53 のアミド基は水と水素結合を形成している。溶液中においてもこれら の水素結合が存在し、これらの水素結合が共役する水素結合ネットワークによって、 E24 と G53 のアミドプロトンが顕著な低磁場にシグナルを与えるのではないかと考え 様々な検討を行った。

興味深いことに、E24 と G53 のアミド基の特異な局所的現象は常に観測されるわけ ではない。中性付近(pH 6.6)で顕著な低磁場に観測される E24 と G53 のアミド基の H シグナル (E24: 10.2 ppm, G53: 9.8 ppm) は、酸性 (pH 2.0) ではランダムコイ ルに近い化学シフト(E24: 8.9 ppm, G53: 8.6 ppm)になり、特異な局所的現象はなく なる。より詳細な pH 変化の実験より、E24 と G53 のアミド H 化学シフトの pH 依存性 は完全に一致し、グルタミン酸やアスパラギン酸の側鎖の pH 依存性(pKa Glu: 4.07. Asp:3.90) に非常に近いことが分かった。つまりグルタミン酸やアスパラギン酸の側 鎖に負電荷があることが、特異な局所的現象に必須であることが分かった。更にどの グルタミン酸やアスパラギン酸がこの局所的現象に必須であるのか解明するために E24 と G53 周辺のグルタミン酸・アスパラギン酸を改変した多くの変異体を作成し、 それらの NMR スペクトルを野生型 (WT) のそれと比較した。中性付近 (pH 6.6) の E24A 変異体の ¹H-¹5N HSQC において、クロスピークの ¹H が中性付近 (pH 6.6)の WT のそれ と 0.2 ppm 以上の変化を示したのは E24/A24 と G53 のみであり、A24 は 8.9 ppm、G53 は 8.5 ppm と酸性 (pH 2:0) の WT のそれとほぼ同じ値であった。E24A 変異体の全体 の構造は WT と同じであるが、特異な局所的現象は存在しないため、E24 の側鎖の負電 荷が特異な局所的現象に必須であることが分かった。さらなる WT 及び変異体を使っ た実験で詳細な情報を得ることで、E24の側鎖の負電荷が近傍の正電荷(双極子)と 相互作用して、E24、G53 のアミド基をある位置に固定することが、E24 と G53 のアミ ドプロトンの特異な局所的現象が起きるために必須であることが分かった。 このようなユビキチンの表面解離性残基間の静電的相互作用に関する知見は、NMR 法

とのようなユビイテンの表面解離ビスを同の静電的相互作用に関する加光は、NMA 法 を用いた構造・運動性解析の開発のモデルタンパク質として用いる際の重要な知見に なるだけでなく、今後ユビキチンの構造と機能の相関を研究する上でも有用であると 思われる。

ヒト構造プロテオミクス: C2ドメインの構造解析 (理研・GSC¹、かずさ DNA 研究所・ヒト遺伝子研究部²) 〇長島 敏雄¹、林 文晶¹、白水 美香子¹、寺田 貴帆¹、木川 隆則¹、 井上 真¹、矢吹 孝¹、青木 雅昭¹、関 英子¹、松田 貴意¹、 廣田 洋¹、好田 真由美¹、田仲 昭子¹、長内 隆¹、松尾 洋¹、 小原 收²、長瀬 隆弘²、菊野 玲子²、中山 学²、横山 茂之¹

Human Structural Genomics: Structure Analysis of C2 Domain

(RIKEN Genomic Sciences Center¹, Kazusa DNA Research Institute²)

<u>Toshio Nagashima</u>¹, Fumiaki Hayashi¹, Mikako Shirouzu¹, Takaho Terada¹, Takanori Kigawa¹, Makoto Inoue¹, Takashi Yabuki¹, Masaaki Aoki¹, Eiko Seki¹, Takayoshi Matsuda¹, Hiroshi Hirota¹, Mayumi Yoshida¹, Akiko Tanaka¹, Takashi Osanai¹, Yo Matsuo¹, Osamu Ohara², Takahiro Nagase², Reiko Kikuno², Manabu Nakayama², Shigeyuki Yokoyama¹

C2 domain that is found between C1 domain and catalytic domain of protein kinase C contains about 116 amino acids. We present two structures that are homologous with C2 domain from Kazusa cDNA library. One is the C2A region of synaptotagmin IV that is related to an exocytic process of neurotransmitter at nerve terminals, the other is the C2A region of RIM2 that is an effector protein of Rab3. On the result of analysis of NMR spectra and calculation with CYANA, the both structures typically have 8 β -strands and are homologous with C2 domain. We also found some conserved residues that are lysine and arginine were on the surface of both proteins and these residues were probably related to protein binding.

〈序〉

C2 は protein kinase C(PKC)の C1ドメインと protein kinase catalyticドメインの間にある 約 116 アミノ酸からなるドメインである。今回発表する2つのタンパク質はこの C2ドメインとホ モロジーを持っている。ひとつは神経細胞の末端で神経伝達物質の開口放出に関わる synaptotagmin IV の C2A 領域(SytIV-C2A)で、未知の部分も多いが神経の発達段階で伝

キーワード:構造プロテオミクス、ヒト cDNA、 exocytosis

ながしまとしお、はやしふみあき、しろうずみかこ、てらだたかほ、きがわたかのり、いのうえまこと、やぶきたかし、 あおきまさあき、せきえいこ、まつだたかよし、ひろたひろし、よしだまゆみ、たなかあきこ、おさないたかし、まつ およう、おはらおさむ、ながせはかひろ、きくのれいこ、なかやままなぶ、よこやましげゆき 達物質の量を制御する機能があると報告されている。もうひとつは開口放出現象に関わる重要であり、Rab3のeffectorタンパク質のひとつであるRIM2のC2A領域(RIM2-C2A)である。 それぞれのたんぱく質に対しさまざまな NMR スペクトルを測定し、CYANA を用いて多角的 で詳細な構造解析を行った。

〈方法〉

ヒト由来の¹³C/¹⁵N 標識をした C2ドメインを無細胞タンパク質合成系によって大量発現さ せ、NMR スペクトルの測定をした。測定試料は SytIV-C2A が 0.75mM (20mM *d*-TrisHCl(pH7.0), 100mM NaCl, 1mM DTT, 0.1mM NaN3, 10%D2O) RIM2-C2A が 1.13mM (20mM *d*-TrisHCl(pH7.0), 100mM NaCl, 0.02%NaN3, 10%D2O)を用いた。測定は Varian Unity INOVA 600MHzと800MHzを使用し298Kで行った。主鎖帰属に¹⁵N-HSQC、 HN(CO)CA、CBCA(CO)NH、HNCO、HNCACB、側鎖帰属に¹³C-HSCQ、HBHA(CO)NH、 HBHANH、C(CO)NH、HCCH-TOCSY、CCH-TOCSY、¹⁵N-edited NOESY、¹³C-edited NOESYを解析に用いた。特にSyt-C2Aには10個のフェニルアラニンがあり、¹³C-HSQC 上 では重なってしまっている芳香環のピークの帰属を3次元の高分解能 HCCH-TOCSY およ び CCH-TOCSY と¹³C-edited NOESY を解析することで、ブロードニングして見えなかった 1 つを除いて30個中29個のピークを帰属できた。CYANAを用いてNOEピークの自動帰属 と構造計算を繰り返すことでケミカルシフトの補正を行った。その後、artifact や minor conformer 由来のNOEピークを特定し除去することで構造計算結果の精度を上げた。これら の作業を視覚的にすることで効率的な構造解析を行った。

〈結果と考察〉

CYANA による構造の精度を高めるための反復計算の結果(SytIV-C2A: 2285 distance constrains, 43 angle constrains, RIM2-C2A: 2234 distance constrains, 68 angle constrains)、 NMR による構造解析では比較的大きな16kDa 程度のタンパク質の構造を主鎖の RMSD が 0.5Å以下の高精度で決定することができた。得られた構造はどちらも、C2ドメインと相同性 があるβ-strand が 8 本からなる典型的なβ-サンドイッチ型構造だった。

他の syaptotagmin の C2A は Ca²⁺とともに脂質が結合することで神経伝達物質の放出が 可能になると報告されているが、今回決定した SytIV-C2A には Ca²⁺結合に必要な5つのア スパラギン酸のうちひとつが置換されているため、Ca²⁺が結合できないことが構造上からも明 らかになった。Ca²⁺結合できないなど synaptotagmin IV の機能は未知の部分が多いが、他の C2ドメインと比較するとアルギニンやリジンなどの正の電荷をもっている残基が保存されてい る部分があり、タンパク質が結合する可能性があることがわかった。RIM2-C2A もタンパク表 面に露出している残基に C2 ドメイン間で保存されているものがあるため、タンパク質との結 合に関与していると考えられる。

転写因子 Spl の DNA 結合領域の立体構造解析

(阪大院薬¹、京大化研²)〇岡 伸一郎¹、白石 泰久²、 吉田 卓也¹、大久保 忠恭¹、杉浦 幸雄²、小林 祐次¹

STRUCTURE OF TRANSCRIPTION FACTOR SP1 DNA BINDING DOMAIN

Graduate school of Pharmaceutical Sciences¹, Institute for Chemical Research, Kyoto University² OShinichiro Oka¹, Yasuhisa Shiraishi², Takuya Yoshida¹, Tadayasu Ohkubo¹, Yukio Sugiura² and Yuji Kobayashi¹

[Introduction]

Sp1 is a ubiquitous transcription factor which binds to GC box DNA, and its proposed consensus sequence of binding is 5'-(G/T)GGGCGG(G/A)(G/A)-3'. DNA-binding domain, which is located at the carboxyl terminal of Sp1, contains three tandem repeats of a Cys₂-His₂-type zinc finger motif (finger 1, 2 and 3). The peptide consisting of this domain, Sp1(530-623), can bind to GC box DNA with almost the same affinity as full-length Sp1. The crystal structure of this type DNA-binding domain, Zif268, complexed with its target DNA has been reported. In the complex, each finger occupies the major groove of the DNA and recognizes bases with each α -helix. Based on this structure and biochemical studies, it has been suggested that recognition mechanisms of finger 2 and 3 of Sp1 are typical for Cys₂-His₂-type zinc fingers, but that of finger 1 is different from them. In order to understand the DNA recognition mechanism of Sp1 more clearly, we have performed structural analysis and DNA binding analysis by NMR.

[Materials and Methods]

The $[U^{-13}C/^{15}N]$ Sp1(530-623) was expressed in *E. coli* system. DNA-binding activity of the prepared sample was confirmed by gel mobility-shift assay. All NMR experiments were performed at 25°C on a Varian INOVA 600 spectrometer. A total of 712 NOEs were colleted from ¹³C-edited NOESY and ¹⁵N-edited NOESY. Because no inter-finger NOE was observed, structure calculations of each finger were performed individually using CNS solve 1.1. After the minimization step, 15 structures with lowest energy were used for further analysis.

キーワード:転写因子、Sp1、DNA 結合ドメイン、亜鉛フィンガー

著者ふりがな:〇おか しんいちろう、しらいし やすひさ、よしだ たくや、おおくぼ ただ やす、すぎうら ゆきお、こばやし ゆうじ

[Results and Discussion]

In well-conserved regions of Cys_2His_2 -type zinc fingers, the RMSD of backbone atoms was around 0.6Å in each finger. All three fingers have a common Cys_2His_2 -type zinc finger fold that has one recognition helix and two β -sheet like structures are bound with zinc coordination. Structural comparison between zinc fingers of Sp1 and Zif268 suggests that finger 2 and 3 of Sp1 have typical DNA recognition modes found in finger 1 and 3 of Zif268, and finger 1 of Sp1 has a recognition mode like finger 2 of Zif268. On the other hand, an analysis of NMR spectra of Sp1(530-623) complexed with the consensus sequence DNA suggests that a residue that does not participate in DNA-binding in finger 2 of Zif268 was involved in DNA-binding in finger 1 of Sp1. Other structural analysis of Sp1-DNA complex will be discussed as well.

Fig.1 Overall structure of Sp1(560-623).

Reference

- 1. Dynan, W. S., and Tjian, R. (1983) Cell 32, 669-680.
- 2. Kadonaga, J. T., Carner, K. R., Masiarz, F. R., and Tjian, R.(1987) Cell 51, 1079-1090.
- 3. Kuwahara, J., Yonezawa, A., Futamura, M., and Sugiura, Y. (1993) Biochemistry 32, 5994-6001.
- 4. Vaibhav, A. N., Richard, W. K., and John, P., C. (1997) J. Biol. chem. 12, 7801-7809.
- 5. Yokono, M., Saegusa, N., Matsushita, K., and Sugiura, Y. (1998) Biochemistry 37, 6824-6832.

NMR 法による MHC クラス I タンパク質の相互作用の研究 (産総研. 生物情報解析研究センター¹、原研²、高知医科大³) 〇中川将利¹、千葉かおり²、宇高恵子³、中西洋志¹)

Study on interaction of MHC class I protein by NMR spectroscopy

(AIST. Biological Information Research Center¹, JAERI², Medical University of Kochi³)

A major histocompatibility complex(MHC) class I protein H-2K^b was expressed in a large scale to analyze the interaction with the antigen peptides.

NMR spectra of the peptide in the mixture solution with the protein showed very broad signals, indicating the clear existence of the dynamic interaction between the MHC protein and peptide. The interaction of the protein and peptide was discussed as well as the surrounding atmosphere of the peptide in the complex.

1: Major histocompatibility complex class I protein (MHC クラス I タンパク質) は、 免疫応答において非常に重要な役割をすることがよく知られている。このたんぱ く質は、H 鎖と L 鎖 (β_2 m) からなるヘテロ二量体であり、細胞内で外来性抗原 ペプチドと結合し、細胞表面でキラーT 細胞に抗原提示を行うことがわかってい る。今回、我々はこの MHC クラス I タンパク質の抗原提示機構における H 鎖と抗 原ペプチドとの相互作用、及び H 鎖と β_2 m との相互作用について NMR 法を用い て解析を行い、非常に興味深い結果を得ることが出来たので、それについて報告 する¹⁾。

2. 実験: MHC クラス I タンパク質として、マウス由来の H-2K^b 分子を選択し、 その H 鎖と β_2 mをそれぞれ大腸菌にて大量発現した。抗原ペプチドはペプチド合 成器(SHIMADZU PSSM8)を用いて合成し、それらを用いて in vitro でフォール ディングを行い、 β_2 mおよび MHC サンプルを得た。NMR の測定は DMX750 (Bruker)および INOVA600 (Varian)を用いて行った。

3. 結果と考察:抗原ペプチドとしては、最も抗原性の強い SIYRYYGL (p2CK^b) 以 外に、main anchor や sub anchor のアミノ酸残基を1個または2個改変した4種 類のペプチド (p2A, p5A, p8A, p5A8A)を合成した。

クラス I タンパク質と抗原ペプチドの相互作用を NMR 法で調べるために、NMR スペク

トル(1H核、750MHz)を測定した。5種のペプチドのシグナルの帰属は、通常の2次元 NMRスペクトル(DQF-COSY、TOCSY, NOESY)を測定、解析することにより行った。

MHC クラス I たんぱく質、抗原 – 抗体反応、相互作用、NMR、動的挙動

なかがわ まさとし、ちば かおり、うだか けいこ、なかにし ひろし

ペプチド p2CK^bの水溶液に H-2K^b 分子の水溶液を少しずつ添加し、1HNMR スペクトル を測定した。タンパク質をペプチド溶液に加えると徐々にプロトンのシグナルがブロード ニングを起こす。¹H'の NH 及び芳香族シグナル領域でかなりシグナルの線幅が広がる。 1:3ではペプチドのシグナルがかなりタンパク質のブロードシグナルと重なり合う。1:1で は1HNMR シグナルはほとんどタンパク質のシグナルに隠れてしまう。NH 領域以外の高 磁場の CH、CH₂、CH₃シグナル領域でも同様のブロードニング現象が測定された。同様 の実験をp2A、p5A、p8A、p5A8AのペプチドとH-2K^b タンパク質の混合溶液で行った。 タンパク質を加えるとp5A8A のペプチドのシグナルのブロードニングは、p2CK^b や、p5 A、p8A の場合程ではないが、わずかに起こっていることがわかった。これらの NMR スペ クトルの測定結果から、このH-2K^b クラスIタンパク質は p2CK^b~p5A8A などの抗原ペプ チドと相互作用を起こしており、そのシグナルが化学交換してブロードニング現象を示す ことが分かった。これは、MHC クラスIタンパク質と抗原ペプチドの間の水溶液中での交 換を NMR で観測した初めての例である。

上述したのと同じように、クラス I タンパク質の L 鎖である β_2 mと p2CK^bペプチドとの 混合溶液の同様な NMR の測定を行ったが、上述したようなシグナルのブロードニング現 象を見出せなかった。このことは、抗原ペプチドは β_2 mと分子間相互作用をしないことを 示している。

5個のペプチドに共通に存在する3位のタイロシン残基の aromatic プロトンのシグナ ルのブロードニングを比較してみると、線幅は p2CK^b >p2A>p5A、p8A>p5A8A の順 に大きく減少していることがわかる。このことは、8 個のペプチド残基の内、2 位の sub-anchor Yより5位及び8位の main-anchorのYの方がタンパク質との相互作用に 大きな影響を与えることを良く示しており、このことは従来の生化学的実験の結果とよく一 致している。

さらに、同一ペプチド内でアミノ酸残基のシグナルによってブロードニングの度合が 異なっていることから残基による相互作用の強さの違いについても議論できる。

次に、H 鎖と L 鎖の分子間相互作用についても NMR 法を用いて研究を行った。 我々は β_{2} mの天然存在の14N の窒素原子を同位体15N に enrich した試料を作製し、 そのHSQC スペクトルで15N のシグナルをより容易に検知することにした。そのようにして も一部のシグナルはブロードなので、重水中で産生を行い、H 鎖のアミノ酸残基の水素 原子を重水素化することにより、シグナルの線幅を小さくすることに成功した。 β_{2} mのみ の時のスペクトルと、H 鎖と β_{2} mの compex 形成した時のスペクトルを比較してみると、か なり広範囲で大きくシグナルがシフトしていることが明らかになった。スペクトルの変化が 広範囲で生じていることは、 β_{2} mが H 鎖と相互作用し、その時の β_{2} mの構造は β_{2} m単 独の時の構造とかなり異なることが示唆されているように考えられ興味深い²。

1) M. Nakagawa, K. Chiba-Kamoshida, K. Udaka, H. Nakanishi,

Biochem. Biophys. Res. Comun., 278, 609-613 (2000)

2) M. Nakagawa, K. Chiba-Kamoshida, K. Udaka, H. Nakanishi, to be submitted.
溶液高分解能 MAS 法によるバイセル結合ペプチドの直接観測

(東レリサーチセンター¹、東京農工大・工²) ○ 川口 謙¹⁻²、木村一雄¹、朝倉哲郎²

Direct Observations of High Resolution ¹H NMR in Liquid Phase for Peptides bound to Bicelles

Ken KAWAGUCHI,^{1, 2} Kazuo KIMURA,¹ and Tetsuo ASAKURA² ¹Analytical Sciences Department, Toray Research Center, Inc. ²Department of Biotechnology, Tokyo University of Agriculture and Technology

Direct observations of high resolution ¹H NMR in liquid phase for Valinomycin bound to bicelles as a model of membrane bound peptides were endeavored using a high resolution magic angle spinning (HR-MAS) probe. The bicelles were composed of two kinds of lipids, dimyristoyl phosphatidylcholine (DMPC) and 3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxypropane sulfonic acid (CHAPSO). The equivalent amounts of these lipids were mixed. Using both a HR-MAS probe and bicelles, we observed high resolution ¹H NMR spectra of the peptide directly and successfully. Amide protons of valinomycin bound to bicelles were observed even in deuterium oxide solution and after sonication. Such results suggest that valinomycin forms intra molecular hydrogen bonds and is bound to bicelles. Assignments of the amide protons of valinomycin bound to bicelles were performed from the multiplicity and NOESY spectrum using a HR-MAS probe.

[緒言] 膜タンパク質の立体構造解析は一般に水溶性タンパク質に比べるとかなり困難であり、未だ一般的な解析手法が確立されているわけではない.そこで本研究では、膜タンパク質のモデル系として 膜結合性ペプチドを研究対象とし、NMR を用いた立体構造解析手法の開発を目的とした.

本発表では,高分解能溶液 NMR によって,脂質二重膜に結合したペプチドの直接観測を目指した.高 分解能シグナルを得るために,マジックアングルスピニング下で溶液 NMR を観測できる検出器(高分 解能 MAS プローブ.以下, HR-MAS プローブと略す)とバイセルを利用し,二重膜系において高分解 能シグナルを観測することを試みた.

[実験]

試料

バリノマイシンおよびジミリストイルフォスファチジルコリン (DMPC) はシグマから購入し, 3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxypropane sulfonic acid (CHAPSO) は同仁化学研究所か ら購入し,そのまま用いた.

NMR サンプル試料調製

DMPC, CHAPSO, バリノマイシンを 1.0:1.0:0.13 の比率で混合しクロロフォルムを添加して攪拌した後,乾燥させた.これに重水を添加し(バリノマイシン濃度:9mM), 30℃~40℃で超音波処理を行なって NMR 用試料とした.

なお, DMPC/CHAPSOの比率を 2~5 にしたバイセルについても実施した. バイセル調製時には必要 に応じて温度を上下させて作製した.

<u>NMR 測定</u>

NMR は UNITY INOVA600(Varian)に HR-MAS プローブ(ナノプローブ)を装着して ¹H NMR スペクトルを測定した.比較のために通常の溶液プローブでも ¹H NMR を測定した.測定温度は 38℃ で行なった. HR-MAS プローブのセルの容量は40µL であり, MAS は約 3200Hz の回転数で測定した.

高分解能マジックアングルスピニング,高分解能 H NMR,バイセル,バリノマイシン,ペプチド

かわぐち けん, きむら かずお, あさくら てつお

スピニングサイドバンド確認のため、回転数を変えたスペクトルも測定した.2 次元 NMR は、COSY (Correlated spectroscopy) および NOESY(Nuclear Overhauser effect spectroscopy)を実施し、溶媒シグナ ルを Presaturation 法で抑制して測定した.NOESY 測定では混合時間を 200ms とした.

[結果及び考察]

バリノマイシンは抗生物質の一種で、水にほとんど不溶であるが有機溶媒や脂質に可溶性である。 そのためバイセルに結合したバリノマイシンのみが溶液 NMR で観測されると期待される。

バイセルは DMPC が二重膜部分を構成し、CHAPSO が端と一部の二重膜部分を構成している¹⁾. Fig.1 は同じバイセル試料について通常の溶液プローブと HR-MAS プローブで比較した結果を示した. HR-MAS プローブでは高分解能スペクトルが観測されることが明らかとなった. この組成のバイセル にバリノマイシンを結合させて測定した結果が Fig.2 である. 8ppm 付近にバリノマイシンのバリン由 来のアミドプロトンシグナルがダブレットピークとして観測された. 重水中での測定であること,お よび超音波処理をしていることから、アミドプロトンが観測されたことは、分子内水素結合の存在を 示唆しているが、脂質中に埋まっていることも一因と考えられる.

なお 7ppm 付近にはスピニングサイドバンド(MAS 回転によって生じるシグナル)が現れている.ス ピニングサイドバンドはスペクトルの質を低下させるが、ペプチドもしくは脂質に同位体ラベルを導 入することによって解決できる.5.0ppm~5.4ppm にはバリノマイシン由来の別の残基(乳酸およびヒ ドロキシイソ吉草酸)のαプロトンシグナルが観測されている.いずれもプロトン間のスカラーカップ リングが読める程度の分解能で観測された.このことはバイセルに結合したペプチドの NMR 構造解析 が溶液中で可能であることを意味している.例えば 5.35ppm のカルテットは乳酸のαプロトンに帰属さ れる.

アミドプロトンの帰属は、同一の系で NOESY、COSY スペクトルを解析することにより、明らかとなった.このような手法によって、バリノマイシンの帰属と NOE 解析が可能であることが明らかとなった.本報の手法によってバイセルに結合したペプチドの立体構造解析は充分に可能であることが期待できる²⁰.また、DMPC/CHAPSOの比率が1以上の結果についても示す予定である.

spectral range 4.5-8.5 ppm was expanded.

indicates spinning side band.

SSB

参考文献

C. R. Sanders, B. J. Hare, K. Howard, and J. H. Prestegard, *Prog. NMR Spectrosc.*, 26, 421 (1994).
 川口 謙, 木村 一雄, 朝倉 哲郎, 高分子論文集, 60, 199 (2003).

3 P19

膜環境下でのペプチドの配置決定

若松 馨* 野口真路*、細田和男*、石井 毅*、稲岡斉彦*、高瀬聖也*、 河野俊之 + (*群大工、+ 三菱化学生命研)

Determination of peptide orientation in membraneous environment

Kaori Wakamatsu*, Shinji Noguchi*, Kazuo Hosoda*, Takeshi Ishii*, Yoshihiko Inaoka*, Masaya Takase*, and Toshiyuki Kohno*

*Faculty of Engineering, Gunma University

†Mitsubishi Kagaku Institute of Life Sciences

[Abstract]

A transferred NOE (TRNOE) method, which has been used to determine the conformation of peptides bound to phospholipid bilayers, may be applied also to determine the orientation of peptides in the bilayers. 'That is, when TRNOE is recorded of peptides in the presence of phospholipid bilayers supplemented with lipid molecules having a spin labeled group at a specific depth, protons located in that depth are expected to show decreased TRNOE intensities. Analyses of such decrease in TRNOE intensities in the presence of lipids having spin labels at different depths will enable the determination of the orientation of the peptides in the bilayers.' We will present the applicability of the method under different membraneous environments using mastoparan-X as an example.

【緒言】

脂質二重膜とペプチドの相互作用の解析する場合、ペプチドの立体構造だけでなく、膜中での配向 は大変重要な情報である。脂質二重膜存在下でのペプチドのコンフォメーションは、転移核オーバー ハウザー効果(TRNOE)により決定が可能である。膜中の特定の深さにスピンラベルが存在する場 合、そのスピンラベル近傍にあるペプチドプロトンの TRNOE シグナルは、ラベルの影響によりその 強度が減少すると期待される。つまり、膜中において、スピンラベルの深度を変化させ、それぞれ TRNOE 測定を行うことにより、ペプチドの膜中の配置を決定することが可能である。本研究におい ては、モデルペプチドとしてマストパランX(MP-X)を用い、さまざまな脂質環境でこの決定法の 評価を行った。

【サンプルおよび測定】

脂質環境として、DMPCの二重膜、DPCのミセル、DMPC/CHAPSOの bicelle を用いた。スピン ラベル脂質としてはスピンラベルした PC および脂肪酸を用い、その適正濃度は滴定で決定した。ペ プチド/脂質溶液は pH 6.0 に調製し、Bruker ARX-400 を用いて 318 K にて TRNOESY/NOESY、 TOCSY スペクトルを測定した。シグナル強度は PIPP で定量した。

TRNOE、スピンラベル、 mastoparan-X、 配置、膜環境

わかまつ かおり、のぐち しんじ、ほそだ かずお、いしい たけし、いなおか よしひこ、たか せ まさや、こうの としゆき

【結果】

スピンラベル存在下での残基内 HN-Haの TRNOE/NOE シグナル強度をスピンラベル非存在下で のシグナル強度で規格化した結果を Figure 1 に示す [a) は二重膜環境、b) はミセル環境]。二重膜・ ミセル環境ともにシグナル強度が残基番号によって周期的に変化していることがわかる。これは、脂 質環境下で MP-X が α へリックスを形成していることと対応しているとともに、ヘリックスの軸が膜 表面にほぼ平行であることを示している。また二重膜環境では、親水性の残基は表面にスピンラベル が位置する TEMPO-PC で強くクエンチされ、疎水性の残基は深い位置にスピンラベルが存在する 12-DOXYL-PC で強くクエンチされたことから、親水性の側面を膜の外側に出した状態で膜表面に 平行に埋っている事がわかる。これは側鎖の TRNOE のクエンチのパターン(図に示していない)か らも確認された。

ところで、二重膜環境に比べてミセル環境ではシグナルの強度変化の程度が少ない。これは、二重 膜に比べてミセル中ではペプチド分子の位置があまり固定されていないことを反映していると考えら れる。そこで、ペプチドの膜への配向を解析する場合、ミセルよりも二重膜の方が明確な結果が得ら れると考えられる。現在、安定同位体ラベルした MP-X を用いて bicelle 環境での評価を行っており、 その結果もあわせて報告する予定である。

Figure 1. Relative intensities of HN-Ha cross peaks of MP-X in the presence of spin labels. a) TRNOE of MP-X in the presence of DMPC-d bilayers, +TEMPO-PC: with TEMPO-PC, +7-DOXYL; with 7-DOXYL-PC, +12-DOXYL: with 12-DOXYL-PC. b) NOE of MP-X in the presence of DPC-d micelles, 5-DOXYL: with 5-DOXYL-sterate, 16-DOXYL: with 16-DOXYL-sterate. Asterisks annotate intensities of HN-Hb.

3 P20

CAST/CNMRシステムの応用:¹³C-NMRシフトに基づく 立体化学の決定

(理研¹, 国立情報学研²)
 ○越野広雪¹, 佐藤寛子²

Application of CAST/CNMR System to Stereochemical Determination Based on Predicted ¹³C-NMR Chemical Shift Data

(RIKEN¹, NII²) H. Koshino¹ and H. Satoh²

We have developed a new computer system CAST/CNMR for ¹³C-NMR chemical shift prediction using a structure-NMR database considering stereochemistry. CAST/CNMR system has been applied to determine stereochemistry of natural products and synthetic organic compounds. Accuracy of predicted ¹³C-NMR chemical shift values for possible diastereoisomers were enough for characterization of relative stereochemistry. We will present concepts of stereochemical detemination method with CAST/system and some applications.

CAST/CNMRは立体化学を規範的に表現できるCASTコードを基盤とした化学構 造-NMR化学シフトデータベースを予測のデータソースとして利用し,立体化学を 的確に考慮する,高精度¹³C-NMR化学シフト予測システムである.¹⁻⁴ 昨年の本討論 会ではCAST/CNMRシステムの応用として,同じ化学シフト値を与えるべき部分構 造を有する化合物を立体化学を認識してデータベースから効率的に検索できる機能 を利用した,立体化学が決定されている化合物に対する立体構造類似性と1次元 ¹³C-NMRデータに基づく¹³C-NMRの帰属方法について報告した.⁵ 今回は,立体化 学を決定する部分構造について,可能性のある全立体異性体の化学シフト予測値と ¹³C-NMRの実測値との比較によって立体化学を決定する方法の概要について報告す る.

近年磁場勾配パルス法を用いる2次元NMR法の普及により、低分子有機化合物の 平面構造の決定は比較的容易になったが、NMRを用いた立体化学の決定は未だ困難 な場合も少なくない、立体化学決定の難易度は化合物の種類によって大きく異なる が、簡便で正確な立体化学決定法の開発は天然物有機化学の分野などでは重要な課 題である、立体異性体間のNMR化学シフトの違いを利用する立体化学決定法は数多

CAST/CNMR、立体化学、データベース、化学シフト予測、立体異性体

こしのひろゆき, さとうひろこ

く知られているが、それらの規則の適用範囲が明確でない場合や立体異性体の一方 のみのデータでは立体化学を決定できないなどの問題も多い. 例えば, α-メチルβ-ハイドロキシカルボニル化合物の相対配置は¹³C-NMRの化学シフト値を比較する ことによって決定できることが報告されている。
「下図に示す様に各炭素のシフト 範囲に共通する部分があるため、合成的に両異性体のデータが存在する場合などに はsvn体の化学シフト値がanti体よりも高磁場に観測されるという規則を適用し、立 体化学を決定できるが、しかし異性体の一方のデータしか得られない場合に、その 適用には限界があると考えられる. そこで, α-メチル-β-ハイドロキシカルボニル の部分構造を有し、立体化学が未決定である抗生物質dorrigocin A⁷の立体化学決定 にCAST/CNMRを適用してみた.メチル基の化学シフトはsyn体が9.6 ppm, anti 体が14.2 ppmと予測され、報告されているdorrigocin Aの化学シフト値は14.5 ppmであることからanti体であると決定できた. CAST/CNMRシステムでは対象化 合物の構造の多様性に対応して適切な化合物データを検索してそのデータを予測に 使用するため、異性体間で十分に異なる化学シフト値を与える場合には、信頼でき る立体化学の決定が可能である。また、可能な立体異性体の全ての炭素のシフト値 を予測するのに必要なデータが存在しない場合であっても、立体異性体間の構造的 な特徴が反映される数力所の炭素の化学シフト値に着目することで、立体異性体の 判別が基本的に可能である.

参考文献

- 1) H. Satoh, H. Koshino, K. Funatsu, and T. Nakata, J. Chem. Inf. Comput. Sci., 40, 622-630 (2000).
- 2) H. Satoh, H. Koshino, K. Funatsu, and T. Nakata, J. Chem. Inf. Comput. Sci., 41, 1106-1112 (2001).
- 3) H. Satoh, H. Koshino, and T. Nakata, J. Comput. Aid. Chem., 3, 48-55 (2002).
- 4) H. Satoh, H. Koshino, J. Uzawa, and T. Nakata, Tetrahedron, 59, 4539-4547 (2003).
- 5) 越野広雪, 佐藤寬子, 第41回NMR討論会講演要旨集, pp148-149 (2002).
- 6) C. H. Heathcock, M. C. Pirrung, and J. E. Sohn, J. Org. Chem., 44, 4294-4299 (1979).
- 7) J. E. Hochlowski, D. N. Whittern, M. Preston, and B. James, J. Antibiotics, 47, 870-874 (1994).

HMBC法の新しい応用測定----HR-J-resolved-HMBC法について,

東大院農・応生化、*東農大・生応化

〇降旗一夫、*瀬戸治男

HR-J-resolved HMBC, an Improved Method of HR-HMBC for Measuring Heteronuclear

Long Range Coupling Constants

K. Furihata and H. Seto*

Division of Agriculture and Agricultural Life Sciences, University of Tokyo * Faculty of Applied Bio-Science, Tokyo University of Agriculture

In the J-resolved-HMBC-1, long range C-H couplings are observable with good S/N in the F1 dimension but small long range C-H couplings are impossible to observe. On the other hand, the HR-HMBC method gives simple cross peak pattern than J-resolved HMBC. In addition, even small C-H spin coupling constants are able to observe easily, since the cross peaks are largely split by long range C-H couplings. This method employs constant parameter for the delay time as does conventional HMBC. Cross peaks which do not fit for the HMBC delay time appear weakly because magnetization of C-H couplings with different magnitude can not be equally excited.

We present the HR-J-resolved HMBC method, a combination of J-resolved HMBC and HR-HMBC methods in order to overcome this problem. In this new method, constant delay time of HR-HMBC is replaced by variable delay time in order to excite equally magnetizations with different magnitude of C-H couplings. When this method was applied to the complicated molecule monazomycin, it was possible with broadening signals to observe long range C-H couplings that were difficult to observe in the HR-HMBC spectrum.

天然有機化合物の立体化学構造研究において、long-range J_{CH}を如何にして効率良 く測定するかが重要な課題の一つである。HMBC法は、long-range J_{CH}を利用して相 関ピークを検出するための、広範に利用されている測定法であるが、そのクロスピー クから直接 long-range J_{CH}を読みとることは困難である。

我々は、既に、long-range J_{CH}を測定する一つの方法として、J-rezolved-HMBC-1,-2 と、HR-HMBC法を報告してきた⁽¹⁾⁽²⁾。このJ-rezolved-HMBC-1はF₁方向でlongrangeJ_{CH}を観測する方法でありS/Nが高く優れているが、小さなスピン結合の検出が 困難であり、またクロスピークも複雑であった。一方、HR-HMBC法はJ-resolved HMBC法よりはクロスピークを単純化し、J_{CH}の分離能を高めることを可能にした。 この方法は、通常のHMBCと同様に固定パラメータ(HMBC-delay time)を設定するた め、大きさの異なるlong range J_{CH}により、磁化をユニフォームに励起することがで きない。そのため、HMBC delayに適合しないスピンのクロスピークはS/Nを低下さ せてしまうという問題があった。

今回は、このHR-HMBC法の問題点を解決するために、HR-J-rsolved HMBC法を 報告する。この方法はJ-resolved HMBC法とHR-HMBC法の組み合わせからなる。こ の方法のポイントは異なる大きさの J_{CH} の磁化を励起するために、固定delay timeの代 わりに可変delay timeを導入することにある。その結果、様々な大きさのlong range J_{CH} に依存しないHR-HMBCスペクトルが得られた。この方法を複雑なマクロライド 抗生物質monazomycinに応用し、HR-HMBCスペクトルでは観測する事が困難であっ た signalにおいてlong range J_{CH} の観測ができた。 パルス系列

図1にパルス系列 HR-J-resolved-HMBC-1, -2を示す。HMBC法の磁化は、炭素の化 学シフトとプロトンープロトンのスピン結合で展開している。しかし、△t_iは短く設 定されるため、小さなスピン結合が検出できるほどにはt,maxを展開していない。例

キーワード HR-J-resolved HMBC、HR-HMBC

ふりはた かずお、せと はるお

えば F_i =30000Hzで512点測定して も t_i maxは17msecに過ぎない。そ のために、 F_i 方向は、スピンース ピンカップリングを検出するには 至らない。スピン結合定数を検出 するためには、 t_i maxが300msか 500ms位まで展開する必要がある。 HMBC法においてlong- range J_{CH}を 観測するためには、J_{CH}の磁化を t_i max=300msから500 ms位まで展 開しなくてはならない。そのため に、HMBCのスピン展開の前か後 にJ-scalingパルスを導入する⁽¹¹⁽²⁾)</sup>(図 1)。HR-J-resolved HMBC法は、Jresolved-HMBC法とHR-HMBC法

図1. HR-J-resolved HMBCのパルス系列

を組み合わせ、HMBCスピン展開の前にJ-scalingパルス(--mt_i/4-180(H,C)-mt_i/4--)、そして、後にJ-scalingパルス(--nt_i/4-180(H,C)-nt_i/4--)を導入した方法である。HR-J-resolved HMBC-1はJ-scaling-factor, m=nで設定する場合のパルス系列である。この場合は、J-scalingに含まれる二つの180(H,C)パルスは省略できる(図1)。

一方、HR-J-resolved HMBC-2はJ-scaling factor m \neq nの場合のパルス系列である。 どちらの方法でも、HMBCのスピン展開の前のmt₁は大きさの異なるlong range J_{CH}の 磁化をユニフォームに励起するためのaccordion method として機能する。また、J_{HH} に対してはJ-分解法としても機能する。一方のHMBCのスピン展開の後のnt₁は、J_{CH} およびJ_{HH}に対してJ-分解法として機能する。その結果、HMBC磁化は化学シフトに 対してはt₁、プロトンープロトンのスピン結合では(m+n)/2+1)t₁、そして、炭素との スピン結合に対しては(n/2)t₁で展開する。したがって、プロトンープロトンのスピン 結合定数は実際の値よりも(m+n)/2+1倍、J_{CH}に対してはn/2倍の値として観測される。

J-scalingパルスの最後、acquisitionの手前の180度パルスは、プロトンの磁化を反転し、 $J_{CH} \ge J_{HH}$ の分裂方向を区別するためのものである。炭素の磁化を反転させても構わない。

J-resolved HMBCでは、nt₁maxは観測するスピン結合定数1/Jのオーダーを越えるように設定しなければならないが、このHR-J-resolved HMBCでは、観測するスピン結合定数の半分(nt₁max/2)でも、十分分離の良いクロスピークを得ることが出来ることが判明した。

HR-J-resolved-HMBC スペクトル

図2はエチルベンゼンのメチル基プロトンからメチレン炭素とのlong range ²J_{CH}によるJ-resolved HMBC, HR-HMBC, HR-J-resolved HMBC-1のクロスピークを示す。nt₁maxの同一実験で測定したスペクトルを示す。scaling factor(n)=25である。

J-resolved HMBCのスペクトルのクロスピークは、 F_1 軸では25 xJ_{CH}、 F_2 軸ではJ_{CH}で 分裂し複雑なパターンを与える。HR-HMBCスペクトルのクロスピークは斜め二重線 として観測される。この分裂パターンから、 F_1 軸からは、25xJ_{CH}、 F_2 軸からはJ_{CH}の値 をどちらの方向からも読みとることは可能である。

一方、HR-J-resolved HMBCスペクトルでは、分裂パターンはHR-HMBCスペクト ルと同じであるが、 F_1 方向の分裂はHR-HMBCよりは小さくなり、 F_1 軸からは、 12.5 xJ_{CH} 、 F_2 軸からは J_{CH} の値を読みとることになる。HR-J-resolved HMBCでは、同一 nt,maxで測定した場合は観測される J_{CH} の分裂は小さくなり、誤差が大きくなるため に、実際の long range J_{CH} の観 測は、 F_1 軸で観測するよりは F_2 軸で観測することが望まし い。

<u>ポートミシンのHR-HMBCス</u> ペクトル

図3はポートミシンのHR-HMBC-1とHR-J-resolved HMBG1のスペクトルである。 ポートミシンの4位のプロト ンは多重線に分裂し、なおか つ、ブロードである。HR-HMBCスペクトルにおいて、 H4のプロトンからC6および 4-Meのクロスピークは検出

F1/n resolution = 1.1(Hz), F2 resolution = 2.2(Hz) scaling factor(n) = 25

が困難になっている。一方、HR-J-resolved HMBCスペクトルでは、C6および4-Meの クロスピークの感度が向上し,斜め二重線を確認できる。H4とH5は11.3 Hzでスピン 結合しており、両者はantiの関係にある。このH4に対するC5の $^{2}J_{CH}$ のクロスピークは、 $^{2}J_{CH}$ = 6.5 Hzを観測する。また、H4とC6では、 $^{3}J_{CH}$ =2.8 Hzを観測するため、H4に対し て、H5はanti、O原子はgauch、C6もgauchの配座であることが示されている。

一方、H4に対して、H4とH3は1.3Hzと小さなスピン結合であり、H4とH3はgauchの 間係なレス この場合

関係をとる。この場合、 C2とO-Meはどちらがanti の配座を取るかはプロト ンのスペクトルからはプロト ンのスペクトルからは判 別できない。このスペク トルから、H4とC3は 5.5Hzと大きなスピン結合 であり、また、H4とC2は 5.0Hzと大きな値をとる。 その結果、H4に対して、 C2はanti、O-Meはgauchの 配座をとることはわかる。 モナゾマイシンのHR-Jresolved -HMBCスペクト <u>ル</u>

図4はモナゾマイシンの HR-J-resolved HMBCとHR-HMBCのスペクトルであ る。

HR-J-resolved - HMBCス ペクトルとHR-NMBCスペ クトルを比較して、HR-Jresolved -HMBCスペクト ルの方がHR-NMBCスペク トルよりもS/Nが高いこと

図3. ポートミシン

HR-J-resolved HMBC(上)HR-HMBC(下) スペクトル scaling factor(n) = 25、 $t_1 x t_2 = 256 x 4000$ (point)、 $F_1 x F_2 = 14000 x 2250$ (Hz)、nt1max = 457 ms、scan = 64

がわかる。H14から のslice スペックトルからも 明らかである。しか も、F,軸のJcuの分裂 は半分に落ちている にも関わらず、long range J _{CH}の観測には 十分な分裂を与えて いる。H14のプロト ンからC12、C13お よびC15、14-Meにク ロスピークを観測し ている。long range JultF,軸から検出し た。H14とH15はJ_{HH}= 7.2Hzであり、H14と H15の相対立体配座 は、anti(180度)か らanticlinal(120度) の関係にシフトして いることが示唆され る。H14とC15の²J_{CH} は6.2Hzであり、H14 と15-0の関係は gouch(60)から synperiplanar(0)の関 係にシフトしている。 また、H14とC16の

図4. モナゾマイシン

HR-J-resolved HMBC (上) HR-HMBC (下) スペクトル scaling factor(n) = 25、 $t_1 \times t_2 = 512 \times 4000$ (point)、 F₁ x F₂ = 23000 x 2900(Hz)、nt1max = 555 ms、scan = 128

されていない。これは ${}^{3}J_{CH}$ が小さくH14とC16のdihedral angleはほぼ90度に近いと予想される。これらのデータから、H14とH15はanti,、H14と15-OH、H14とC16はgiucheの配座になることを示している。

おわりに

クロスピークは観測

HR-J-resolved HMBC法において、HR-HMBC法では観測が困難であったブロード なシグナルや複雑な化合物において、long range J_{CH}の観測が可能になった。この方 法では nt_1max が250msec(4Hz)ぐらいまでの設定でも小さな J_{CH} を観測することが可能 であることが判明した。その場合は F_2 方向で J_{CH} を読みとることが重要である。

J-scalingをもちいた長いnt_imaxの値を設定する方法、HR-J-resolved HMBC法では、 S/Nの低下は避けられない。実際の測定に当たっては、このS/Nの低下を考慮して積 算時間を設定することが重要である。

HR-J-resolved-HMBC法は、クロスピークは単純化され、解析が容易になる。また、 小さなクロスピークの結合定数を読みとることも容易となった。本法は、HMBCと 同様、測定は容易であり、しかも、複雑な化合物にも適用が可能であり、実用的に は他の方法にひけをとらないと考えられる。

1) K. Furihata and H. Seto, Tetrahedron Lett., 40, 6271 (1999)

2) 降旗一夫、瀬戸治男、第40回NMR討論会講演要旨、京都、(2001).

3 P22

C-H•••O Blue-shifting H-bond 形成の時に観測される
H と C のケミカルシフトの変化とその解析
(福井大工) ○水野 和子

The changes in ¹H and ¹³C chemical shifts on the formation of C-H•••O blue-shifting hydrogen bonds

Fukui University

Kazuko Mizuno

We studied concentration and temperature dependence of the frequencies of the C-H stretching vibration bands, v(C-H), in IR spectra and ¹H and ¹³C chemical shifts of the C-H groups for several aqueous binary mixtures. The solutes studied were alkyl alcohols, amide, dimethylsulfoxide, acetone, 1,4-dioxane, 1,3-dioxane, and tetrahydrofuran. We found that v(C-H) of the C-H groups in all the systems increase with increasing water concentrations, indicating increases in the strengths of the C-H bonds. On the other hands, small increases in ¹H chemical shifts and the decreases in the ¹³C chemical shifts were observed, showing small increases in the polarization of the C-H bonds. From these observations, we discuss the properties of blue-shifting CH•••O hydrogen bonds.

はじめに: C-H•••X(X=O, N, halogen) で表される弱い水素結合が,多くの研究者の関 心を集めている.非常に多くのタンパク質結晶についてのX線回折から C-H•••O=C が見いだされ,構造安定化に寄与していることが明らかにされてきたが,溶液系に ついての実験はこれに比べて報告例がはるかに少ない.一方, ab initio MO 法による 計算例が数多く報告され, O-H•••O, N-H•••O などで表される Red-shifting H-Bondt と の比較,あるいは統一的な理論が提出されている,^{1,2}

私達の研究室では、アルキルアルコールを水で希釈していくと、赤外分光法で得 られる C-H 伸縮振動バンドが高波数側にシフトしていくことを観測し、これがアル コールの OH 基と水との水素結合の結果としては説明できないことから、CH 基と水 との相互作用によるものと考え、相互作用の分子間力について議論してきた^{3,4}ここ では、水素結合を研究するための代表的な分光学的方法として利用されてきたケミ カルシフトの測定結果を、赤外分光法で得られる C-H 伸縮振動バンドの波数の変化 といっしょに示しながら、C-H•••O blue-shifting H-bond の特徴を明らかにする.

'C-H•••O, Blue-shifting, 水素結合, ケミカルシフト, 外部複基準法

みずの かずこ

実験:ケミカルシフトの測定は, JEOL EX-400 を用いて,¹H について 400MHz,¹³C では 100MHz を共鳴周波数として,外部複基準法で測定した.^{3,4} 温度を 1.0, 25.0, 50.0℃ の3点とした.ケミカルシフトの測定はすべての試料の値を unified scale で 表すために外部基準法を取り,基純物質として底が球状の細管に封入した TMS,または hexamethyldisiloxane を用いた.この方法では細管部と球状部分にある基純物質 によって2本のシグナルが観測され,それらのケミカルシフトの差から,試料と基 純物質のバルクの体積磁化率の差を補正できる.試料として用いたのはいずれも極 性基を持つ有機化合物で,全領域に渡って濃度を変化させた.

結果:得られた結果を次のようにまとめることができる.

- 1) 測定したすべての有機化合物中の C-H 伸縮振動バンドは,水濃度の増加に つれて高波数側にシフトし,吸収の強度が減少した.しかし,温度を 2~60°C の 範囲で変化させても波数の変化は観測されなかった.
- 2) C-H 伸縮振動バンドの波数v(C-H)の濃度依存性は、CH基の極性基からの 距離と関係があり、極性基に近いCH基では水の非常に低い濃度からブルーシ フトが始まるのに対して、遠いCH基では高い濃度でシフトし始める.

これらの結果から私達は, v(C-H)のブルーシフトが

(溶質の極性基, C=O, S=O, OH など) •••H-(H)O•••H-C で表される水分子の (Red-shifting and Blue-shifting) bi-functional hydrogen bonds の形 成によるものと結論した.⁵

3)このとき、CH基の 'H-ケミカルシフトは極性基からの距離とは無関係に、いずれもほとんど同じ濃度依存性、すなわち、水の大きな濃度領域でわずかに増加したのに対して、¹³C-ケミカルシフトは極性基に近いCH基が水分子と極性基との水素結合を反映する低磁場シフトを示したのに対して、極性基に遠いCH基では、逆に高磁場にシフトして、C-H•••OH2で表される Blue-shifting H-bondでは、結合の電子密度が高くなる一方で、炭素と水素の電荷がより分極の方向に変化することがあきらかになった. Hermannson と Qian 等は、Red-shifting H-bond と Blue-shifting H-bond が電場の中の振動双極子として統一的に記述できることを示した. ここで示したケミカルシフトの変化は C-H•••O が X⁶⁻-H⁶⁺•••Y⁶⁻で表され、Red-shifting H-bond と同じであることを示した.

参考文献: 1) Hermannson, K. J. Phys. Chem. A 2002, 106, 4695. 2) Qian, W. : Krimm, S. J. Phys. Chem. A 2002, 106, 6628. 3) Mizuno, K.; Ochi, T.; Shindo, Y. J. Chem. Phys. 1998, 109, 9502. 4) Mizuno, K.; Tamiya, Y.; Mekata, M. Pure & Appl. Chem. Submitted for publication. 5) Mizuno, K.; Imafuji, S.; Fujiwara, T.; Ohta, T.; Tamiya, Y.J. Phys. Chem. B 2003, 1073972.

ポリメタクリル酸メチルゲルネットワーク中の線状・球状ポリスチレンの拡散機構の解明 (東工大院理工高分子センター)〇上ロ憲陽・黒木重樹・安藤勲・石津浩二

Study of diffusional behavior of linear and star polystyrenes in poly (methyl methacrylate) gels

Kazuhiro Kamiguchi, Shigeki Kuroki, Isao Ando and Koji Ishizu

(Department of Chemistry and Materials Science, Tokyo Institute of Technology)

The diffusion coefficients of star and linear polystyrenes (PS) in poly (methyl methacrylate) gels have been determined by means of pulsed-field-gradient spin-echo (PGSE) ¹HNMR with various observation times (Δ). From these experimental results, it is found that dependences of the diffusion coefficients of PS in gels on molecular weight and observation time are elucidated. Further, we have discussed restricted diffusional behavior of probe PS and matrix heterogeneity in gels.

【緒言】

高分子ゲルの機能及び物性は系中の網目鎖を通っていくプローブ分子の拡散過程と密接な関係があ り、ゲル内の物質拡散の情報は高分子ゲルの構造やダイナミクスに関して有用な情報を与えてくれる。こ れまでに、高分子ゲル中の溶媒、低分子、及び高分子の拡散拡散過程について多くの研究が報告され ているが、プローブ高分子の形態と拡散過程との関係は未だ明らかにされてはいない。そこで本研究で は、'Hパルス磁場勾配スピンエコー (pulsed-field-gradient spin-echo: PFGSE) NMR 法を用いて架橋ポリ メタクリル酸メチル(PMMA)ゲル中でのプローブ高分子の自己拡散係数を測定して、ゲル中の高分子の 拡散過程とその形状及び分子量との関係を明らかにすることを目的とした。溶媒については重水素化ク ロロホルム(CDCl₃)、プローブ高分子については線状ポリスチレン (PS) とスターPS を用いた。スターPS は ジビニルベンゼンによって架橋された PS のミクロゲル(core)と線状 PS(腕)とで構成され、その特異的な 構造によって溶液中で球状の形態を保持するため、通常の線状ポリマーとは溶液及びゲル中において 拡散挙動が異なることが期待される。

【実験】

まず、バルクな CDCl₃ 溶液中において、プローブ高分子の自己拡散係数を PFGSE NMR 法を用いて 測定した。次に、線状 PS (Mw=18700、114,200) とスターPS (Mw=24,000、腕数 5.8) の 3 つのプローブ 高分子を含んだ PMMA ゲルを調製し、PMMA ゲル中でのプローブ高分子の自己拡散係数を PFGSE NMR 法を用いて測定した。装置は改良して磁場を上げた日本電子製の GX-270 NMR 分光器に本研究 室で自作したパルス磁場勾配発生装置を接続したものを用い、観測周波数 300.4 MHz,温度 25℃で測 定を行った。溶液中では拡散成分は 1 成分であり、 $k = \gamma^2 G^2 \delta^2 (\Delta - \delta/3)$ として、次式より拡散係数 D を求めた。

磁場勾配 NMR、スターポリマー、制限拡散、高分子ゲル

かみぐちかずひろ、くろきしげき、あんどういさお、いしづこうじ

一方、ゲル中ではゲルのネットワークからの空間的な束縛を受けて、プローブ高分子の拡散係数は分 布を持っていた。この場合、分布を正規分布に近似して2次までのキュムラント展開を行うことで、次式を 導いてフィッティングし、平均の拡散係数 D_Aと分布の分散 M を得ることができる。

$$\frac{A(\delta)}{A(0)} = \exp(-D_A k + \frac{M}{2}k^2)$$
 (2)

式(2)において、拡散係数の分布が狭く分散 M が小さい場合には 1 次の項が強調されて $\ln[A(\delta)/A(0)]$ と k のプロットは直線に近づき、逆に分布が広く分散 M が大きい場合には 2 次の項が強調されて $\ln[A(\delta)/A(0)]$ と k のプロットは 2 次曲線に近づく。観測時間の長い測定では、 H パルス磁場勾配スティミュレイティッドエコー (pulsed-field-gradient stimulated-echo: PGSTE) NMR 法を用いて測定したが、解析 法は同じである。

【結果と考察】

(1)溶液中のプローブ高分子の拡散

CDCl₃ 溶液中でのプローブ高分子(線状 PS、スターPS)の拡散係数を求め、その拡散挙動を考察した。

線状 PS を 8 種類、分子量 4000 から 650000 ま でのものと、スターPS を 2 種類、分子量 24000 で腕数 5.8 と分子量 130000 で腕数 18.1 のもの を用意し、10 mg/ml の CDCl₃ 溶液をそれぞれ 調製して、拡散係数 D₀の測定を行った。溶液 中ではプローブ高分子の拡散成分は全て 1 成 分であり、解析には式(1)を用いた。Figure 1 は得られた拡散係数を分子量に対してプロット したものである。

希薄溶液中では多くの高分子鎖は巨視的な 剛体球として仮定することができ、その場合の 拡散は以下の Einstein-Storks の式に従う。

Figure 1 Dependence of the diffusion coefficient (D_0) on molecular weight (Mw) for linear PS (\blacktriangle) and star PS (\bigcirc) in 10 mg/ml CDCl₃ solution, and the average diffusion coefficient (D_A) for linear PS (\bigtriangleup) and star PS (\bigcirc) in PMMA gels with CDCl₃ as solvent. The straight line corresponds to $D \sim M^{-0.67}$.

とスケールすることができる。Figure 1 において、D₀ vs M のプロットは直線に乗り、傾きより v =0.67 が得られた。一方、スターポリマーはその構造上、同分子量の線状ポリマーよりも流体半径 R_h が小さくなる。式(3)に従うと、スターポリマーは線状ポリマーより拡散係数が大きくなると考えられ、これは Figure 1 の実験 結果と一致する。

— 389 —

(2)ゲル中でのプローブ高分子の拡散

溶液中と同じ観測時間 20ms において、PMMA ゲル中での線状 PS(Mw=18700、114200)とスターPS (Mw=24000、腕数 5.8)の拡散挙動を観測した。本研究の手法では、観測時間は磁場勾配パルスの間隔 (Δ)に等しい。それぞれのプローブ高分子について ln[A(δ)/A(0)]をkに対してプロットすると下に凸な 曲線となり (Figure 2 (a)~(f)、拡散係数が分布を持っていることが観察された。式(2)に従ってフィッティ ングを行い、平均の拡散係数をそれぞれ得て、Figure 1 にプロットした。線状 PSとスターPSを比較すると、 同程度の分子量ではスターPSの方がネットワークによる制限がより強く表れている。これは、スターPSと線 状 PS の溶液中での構造の違いに起因する。スターPS の鎖構造は、ランダムコイル状態と比較すると、非 常にセグメント密度が高い形態を有していると予測されている。流体半径とは、あくまで溶媒に対して非す ぬけな球を仮定したもので、球の中のセグメント密度については考慮していない。スターPS はセグメント密 度が高いために、ネットワークと衝突して絡み合ったときにほどけるまでの時間が長く、結果としてネットワ ークによる制限がより強く表れていると考えられる。

Figure 2 Diffusional spin-echo attenuation of probe PS in PMMA gels with CDCl₃ as solvent by varying field gradient pulse duration (δ) at 25°C. (a) Linear PS (Mw=18700) Δ =20 ms, (b) linear PS (Mw=18700) Δ =504 ms, (c) linear PS (Mw=114200) Δ =10 ms, (d) linear PS (Mw=114200) Δ =504 ms, (e) star PS (Mw=24000) Δ =20 ms, (f) star PS (Mw=24000) Δ =400 ms.

溶液中では、1 成分であったプローブ高分子の拡散成分が、ゲル中では分布を持つのは何故だろうか。 まず考えられる理由は、ゲル中で制限拡散が起きているということである。ゲル中にネットワークサイズを 反映したある大きさの空孔がいくつもあり、その中をプローブ高分子が拡散しているというモデルを考えよ う。観測時間が短く、プローブ高分子が空孔のサイズと比較して相対的に短い距離だけ拡散するような場 合、ほとんどのプローブ高分子は空孔壁に衝突しないため、観測される(変位距離より得られる)見かけの 拡散係数は真の拡散係数(移動距離より得られる)に近くなる。観測時間をだんだんと長くしていくと空孔 壁に、衝突するプローブ高分子の割合は増えていき、それらがそのまま通り抜けるだけでなく、跳ね返っ たり拡散方向を変えたりするために、変位距離が移動距離よりも短く観察されることが多くなる。その結果

- 390 --

見かけの拡散係数は真の拡散係数よりもだいぶ小さくなっていくだろう。やがて、プローブ高分子が空孔 のサイズと比較して十分に長い距離だけ拡散するような観測時間になると、空孔壁に衝突する頻度が一

定になるために見かけの拡散係数も一定の値を示 す。以上述べた通り、プローブ分子が何かに閉じ込 められているような系では、見かけの拡散係数は観 測時間に依存する。これらを考慮して、観測時間を 5~504 ms まで大きく変化させてゲル中でのプロー ブ高分子の観測した。Figure 3 に溶液中での拡散 係数で規格化したゲル中の拡散係数を Δ に対して プロットした結果を示す。見かけの拡散係数が観測 時間に依存していることが観察された。スターPS (Mw=24000) と線状 PS (Mw=114200) について見る と、それぞれ 40~60 ms と 100~200 ms で拡散係数 の Δ 依存性が変化し、変曲点以降は一定になって いる。そのときの変位距離はおよそ 2 μ m であった。 これは空孔のサイズそのものではないが、深く関係 のある値である。

Figure 3 Dependence of normalized diffusion coefficients (D_A/D_0) on the gradient pulse interval (Δ) for linear PS (Mw=18700), linear PS (Mw=114200) (\Box), and star PS (Mw=24000) (\bigcirc) in PMMA gel with CDCl₃ as solvent at 25°C.

(3)ゲル中の制限拡散と空間的な不均一性

溶液中で1成分であったプローブ高分子の拡散成分がゲル中では分布を持つのは何故かという、最初の疑問に戻ろう。一見この疑問は制限拡散の議論により説明できるかのように見える。それぞれのプロ ーブ高分子の ln[A(δ)/A(0)]とkのプロットを Figure 2 に示した。(2)で議論した拡散係数は観測時間が 20 ms であり、衝突頻度が平均化されるよりも短い時間である。よって、プローブ高分子が空孔壁に衝突 する頻度はばらつきがあり、これが変位距離すなわち拡散係数の分布として現れていると説明できる。衝 突の際の影響が小さい線状 PS (Mw=18700) では (Figure 2 (a))、プロットは直線に近く、拡散係数の分布 は狭くなっているということも妥当である。しかし、十分に長い観測時間 400~500 msでのプロットを見て みよう。今までの説明では衝突頻度が平均化されたならば拡散係数も平均化されるはずで、プロットは直 線に近づくはずである。しかし、スターPS (Mw=24000) と線状 PS (Mw=114200) はともにプロットの関数形 の大きな変化は見られず、拡散係数の平均化は起きていない。すなわち、観測時間の長い時の拡散係 数の分布は制限拡散すなわち衝突頻度と衝突の際の影響のみでは説明できない。私共は、もう一つの 影響はゲルの静的な不均一性によるとものである考えている。すなわち、ゲルの静的な構造の不均一性 によりプローブ高分子は空間的な位置に依存した拡散係数を持ち、それが平均の拡散係数の分布として 表れている。ゲルの不均一性は空孔のサイズよりもマクロなスケールで存在しており、その影響が平均化 されるのはさらに長い距離スケール、観測時間が必要と考えられる。詳細は発表にて述べる。 3 P24

固体NMR法による抗菌性ペプチド Pandinin2 の脂質膜への 作用機構の解明

(サントリー生有研)

○野村薰、Gerardo Corzo、岩下 孝、中嶋暉躬

Solid-state NMR analysis on the interactions of an antimicrobial peptide, pandinin 2, with lipid bilayer

(Suntory Institute for Bioorganic Research) OKaoru Nomura, Gerardo Corzo, Takashi Iwashita, Terumi Nakajima

The membrane acting mechanism and orientation of the antimicrobial peptide, Pandinin 2, in the phospholipid bilayer were investigated using ³¹P and ¹³C solid-state NMR spectroscopy. The ³¹P NMR spectra were measured at various temperatures and under neutral and acidic conditions, and membrane lysis was observed below the liquid crystalgel phase transition temperature, but lysis occur only under acidic condition and after incubating for two days in the magnet above the liquid crystal-gel phase transition temperature. The ³¹P NMR spectra also indicated that the membrane lysis does not occur in the absence of electrolyte. The ¹³C chemical shifts of selectively [1-¹³C]-labeled Pandinin 2 under static, fast and slow magic angle spinning condition indicated that Pandinin 2 exhibited transmembrane alignments in phospholipid bilayer.

Pandinin2(FWGAL AKGAL KLIPS LFSSF SKKD-COOH)は African Scorpion か ら単離された膜結合ペプチドであり、強い抗菌活性と溶血活性を示す(1)。-Pandinin2 の DPC ミセル膜中での3次元構造は溶液 NMR 法でこれまでにすでに決 定されており、αヘリックス構造を取ることが報告されている。しかし、膜との相 互作用を解明するためには、ペプチドと膜との複合体構造の解析が必要である。そ こで我々は、近年内藤らにより開発された自発磁場配向膜を用いたペプチドの構造 解析法(2)を用いて Pandinin 2 の脂質二重膜に対する配向を決定した。また、 脂質膜の表面電荷や、溶媒の電解質濃度が膜の配向に与える影響を検討した。

キーワード: 抗菌性ペプチド、 固体NMR、 脂質二重膜

のむら かおる、へらるど こるぞ、いわした たかし、なかじま てるみ

【実験】

カルボニル炭素を¹³C で選択的に同位体標識をした 3 種類の Pandinin 2 ペプ チド ([1-¹³C]Gly³, [1-¹³C]Leu¹², [1-¹³C]Ser²¹-Pandinin 2) を Fmoc 固相合成法により合 成し、HPLC を用いて精製した。ペプチドとリン脂質(DMPC:DMPG=4:1)を有機 溶媒に溶解した後、溶媒を減圧除去して脂質の薄膜を形成した。さらにこれを Tris 緩衝液(10mM Tris-Hcl, 100mM NaCl)で水和して、サンプルを作成した。すべて の NMR 測定は Chemagnetics 社製の CMX infinity 分光器(¹H 共鳴周波数 300MHz) を用いて行った。

Fig.1 Temperature variation of ${}^{31}P$ powder spectra of phospholipid bilayer in the presence of Pandinin 2 (P/L=1/20).

【結果と考察】

³¹P NMR 測定の結果、脂質二重膜は脂質の液晶 相ーゲル相相転移温度(Tm)よりも高い温度では 磁場方向に対して膜面が平行になるように配向し、 相転移温度よりも低温では溶解していることがわか った。また、この脂質二重膜の溶解は中性条件では 起こらず、酸性条件下でのみ起こることがわかった。 また、酸性条件下であっても電解質として NaCl を 加えないと脂質二重膜は溶解しないことがわかった。 さらに、サンプルを磁場中に入れてから約2日間Tm 以上で放置しないと脂質二重膜は溶解しないことが わかった。これらの結果をふまえて、二重膜が溶解 する条件下でサンプルを調整し、Tm以下で膜が溶 解したことを³¹PNMRスペクトルで確認してから、 T_m以上に温度を上げ、二重膜が磁場配向している ことを確認した。この後、静止状態と高速、低速 MAS 下で、¹³CNMR スペクトルを測定した結果、 それらの Pandinin 2 の化学シフト値より、Pandinin 2 は脂質二重膜に貫通した状態で結合していることが わかった。

【参考文献】

1) G. Corzo, P. Escoubas, E. Villegas, K. J. Barnham, W. He, and R. S. Norton, *Biochem. J.*, **359**, 35-45(2001).

2) A. Naito, T. Nagao, K. Norisada, T. Mizuno, S. Tuzi, and H. Saito, *Biophysical. J.*, 78, 2405-2417(2000)

3 P25

CBOOA における液晶相の¹³C NMR (日大文理) 〇藤森裕基・浅地哲夫

¹³C NMR Study of Liquid Crystals CBOOA Hiroki FUJIMORI and Tetsuo ASAJI College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

¹³C NMR experiments were carried out for liquid crystals N-4-cyanobenzylidene-4-octyloxyaniline (CBOOA). Complete assignments of the ¹³C NMR lines on the liquid crystalline phases have been established for the oriented sample.

【序】

N・4・cyanobenzylidene・4・octyloxyaniline (CBOOA、図1)は高温から Iso・N・S_A・C の 相転移列を持つが、高圧下ではその相転移列は高温から Iso・N・S_A・RN となり、リエントラン トネマチック(RN)相が出現する。また CBOOA に N 相しか持たない 4・hexyloxybenzylidene・4・aminobenzonitrile (HBAB)を混合すると、ある特定の混合比で RN 相 が出現する。リエントラント相の出現に関与する液晶の構造および分子ダイナミクスを明らか にすることを目的とし、まず本研究では CBOOA の磁場中で配向させた試料に対する、高 分解能 ¹³C NMR 測定を行った。また、CBOOA のアルキル鎖部を重水素化した CBOOA・*d*17 の高分解能 ¹³C NMR 測定も行った。その結果、液晶相における吸収線の帰 属を完了したので報告する。

【実験】

CBOOAのクロロホルム溶液における¹H NMR、¹³C NMR、二次元¹H-¹³C相関NMR測 定等を行い、吸収線の帰属を行った。その後磁場中で配向させた静止試料に対し、¹³C NMR測定を行った。液晶相における¹³C NMR吸収線の帰属を行うために、CBOOAのア ルキル鎖部を重水素化したCBOOA-d17の¹³C NMR測定も行った。以上の測定には JEOL製EX270を用いた。

キーワード: 液晶、¹³C NMR、高分解能

ふじもり ひろき、あさじ てつお

【結果】

図2はCBOOAにおけるIso相と液晶相の¹³C NMRスペクトルを示す。Iso相のスペクトル は溶液のスペクトルとほぼ一致したため、同じ帰属とした。

配向スペクトルについては温度変化を利用した。分子の実効的二軸性を無視すれば、線の位置は

$$<\sigma_{zz}^{\text{LAB}}>=\sigma_{\text{iso}}+(\sigma_{zz}^{f\text{-FRAG}}-\sigma_{\text{iso}})S_{00}P_2(\cos\beta_f)P_2(\cos\theta_t)$$

で与えられる。ここに、 σ_{zz} ^{FRAG} は遮蔽テンソルの分子内フラグメント主軸方向への射影成 分、 β_f はこの軸と分子長軸のなす角、 S_{00} はSaupeの一軸性秩序パラメータ、 θ_t は傾き角で ある。液晶相では S_{00} の温度変化は小さく、 σ_{zz} ^{FRAG} - σ_{iso} と β_f もほとんど温度変化しないと 考えられるので、温度変化は θ_t の変化を反映する。そして変化の振幅が(σ_{zz} ^{FRAG} - σ_{iso}) P_2 (cos β_f)に比例するから、変化の大きさとその傾向から、各炭素の種類とその属するフ ラグメントを決定できる。また骨格部の帰属には CBOOA-d17 のスペクトルも参考にした。ア ルキル鎖部の重水素の影響でスペクトルの広幅化が生じるので、帰属に役立てることができ る。こうして CBOOA の ¹³C NMR 吸収線の完全帰属が実現した。帰属の結果を図2に示 す。

Figure 2. ¹³C NMR spectra of CBOOA in the isotoropic phase (a) and in the liquid crystalline phase (b).

自己拡散係数(Dsel)を応用したオイルワックスゲル中の水の状態分析 ((株)資生堂研究開発本部) O木村朋子、福原忠雄、横塚暁人、小松一男

NMR study using self-diffusion coefficient of the water in the oil-wax gel by Silicone Oil / Wax / Surfactant / Water

In the last NMR Meeting, We reported NMR self-diffusion coefficient (Dsel) measurement was a useful tool to diagnose the phase of the "bi-continuous" or micellar solution. In this study, we applied this method to the analysis of the oil-wax gel that is half-solid state in the normal temperature. The oil-wax gel, composed by Silicone oil / Wax / Surfactant / Water system has peculiar character of containing a lot of water, but the mechanism has not been make clear. Our result revealed water in the oil-wax gel has two Dsel values, the one Dsel value shows water in surfactant micell, and the other shows another water locked in wax.

【序】

我々は昨年度の本討論会で、NMR による自己拡散係数(Dsel)測定法が、化粧品の状 態解析法として種々の乳化ミセルの状態解析に有用であることを報告したが、今回は、常 温で半固形状態であるオイルワックスゲルへの適用を検討した。オイルワックスゲルは常 温で液体のオイルと固体のワックスを加熱混合した後、冷却して得られる油性のゲルであ り、口紅やファンデーション等の油性固形化粧料基剤として汎用されている。その中で、シ リコン系油分/ワックス/界面活性剤/水の系で構成されるオイルワックスゲルは、多量 の水分を保持できる特徴を有し、その多量の水分が化粧品の使用感等に大きく影響を及 ぼしている。しかし、なぜ多量の水分が保持できるかについては解明されていないことから、 我々は、オイルワックスゲル中の水の状態分析を行うことを目的に、水分含有率を変えた 試料での水のDsel値の変化を測定した。また、温度を変化させたときの水のDsel値変化と、 示差熱量測定法(DSC)による吸熱・発熱挙動との関連性から、水分保持機構について考 察した。その結果、水はカードハウス構造¹¹と呼ばれるワックス結晶格子中に閉じ込められ た水と乳化粒子中の水と考えられる2種類が存在することをDOSY測定法により示すこと ができ、ワックスの溶融する温度付近で、水のDsel値が急激に変化することから、これらの 水の存在状態を明らかにすることができた。

【実験】

装置は、JNM ECA-400(日本電子)・共鳴周波数(¹H;399.0MHz)及び、磁場勾配ユニット(最大磁場勾配強度;6.6T/m)を用いた。パルスシークエンスは、DOSY スペクトルを測定 する基本シークエンスとして BPP-LED 法を用いた。しかし、シークエンスの不完全さによる

キーワード:磁場勾配 NMR、自己拡散係数、オイルワックスゲル、カードハウス構造

きむらともこ、ふくはらただお、よこつかあきひと、こまつかずお

信号強度のばらつきや位相の変動等を回避するために、BPP-LED 法に複数の FG ダミー パルスを加え、更に 180° コンポジットパルスにして測定を行った。

試料管は、検出コイル外での拡散の影響を避けるために、シゲミ製2重管マイクロセルを 用いた。また、試料が半固形状態であるため、試料管に注入する前に予め 80℃で試料を 溶融させ、素早く注入しサンプル高さ10mmに調製した。

測定は、拡散時間:30[ms]、磁場勾配パルス長:1[ms]を基本とし、磁場勾配パルス強度 を 0.1~6.0[T/m]に変化させた条件で DOSY スペクトル及び Dsel 値を求めた。

【結果および考察】

本実験では、シリコン系油分/ワックス/ 界面活性剤/水系で構成されるオイルワッ クスゲルのワックス及び界面活性剤量を一 定として、水分含有率を5~50%まで変化さ せた試料中の水の Dsel 値変化を調べた。 その結果、水は、Dsel 値が1桁程度異なる 2 種類の状態で存在することを DOSY スペ クトルから明らかにできた。2種のDsel値は 共に、水分含有率が 5~20%までは一定の 値を示し、これ以降、水分含有率が増える に従って、速い水はより大きくなる傾向が認 められた。また、温度を変化させたときの水 の Dsel 値は、70℃付近から急激に大きくな り(Fig.1)、DSC の結果からは、この温度付 近でワックスの溶融によって生じたと思われ る吸熱挙動が観察された(Fig.2)。

一方、顕微鏡観察によりオイルワックスゲ ル中の乳化粒子径を測定した結果、水分含有率が少ない試料は 3µm 以下程度であり、 水が増えるに従って大きくなることがわかった。2 種類観測されたオイルワックスゲル中の 水の Dsel 値のうち一方は、別に乳化粒子径を1~5µm 程度に調製したミセル溶液中の水 の Dsel 値とほぼ一致したことから、オイルワックスゲル中の水は、乳化粒子中に存在する 水と、カードハウス構造といわれるワックス結晶格子中に閉じ込められた水の 2 種類として 存在することが示唆された。後者は、ワックス結晶中のエステル基等の極性基と相互作用 している水と考えられ、このことは、温度を上げてワックスが溶融したときに、ワックス結晶 中の水が自由になり、Dsel 値が急激に大きくなる現象を裏付けるものと考えられた。

このように、NMR による Dsel 測定法は化粧品の機構解析に非常に有用な手段であり、 さらに、半固形試料においても適用可能であることが確認できた。

【文献】1)香粧品科学、佐藤ら編、朝倉書店

3 P27

4.7T 人体用 MRI を用いた局所励起 2D Constant Time COSY によるピーク分解能の向上

国立環境研究所

〇渡邊英宏, 高屋展宏, 三森文行

Improved metabolite peak resolution on a 4.7Tesla wholebody spectrometer using a localized 2D constant time COSY

National Institute for Environmental Studies H. Watanabe, N. Takaya, F. Mitsumori

Improvement of peak resolution for glutamate and glutamine by using CT-COSY was demonstrated. Even at 4.7T, these peaks were overlapped because of J_{HH} on a 1D spectrum and on a 2D COSY spectrum. Since CT-COSY can decouple J_{HH} in F_1 direction, these peaks could be resolved at 4.7T even on a magnitude mode display. Localized version of CT-COSY sequence was implemented on a 4.7T wholebody spectrometer. Localized GABA spectrum and Gln spectrum could be detected by using this method.

1. はじめに

超高磁場 MRI の最大の長所は、高 S/N 化である。これによって、質の高い画像やスペクトルの 取得が可能となる。まだ、この長所は高分解能化として使用することも可能である。この特長に 加えて、¹H Magnetic Resonance Spectroscopy (MRS)では、化学シフト差の拡大が重要な特長として 挙げられる。特に、ピーク間の化学シフト差が $J_{\rm HH}$ と比較して大きくなるため、グルタミン酸や グルタミンといった $J_{\rm HH}$ を有するスピン系を含む代謝物に対してピーク分解能の向上が期待でき る。実際、我々は、4.7T 人脳 STEAM スペクトル上で、オーバーラップがあるもののグルタミン 酸の 4 位 (Glu-4, $\delta_{\rm H} \sim 2.34$ ppm) とグルタミン 4 位 (Gln-4, $\delta_{\rm H} \sim 2.43$ ppm) のピーク検出が 可能であることを報告してきた [1]。

この超高磁場の特長は、分析用 NMR において広く用いられている 2D スペクトロスコピー法に よりさらに展開することが可能であり、ピーク分解能を一層向上させることが期待できる。この うちで Constant Time COSY (CT-COSY)は、T₂による信号損があるものの、F₁方向の J_{HH} をデカ ップルすることが可能であるため、良好なピーク分離が期待できる。

キーワード: 高磁場 MRI、CT-COSY、局所励起、グルタミン酸、グルタミン

わたなべひでひろ、たかやのぶひろ、みつもりふみゆき

そこで、今回、CT-COSY のピーク分解能評価をグルタミン酸およびグルタミンファントム実験 によって実施した。次に、局所励起 CT-COSY シーケンスを人体用 MRI 装置に組み込み、局所励 起動作の評価を実施した。

2. 方法

スペクトル分解能評価

実験は、動物用横型 4.7T スペクトロメーター(JMT 社製磁石、Varian 社製コンソール)を用い て行った。ファントムには、(a) グルタミン酸、(b) グルタミン、(c) グルタミン酸およびグルタ ミンの混合溶液をそれぞれ直径 40 mm の球に注入した 3 種類のファントムを用いた。それぞれ の濃度は、50 mM とした。これ等のファントムに対して、1 パルスによる 1D スペクトル、およ び 2D COSY および 2D CT-COSY によるそれぞれの 2D スペクトルを取得した。水信号抑圧には、 7 ヶの CHESS パルスで構成される VAPOR [2] を用いた。

1D パルスの場合には、実部、虚部がそれぞれ 2000 ポイントの複素サンプリング (np = 4000) によりデータ収集した。データ収集後、ゼロフィリングにより 2048 ポイント (fn = 2048) とし、 ガウス関数 (gf = 0.3 s) の窓関数を施した後、再構成を実施してスペクトルを得た。スペクトル 帯域は、5000 Hz とした。

2D スペクトロスコピーの場合には、 $h \ge 256$ 回変化させて (ni = 256)、実部、虚部がそれぞれ 512 ポイントの複素サンプリング (np = 1024) を実施した。データ収集後、窓関数として h 方向に gf1 = 0.15 s, gfs = 0.064 s、 b 方向に gf = 0.3 s のガウス関数を施した。その後、ゼロフィリングにより h 方向、b 方向共に、2048 ポイント (fn = 2048, fn1 = 2048) として、再構成を実施した。スペクトル帯域は、 F_1 方向 (SW1)、 E_2 方向 (SW) 共に 2000 Hz とした。以上より得られる 2D スペクトルの表示には絶対値表示を用いた。また、CT-COSY の場合の 90° パルスと 90° パルスとの一定時間長 T_c は、100 ms とした。

これらの測定条件により、上記 3 ヶのファントムに対して以下の手順で測定を実施した。すなわち、シミングにより水 H スペクトルの半値幅を *in vivo*と同程度の 7 Hz 程度に調整後、それ ぞれの NMR 信号を測定した。

局所励起 CT-COSY 法評価

続いて、Fig. 1 に示す局所励起 CT-COSY シーケンス [3] を開発し、4.7T 人体用 MRI 装置 (Varian 社製) に組み込んだ。このシーケンスでは、水信号抑圧として VAPOR を用い、ボクセ ル外側領域の擬似飽和のため Outer Volume Suppression (OVS)パルスを用いる。3D 局所励起は、 励起パルス、リフォーカスパルス、分極移動パルスの 3 つの RF パルスで実施する。この方法の 動作確認を行うため、0.9%の NaCl を混入した水ファントムに、100 mM グルタミン (Gln) と 200 mM の γ ·アミノ酪酸 (GABA) をそれぞれ円筒容器に注入後、上記水ファントム内に挿入し た。

上記ファントムを磁石に挿入後、全領域の shimming を実施した。続いて、位置決め画像を取

得し、ボクセルを Glu ファントム, GABA ファントムのそれぞれの位置に設定した。ボクセルサ イズは、20×20×20 mm³とした。続いて、それぞれのボクセルでの shimming を FASTMAP [4]

により実施した。線幅は、2Hz~3Hz であ った。その後、局所励起 CT-COSY のパル スシーケンスを印加し、NMR 信号を収集 した。シーケンス条件は、TR = 3.5 s, Tc = 110 ms, np = 4096, ni = 170, SW = 2000 Hz, SW1 = 1000 Hz とした。データ収集後、 fn = 8192, fn1 = 4096, gf = 0.3 s, sb1 = 0.064 s の条件で後処理を実施後、再構成 を行い、局所励起 2D スペクトルを得た。

Fig. 1. Localized CT-COSY sequence.

3. 結果

スペクトル分解能評価

得られた 1D スペクトルを Fig. 2 に示す。グルタミン酸およびグルタミンの 2 位の ¹H (Glu-2, Gln-2) と、Glu-3, Gln-3 は、化学シフトが同等であるため、ほぼ完全にオーバーラップしている。 これに対して、Glu-4 ($\delta_{\rm H} \sim 2.34$ ppm)、Gln-4 ($\delta_{\rm H} \sim 2.43$ ppm) に関しては、ピーク分離の 傾向は認められるものの、 $J_{\rm HH}$ によるオーバーラップが残る。この傾向は、COSY スペクトルでも

同様である (Fig.3)。これに対して、 CT-COSY スペクトルでは、F₁方向の J_{HH} デカップルにより Glu-4, Gln-4 のピーク分 離が良好に行えることが認められる (Fig. 4)。従って、1D スペクトル、COSY では 4.7T の磁場強度においてもグルタミン酸と グルタミンのピークはオーバーラップする が、CT-COSY の利用により、絶対値表示に おいても Glu-4 と Gln-4 のピーク分離が可 能であることが実証できた。

局所励起 CT-COSY 法の評価

得られた GABA ボクセルの CT-COSY スペクトルを Fig. 4 (a)に示す。GABA-2, 3, 4 の F₁ 方向が デカップルされた対角ピークが認められる。交差ピークに関しても、GABA-2,3、GABA-3,4 のそ れぞれの検出が確認できる。同様に、Fig. 4 (b)に示すグルタミンボクセルにおいても、グルタミ ン由来の対角ピーク、交差ピークの検出が確認できる。従って、それぞれのボクセルにおいて、 局所励起が可能であることが実証できた。

4. 結語

4.7T での CT-COSY の利用によりスペクトルピーク分解能が向上し、グルタミン酸 4 位および グルタミン 4 位のピークを分離検出することが可能である。この CT-COSY シーケンスは、スラ イス勾配磁場パルスの利用により局所化することができる。この局所化したシーケンスを 4.7T 人 体用 MRI に組み込み、ファントム実験によって局所励起が可能であることが実証できた。

参考文献

1. 三森文行, 高屋展宏, 第 41 回 NMR 討論会要旨集, PP80-81, 2002

2. Tkac I. et. al., Magn. Reson. Med., 1999,41:649-656

3. Chung H. et.al., Proc. Intl. Soc. Mag. Reson. Med. 2003;11:1143

4. Gruetter R. et al., Magn. Reson. Med., 1993;29:80-811

- 401 ---

大阪大学大学院医学系研究科保健学専攻医用物理工学講座 〇仲座 良造、木村 敦臣、藤原 英明

Optical Pumping Hyper-Polarization of He-3 under the Atmospheric Pressure and its Imaging Development

Department of Medical Physics/Engineering, Graduate School of Medicine, Osaka University OYoshizo Nakaza, Atsuomi Kimura, Hideaki Fujiwara

Summary

This in vitro study reports the production of hyperpolarized He-3 gas by means of laser pumping with alkali metal atoms contained in a glass cell. Several optical pumping techniques have been developed for polarization of the nuclear magnetic moments of two noble gas isotopes, He-3 and Xe-129. These techniques offer NMR signal enhancements of five orders of magnitude compared to thermally polarized nuclei at room temperature. The preliminary experiment disclosed the He-3 characteristics in laser polarization. The signal to noise ratio (S/N) measured from He-3 spectra showed that nitrogen mostly quenched the light by loosing the energy from hyperpolarized He-3. A maximum polarization took place at the mixed gas of 70% N₂ and 30% He-3 in partial pressure into the cell heated 2 hours long at 200 $^{\circ}$ C.

【抄録本文】

【目的】

He-3 や Xe-129 は高圧下(3-10 気圧)で光ポンピングを行うことにより、電子スピンの超偏 極状態を経て、熱平衡状態の数十万倍の信号増強を実現することが出来る。1990 年代中頃から、 それらを造影剤として用いた超偏極 MR 画像が、胸郭空洞部の形態変化や循環・呼吸動態の把握 を目的として臨床応用を目指した研究としてなされている。今までプロトンで描写し切れなかっ た新しい MR 画像や動態機能観察への様々な技術開発が行われている。現在用いられている偏極 方法は、direct optical pumping 法と、より一般的な spin-exchange 法がある。すでに先行研究 機関では偏極率は数十%の値が達成されている。我々はこの数年来行ってきた spin-exchange 法 と Xe-129 の超偏極装置を改良し、偏極 He-3 の特性とその画像化について検討を行った。

【方法】

He-3にクエンチングガスとして窒素ガスを10~90%の体積比率で混合し、ルビジウム蒸着させた外径27mm、長さ200mmのガラス・セルに1気圧で封入した。このセルを50ガウスの均一な磁場中にセルと磁力線の方向が並行になるように置き、波長795nmで出力20Wと、60Wのレーザーを照射しスピン交換を行わせた。

Key words: He-3, Polarization, Atmosphere

なかざよしぞう、きむらあつおみ、ふじわらひであき

偏極温度は110℃~200℃とし、偏極時間は0~16時間まで変化させ、スペクトルのS/Nを熱平 衡時と比較することにより、偏極度の評価を行った。スペクトルの測定は、偏極セルの先端に取 り付けた5mmのNMR試料管部分について、INOVA 400WB(9.4T、Varian)にて解析を行った。 また、画像作成のためのイン・ビトロでの検討は、外径27mmの偏極用セルをそのままサンプ

ルとしてイメ-ジング・プローブ(Clear Bore, Doty Science)にセットし、グラジェント・エコー 法で撮像を行った。(図1)

【結果】

図2に偏極を行った際の、偏極温度とHe-3 ガスの信号強度の比較を示している。加熱温 度が上昇するにしたがって信号強度は増加し ている。温度200℃までは相関のよい上昇曲線 を描いている。また、温度が110度以下では熱 平衡時のS/Nとほとんど大差なく、加熱温度は 110度以上の高温領域が偏極温度として最適 であることが分かった。加熱温度を連続変化 させた実験では、200℃付近で最も強い信号が 得られた。なお、200℃以上の高温領域でも高 い偏極が得られる可能性は残っているため、 予備実験として300℃での結果を測定してみ たが、信号強度は低下しており、これは更な る検討を要する。

2

Fig.3 ? Polarization in Time

偏極時間と信号強度の関係を図3に示 す。偏極の進行状態は、偏極開始より2 時間までにほぼ終了し、その後は低下し ているため、偏極時間はこの条件下では 2時間が妥当と判断した。実験に用いた セルは2種類あり、内面のガラス壁をオ クタデシルトリクロロシランで被覆し た場合と、被覆なしのものを用いて偏極 状態を観察した。その結果、両者に優位 な差は認められなかった。

図4にはセルに封入したガスの組成変 化を示した。セル内には偏極ガスのHe-3 とクエンチング効果用の窒素を混合し た。両者の混合比を変えることで偏極状 態に特異性が認められる。窒素ガスの比 率を70%(Heが30%)にした場合が最も 偏極度が高いことがわかる。なおこのデ ータはHe-3の体積を100%として換算し たものである。

Fig.5 NMR Signal from Polarized He-3

以上検討した偏極パラメータから、偏極温度200℃、偏極時間2時間、そして窒素混合比率70% で偏極を行った際のNMR 信号スペクトルを図5に示した。この信号は現在得られている最高値 であり、S/Nは2572が記録されている。

この数値はHe-3熱平衡時の信号との比較倍率は875倍となり、偏極率に換算すると2.1%に相当 する。

100%

図6は外径27mmのパイレック スガラスセルに封入した He・3 ガ スの MR 画像(横断面)である。こ の際のS/Nは約150の値を示した。 使用したグラジエント・エコー法 の主な撮像パラメータは以下の 通りである。

TR=10msec TE=1.5msec No. of Averages = 128 $pw = 1200 \mu sec$ Matrix=64×64 Slice Thickness = 20mm 図6の画像より、円筒形セルの 内部を占める偏極 He ガスの画像 が明瞭に確認できる。

Fig.6 MR Imaging of He-3 in the Cell $27mm \phi$

【考察】

常圧(1気圧)で封入した He-3 を偏極するにあたり、ガスの加熱温度は 200℃付近に最適値があ り、ルビジウムの飽和蒸気圧がほどよくバランスを保っている。温度が上昇するにしたがい、過 剰となったルビジウムが He の偏極を崩壊させている。

偏極開始後、He ガスの信号強度は2時間付近でピークに到達し、その後減衰している。一度 飽和状態に達すると、その後は高温状態での原子同士の運動衝突により、偏極が崩壊している可 能性がある。

混合ガスのバランスはクエンチング効果を担う窒素にも認められている。窒素の量が不足する と、ルビジウムの偏極が He とスピン交換を行う前に発光してしまい、スピン交換が不完全とな る。また窒素の量が多くなりすぎると、ルビジウムと He の衝突確率が減少し、結果的にルビジ ウムから He へ十分な量のスピン交換が伝わらなくなる。

このセルを用いて得られた偏極信号強度(S/N)の最大値は、2572が記録されている。He-3 熱平衡時の信号との比較倍率は875倍となり、偏極率に換算すると2.1%となった。偏極状態を左 右する因子は温度、時間、レーザー出力、窒素混合比、圧力などが上げられる。そして、偏極を 最も不安定にしているのはルビジウムの活性状態であろう。今後この点を検討することでより高 い偏極率を得ることが出来ると考えている。

画像技術の開発に関しては、バッチ式のセルを2時間偏極し、イメージングプローブを用いて、 グラジエント・エコー法で画像の作成を行った。セル内のHeガスの分布状態が高信号領域とし て明瞭に描写されている。小動物を用いた肺画像への応用を現在試みている。

【結論】

常圧での偏極He-3の開発技術とイメージングへの検討を行い、偏極信号の確認とその画像化に 成功した。このことから偏極技術を用いた磁気共鳴は、スペクトル解析から画像化への橋渡しを 完了している。現在、イン・ビボでの動物実験を経て、今後の臨床応用の道を発展させたい。 Diffusion Tensor Imaging を用いた脳変性疾患の基礎検討

(財) 先端医学薬学研究センター1、明治鍼灸大2、

(財) 石川県産業創出支援機構3、京都府立医大4

○藤川昭彦1、福永雅喜2、矢嶋一賀3、陳 偉萍3、松成一朗1、

西村伸太郎1、梅田雅宏2、田中忠咸2、成瀬昭二+

Basic study for diffusion tensor imaging against brain degenerative disease
 The Medical and Pharmacological Research Center Foundation¹
 Meiji University of Oriental Medicine²
 Ishikawa Sunrise Industries Creation Organization³
 Kyoto Prefectural University of Medicine⁴
 OAkihiko Fujikawa¹. Masaki Fukunaga². Kazuyoshi Yajima³. Weiping Chen³.
 Ichiro Matsunari¹. Shintaro Nishimura¹. Masahiro Umeda². Chuzo Tanaka²
 and Shoji Naruse⁴

Recent studies have shown that diffusion tensor imaging (DTI). which provides noninvasive maps of microscopic structural information of oriented tissue in vivo. is finding utility in studies of cognition in the normal and abnormal aging population. DTI measures the magnitude and direction of diffusion. leading to the characterization of cerebral white matter (WM) microstructural integrity. In order to analyze regions of WM. we have obtained the quantified data of axonal fibers as a fractional anisotropy map (FA-map). The FA-maps were obtained from diffusion coefficient data measuring as diffusion weighted images to normal volunteers. This study will indicate how to identify age-related changes to the brain and early stage of dementia.

【序論】生活習慣病、特に痴呆や脳梗塞など脳疾患は、介護等社会への負担が大きいため早期発見・ 治療薬の開発が急務となっている。我々は、高齢社会に対応した健診システムの形成を目指し、痴呆 の早期診断支援技術の開発に取り組んでいる。初期の痴呆、特に Alzheimer 病(AD)において PET・ SPECT を用いた SPM (statistical parametric mapping)解析や3D-SSP(3 dimensional stereo tactic surface projection)解析などにより後部帯状回の糖代謝、脳血流量が低下することが報告された。この 帯状回の血流や糖代謝の低下は、病理学的に初期の変性が強い海馬や海馬傍回から帯状束を通して の線維連絡を強く受けているためと考えられている。PET・SPECT では白質の線維連絡機能は解像度 の点から十分に検討できない。しかし、脳微細構造や生理的変化をそのまま反映していると考えられて いる拡散テンソル MR 画像法(Diffusion Tensor Imaging: DTI)により、生体の脳から非侵襲的に得られた 指標を用いる事で、脳白質の損傷程度が定量的に評価可能になると考えられる。DTI 法は拡散強調画 像で捉えられる異方性の解析画像であり、水分子の拡散の方向性と見かけの拡散係数を得ることがで き、主に白質を中心とした脳内の軸索走行の解析が可能となる。この DTI 法を用いて診断をおこなう際 には、その正常像の把握が必要となる。正常例の DTI を解析することにより、その正常値及び加齢に伴

MRI、DTI、脳機能診断、白質病変、異方性

ふじかわあきひこ、ふくながまさき、やじまかずよし、ちんいへい、まつなりいちろう、にしむらしんたろう、 うめだまさひろ、たなかちゅうぞう、なるせしょうじ

う主要白質繊維の異方性を評価するための基礎的検討をおこなった。

【方法】対象は MRI における形態的異常が無く、かつ神経内科的異常の無い健常人ボランティアとした。撮影には、1.5T MRI(Signa Horizon, GE-YMS)および標準ヘッドコイルを使用した。SE-EPI 法を用いた拡散テンソル画像の撮像パラメーターは、TR/TE = 7500/88ms、Single-shot で加算回数 6 回、96 × 96 matrix acquisition (128 × 128 reconstruction)、撮像領域 200 × 200mm2、スライス厚 3.4mm、スライ スギャップなし、50 スライス、b-value = 700s/mm2、MPG 印加軸は 6 direction (XZ, -XZ, ZY, -ZY, XY, -XY)、撮像時間 5 分 15 秒とした。画像データは、geometric distortion の補正を考慮し、1) 拡散テンソル画像、2)T2 強調 EPI 画像、3)T1 強調3D 画像、の3つについて収集し、以下の手順により解析処 理をおこなった。

- 1. Raw image
- 2. EPI distortion correction
- 3. MPG correction
- 4. DTI calculation
- 5. Visualization

fig.1 DW-EPI (normal volunteer)

fig.2 FA-map (normal volunteer)

【結果および考察】 MRI 超高速撮像法(EPI)を用いることにより、不等方性拡散(anisotropic diffusion) から白質路の走行の解析も可能となった。拡散強調画像から得られる拡散係数をテンソルとして扱うこ とにより、大脳白質におけるボクセル毎の拡散の大きさと異方性を異方性比率(fractional anisotropy: FA)を用いることで定量化した。さらに、EPI 法の拡散テンソル画像において、元画像の MPG(Motion probing gradient)の方向の違いによる異なる歪みを補正し、位置ずれの無い FA マップを得ることがで きた。これにより、FA マップとして正常例 DTI データを蓄積していくことが可能となった。

DTI 測定により白質の異方向性拡散を検討することが可能となり、生体における白質構造や病態 解析および機能評価として臨床適用されつつある。脳白質内での拡散は、ミエリンや毛細血管などに より自由拡散ではなく方向性をもつ。この異方向性拡散における程度の評価にはいくつかの指標が ある。今回の検討では FA を用いたが、これは拡散の非等方度をテンソルの大きさで標準化した値で ある。FA は様々な疾患、あるいは年齢と共に低下することが報告されているが、痴呆、特に AD の白 質での評価については報告が少ないのが現状である。正常例の DTI データを蓄積していくことで脳白 質を定量的に評価し、加齢による変化、あるいは痴呆を中心とした脳白質に影響を及ぼす疾患の評価と 予後予測をする上で良い指標になると考えられる。 ⑦2*定量による脳酸素飽和度測定に関する基礎的検討
(国立循環器病セ放射線¹, GE 横河メディカルシステム(㈱², ㈱ビーエフ研究所³)
○圓見純一郎¹,佐藤博司²,林拓也¹,寺本昇¹,渡部浩司¹,澤田徹³,
飯田秀博¹

Study of the measurement of cerebral oxygen saturation by the determination of T_2^* Jun-ichiro Enmi¹, Hiroshi Sato², Takuya Hayashi¹, Noboru Teramoto¹, Hiroshi Watabe¹, Toru Sawada³, Hidehiro Iida¹

¹Department of Investigative Radiology, Research institute, National Cardiovascular Center ²GE Yokogawa Medical Systems, Ltd.

³BF Research Institute, Inc.

The estimation of cerebral oxygen saturation (Y) by the measurement of T_2^* in brain tissues has been attempted, because Y influences the susceptibility of vessels and magnetic field homogeneity around vessels. The sequence for quantitative, high resolution T_2^* mapping (QUTE-EPI) was implemented on 3T MRI scanner in order to examine the effectiveness of QUTE-EPI in the estimation of Y. A monkey was anesthetized and artificially ventilated, and the value of T_2^* in brain tissue was measured by QUTE-EPI. The change in end tidal CO₂ (EtCO₂) resulted in the change in T_2^* value in brain tissue. Because the change in EtCO₂ produces the change in Y, QUTE-EPI appears to be able to detect the change in Y. QUTE-EPI would be effective for the estimation of Y.

【目的】脳組織の横緩和時間は静脈でのヘモグロビンの酸素飽和度(Y)によりかなりの影響を受け る。オキシヘモグロビンが反磁性であるのに対しデオキシヘモグロビンは常磁性であり、Yの変 化により血管内の磁化率がかなり変化するからである¹。脳組織の1/72(=1/72*-1/72)は1-Yに比例 するというモデルが提案されており²、横緩和時間測定による脳酸素飽和度の定量が試みられてい る。最近、72*測定を高精度かつ高空間分解能で行うためのシーケンス(QUTE・EPI)が提案された³。 本研究では、QUTE・EPIを3T MRI装置に導入し、脳酸素飽和度測定に対するQUTE・EPIの有効 性についてサルを用いた動物実験により検討した。

【方法】MRI装置はGE Medical Systems社製SIGNA 3Tを使用した。QUTE・EPIでは、RFパル ス照射後の周波数エンコード傾斜磁場の高速な反転によりエコー時間(TE)の異なるエコーを多数 収集する。これにより T_2^* 減衰曲線を精密に観測でき、指数関数フィッティングにより T_2^* が求め られる。QUTE・EPIは、EPIのblipを外し、最初の周波数エンコード傾斜磁場の前に位相エンコー ド傾斜磁場を加えることにより作成した。QUTE・EPIにより脳酸素飽和度の変化による T_2^* の変化 を検出できるか否かを検討するため、呼吸器により呼吸管理下にある全身麻酔下雄性カニクイザ ルの頭部4断面の撮影を、呼気終末炭酸ガス分圧(EtCO₂)が26 mmHg、31 mmHg、34 mmHg、 39 mmHg、44 mmHgの各状態で行った(TR:1000 ms、フリップ角:90°、Matrix:128×128、 FOV:20 cm、スライス厚:3 mm)。各状態でTEを3.68~117.98 msの範囲で0.90 ms間隔で変化 させた128点での画像を収集した(撮像時間は約4分)。

【結果】得られたサル頭部の72*マップをFigure 1に示す。鼻腔の影響による磁場不均一の少ない 後部に関心領域(ROI)をとりROI内の平均値を計算し、EtCO2に対してプロットした結果をFigure 2に示す。EtCO2の上昇にともない72*は上昇し、最大で約15%の変化が観測された。

【考察】EtCO₂の上昇にともなう血液中CO₂分圧の上昇により血管が拡張し脳血流量は増加する が、脳酸素消費量は変化せず、脳酸素飽和度が高くなると考えられる。この場合、EtCO₂の上昇 とともに T_2 *は長くなると予想される。一方、 T_2 *は脳組織中の血管の体積分率(cerebral blood volume, CBV)にも影響を受け、CBVが大きいほど短くなると考えられる²。本実験においては

キーワード: T2*、MRI、脳酸素飽和度

えんみじゅんいちろう、さとうひろし、はやしたくや、てらもとのぼる、わたべひろし、さわだ とおる、いいだひでひろ EtCO2が大きいほどCBVは大きく、T2*は短くなると予想される。実験結果は前者の予想と一致しており、QUTE・EPIにより脳酸素飽和度の変化に起因するT2*の変化を検出することが出来たと考えられる。定量的に脳酸素飽和度を評価するためには、T2およびCBVの測定を同時に行わなくてはならない。

【参考文献】

1. S. Ogawa, et al., Magn. Reson. Med., 14, 68 (1990).

- 2. D. A. Yablonskiy and E. M. Haacke, Magn. Reson. Med., <u>32</u>, 749 (1994).
- 3. N. J. Shah, et al., Proceedings of EENC 2000, Leipzig, 2000.

FIG. 1. The dependence of T_2^* map for EtCO₂.

骨量計測用コンパクト MRI の開発

 〇富羽貞範¹, 栗本岳明¹, 白猪亨¹, 小野真也¹, 松田善正¹
 拝師智之², 宇津澤慎², 巨瀬勝美¹, 青木雅昭³, 津崎剛³, 川崎絵美⁴, 向井直樹⁴, 徳山薫平⁴
 1 筑波大学物理工学系, 2(株) エム・アール・テクノロジー

3 住友特殊金属(株),4 筑波大学体育科学系

Development of a Compact MRI for Bone Density Measurements

S.Tomiha¹, T. Kurimoto¹, T.Shirai¹, S.Ono¹, Y. Matsuda¹

T. Haishi², S.Utsuzawa², K. Kose¹, M. Aoki³, T. Tsuzaki³

E.Kawasaki⁴, N.Mukai⁴, K.Tokuyama⁴

1. Institute of Applied Physics, University of Tsukuba, 2. MR Technology Inc.

3. Sumitomo Special Metals Company Ltd.

4. Halth, Physical, Education and Sport Sciences, University of Tsukuba

A compact MRI system for bone density measurement was developed by a using permanent magnet and a portable MRI console. The MRI system was specially designed to measure trabecular marrow volume fraction at the calcaneus using image intensity of 2D spin-echo MR images. Good reproducibility was achieved at human calcaneus measurements. Human studies with a small number (n=22) of female volunteers demonstrated a close correlation between trabecular marrow volume fraction and bone mineral density measured by dual energy X-ray absorptiometry. The results have shown a promise of the MRI systems as a tool for screening of osteoporosis.

1. はじめに

骨量計測は、骨粗鬆症の診断やスクリーニングに不可欠な手法である。骨量計測には、現在、 二重エネルギーX線吸収測定法(DXA法)や、定量的超音波法(QUS法)が広く使われている。さて、 MRIは、骨量の定量的評価に不可欠の海綿骨骨髄体積率(Trabecular Marrow Volume Fraction: TMVF)の計測が可能であるため、現在、骨量計測装置として注目されている。ところが、この計 測は、従来、人体全身用のMRIを用いて行われてきており、設置面積や、コスト、操作性などの 点で実用的でなく、広く普及するためには、コンパクトなMRIが不可欠である。

そこで、本研究では、多くの研究施設と医療機関で使用できる骨量計測用 MRI を構築すること を目的として、研究を行った。

2. システム開発

Fig.1 にシステムの全体像と RF プローブの構造を示す。図に示すように、水平方向に静磁場 (0.2T)を発生する永久磁石のギャップ(16cm)間に、上方から踵を挿入できるように、長円形 の口径(長径 21 cm、短径 8.4 cm)を有する RF プローブを設置した。また、RF プローブの中 に、感度補正を行うために、円筒容器にベビーオイルを満たしたファントムを挿入した。

骨量計測 コンパクト MRI 海綿骨骨髄体積率(TMVF)

とみはさだのり、くりもとたけあき、しらいとおる、おのしんや、まつだよしまさ はいしともゆき、うつざわしん、こせかつみ、あおきまさあき、つざきつよし かわさきえみ、むかいなおき、とくやまくんぺい

Fig.1 Overview of the compact MRI for bone density measurements (left). RF probe for measurements of the calcaneus (right).

3. 海綿骨体積率定量化の方法

スピンエコー法で、二次元断層像を取得する場合、その画素強度 I(x, y)は、

 $I(x,y) = kf(x,y)\rho(x,y)\{1 - p(x,y)\exp(-T_R*/T_1(x,y))\}\exp(-T_E/T_2(x,y))$ と表すことができる (J カップリングの項は 12ms, 54ms, 96ms のエコー時間を用いることで補 正した)。kは、全体に一様な画素強度変化を表すパラメタ、f(x,y)は、静磁場の不均一性など、 さまざまな要因による空間的不均一性を表す関数である。 $\rho(x,y)$ は、核スピン密度分布、 $T_1(x,y)$ と $T_2(x,y)$ は $T_1 \ge T_2$ の面内分布である。p(x,y)は、縦磁化の緩和に関係する量で、理想的なス ピンエコー法においては、1 となる定数である。 T_R* はパルスシーケンスの繰り返し時間に近い 時間、 T_E はエコー時間である。 T_1 に関する項は T_R の長いシーケンス(T_R =1200 ms)を用いる ことで無視できるようにした。 T_2 に関する項は、シングルエコー法で2回撮像することで補正し た (T_E =12ms·54ms or 12ms·96ms)。k, f(x,y)に関しては外部標準のオイルファントムとの同 時撮像、および、踵の代わりに挿入したオイルファントムの撮像を行うことで補正した。

4. 複数の被験者による短期及び長期再現性の検討

被験者群(22~24歳の健常女性ボランティア3人)を対象としてTMVFの再現性を評価した。 計測は、①2週間に渡って、そのうちの8日間の午前、午後、それぞれ1回ずつの独立した計測 から得られたデータ、計16個のTMVFにより、長期の再現性を検討し、②さらに、①の午後の 計測直後に、1回の計測を加え、その2回の計測から得られたTMVF間の違いを評価することで、 短期の再現性を検討した。各計算プロトコル($T_g = 12$ ms·54ms, 12ms·96ms)ついて、結果は以 下のようになった(Table1, 2)。短期の変動においては、3人の被験者のうち、最大の変動でも 4.5%と、良好な結果が得られた。また、長期再現性に関しては、骨粗鬆症の患者の骨密度の変化 量が、年間で1~2%であることを考えると、骨粗鬆症のフォローアップ装置としての可能性も示 す結果であるということが言える。

	Subject A	Subject B	Subject C	
12-54ms	0.010	0.016	0.018	
12-96ms	0.009	0.013	0.016	

lable '	1 CV of	16 I MVF	measurer	ments (long) span: 2v	veeks)

	Ind Third (Short opan)	
		_
Subject A	Subject B	

CV/ of 1et-2nd TMV/E (ehort enan)

	Subject A	Subject B	Subject C
12-54ms	0.015	0.014	0.022
12-96ms	0.011	0.016	0.022
5. 二重エネルギーX線吸収測定(DXA)装置との相関

年齢 18~21 歳の健常女性ボランティア 22 名に対し、二重エネルギーX 線吸収測定 (DXA) 装置によって得られた BMD (Bone Mineral Density) と本システムで得られた TMVF (12-54ms, 12:96ms) との関係を調べた。DXA 装置はアロカ社の DCS・3000 を用い、MRI、DXA ともに左足を計測した。Fig.4 に BMD と TMVF の関係を示す。このように R=0.54798 (12:54ms), 0.50817(12:96ms)と、それぞれ良い負の相関を示した。

6. 128×64 画像による撮像時間の短縮

撮像時間短縮の為、位相エンコード方向のサンプル数を 64 ステップに変更した 128×64 画像 で TMVF を計算し、従来の 128×128 画像から得られた TMVF と比較した。

6. 1 ファントムによる評価

ファントムを用いて 128×128 と 128×64 画像を交互に 7 回連続撮像(T_E =12ms·96ms)を行い、 得られた TMVF からそれぞれの CV 値を評価した。結果を以下に示す。今回の実験では、2 種類 の画像の間で、大きな差は見られなかった。

Fig.3 Reproducibility of the phantom measurements (128*128: left, 128*64: right)

6 2 被験者群による評価

5 での実験で行った 128×128 画像の撮像直後に 128×64 画像を撮像し、個人毎に各画像での TMVF の違いを評価した。以下に結果を示す。これより、2 種類の画像から得られる TMVF にお いて、R=0.97001 と高い相関が得られた、また、両者の違いは最大でも 3.6%であり、位相エン コードステップ数の削減による計測時間短縮の可能性が得られた。

Fig.4 2D calnaneus images acquired with a spin-echo sequence (TR=1200 ms, TE=12 ms, number of phase encoding =128 (left), 64 (right)).

Fig.5 The relation between TMVF from two images (phase encode steps 128*128 and 128*64) The line is a guide line(y=x).

7.まとめ

骨量計測用のコンパクトな MRI を開発し、踵骨骨髄の体積率を計測した。複数の被験者におい て長期及び、短期の撮像において、良好な再現性が得られた。また、DXA 装置から得られた BMD と TMVF において良好な負の相関が得られた。また、位相エンコード方向のステップ数を 128 から 64 に減らした画像と、従来の画像で、ステップ数が 128 の画像から得られる TMVF の変化 を、ファントム、被験者の両方でそれぞれ比較検討し、その結果、計測時間の短縮の可能性が確 認できた。今後は、TMVF の変動原因の解明と、変動の抑制をする予定である。

References

1. Fernandez-Seara MA, Song HK, Wehlri FW. Trabecular bone volume fraction mapping by low-resolution MRI. Magn. Reson. Med. 46: 103-113, 2001.

2. K. Kose, Y. Matsuda, S. Hashimoto, Y. Yamazaki, T. Haishi, S. Utsuzawa, H. Yoshioka, A. Nakanishi, S. Okada, M. Endo, M. Aoki, T. Tsuzaki "Development of a Compact MRI System for Trabecular Bone Volume Fraction Measurements" May, 2002, 10th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu.

3. K. Kose, Y. Matsuda, S. Hashimoto, Y. Yamazaki, T. Haishi, S. Utsuzawa, H. Yoshioka, A. Nakanishi, S. Okada, M. Endo, M. Aoki, T. Tsuzaki "Trabecular Bone Volume Fraction Measurements of 108 Female Volunteers Using a Dedicated Compact MRI System"May, 2002, 10th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu. 4. K. Kose, Y. Matsuda, T. Kurimoto, S. Hashimoto, Y. Yamazaki, T. Haishi, S. Utsuzawa, S. Okada

"Trabecular Bone Volume Fraction Measurements of Female Volunteers using a Dedicted Compact MRI System : Comparative Study with QUS Measurements" July, 2003, 11th, Annual Meeting of the International Society for Magnetic Resonance in Medicine, Toronto.

³¹P 近傍の ¹H の解析をするための ³¹P-¹H 多重接触交差分極による ¹H 消磁化の固体高分解能 ¹³C-NMR (¹阪大・蛋白研, ²JBIC, ³都立大・院・理学研究科) 〇原田英里砂 ¹²、藤原敏道 ¹、甲斐荘正恒 ³、阿久津秀雄 ¹

High-resolution ¹³C solid-state NMR observation of ¹H demagnetization by multiple-contact ³¹P-¹H cross polarization for structural analysis of ³¹P neighborhood

¹Institute for Protein Research, Osaka University, ²JBIC, ³Graduate School of Science, Tokyo Metropolitan University Erisa Harada^{1,2}, Toshimichi Fujiwara¹, Masatsune Kainosho³ and Hideo Akutsu¹

A multiple-contact ³¹P-¹H polarization inversion is employed for depolarization of the abundant ¹H spin. This depolarization process was monitored with the ¹³C high resolution solid-state NMR through ¹³C-¹H Lee-Goldburg (LG) CP before the detection period. This new method can be applied to the full-labeled sample. If the assignment is completed, a number of the distances from ³¹P are obtained by a single experiment. Both CP and LGCP processes were applied to the magnetization transfer, the depolarization of the ¹H by LGCP was occurred more locally than by CP. In this study, this method was applied to the small chemical compounds, chiraphos and ATP, and protein, H^{*}-ATPase β subunit complexed with ATP. The ¹H depolarization process was analyzed from spectra. The ¹H spins at 5 Å distance from ³¹P are depolarized at the contacted time of 1 ms. These constrain would be useful for the analysis of the structural in the vicinity of ³¹P.

[序] 位相を反転させた交差分極(CP)を行うことで¹H の脱分極が促進され、4 級炭素などの小 さい双極子結合を観測することができることが知られている^{1),20}。今回炭素核以外への応用として、 ³¹P に注目した。³¹P 周辺の¹H の磁化を³¹P - ¹H 双極子相互作用を通じて飽和あるいは反転させ、 これを高分解能¹³C-NMR または¹H-MAS NMRスペクトルを通じてモニターする方法を開発した。 この方法はフルラベル試料を用いる点で試料調製が容易であり、シグナルの帰属がされていれ ば一度の測定で複数の情報が得られる。この手法を用いれば、複雑な生体分子であってもリン原 子の周辺のみを詳しく解析でき、リン原子を基質に含む ATP や GTP と蛋白質複合体などの結合 部位の解析、リン脂質の極性基と蛋白質の結合様式の解析などへの応用が期待できる。

[方法] Fig. 1 にパルス系列を示す。初めに複数回の CP を ¹H-³¹P 間で行うことで ³¹P 近傍の ¹H の磁化を効率よく減少させる。³¹P のオンとオフレゾナンス照射との差として減少を観測し、¹H-¹H 双極子相互作用を消す ¹H-¹³C LGCP を用い ¹³C で最終観測する。このとき 80µs という短い時間

の LGCP を用いることで、'H と共有結合した C を通じて高い分解能で観測できる。さらに、最初の 'H の 磁化の減少に CP と LGCP の両方を適用し、そのスペクトルを比較した。用いた装置は Chemagnetics CMX-500 および CMX-600 Infinity-plus である。

Fig. 1 Pulse scheme for high resolution ^{13}C solid-state NMR observation of ¹H demagnetization by multiple contact ^{31}P -¹H CP. * CP or LGCP, τ_{dp} : depolarization time

キーワード:固体高分解能 NMR, 'H-3'P 交差分極, 'H スピン拡散, 'H 脱分極

はらだえりさ、ふじわらとしみち、かいのしょうまさつね、あくつひでお

[結果] 1)(2R, 3R)-(+)-Bis (diphenyl-phosphino) butane (Chiraphos) での測定

初めに化学シフトと CP と LGCP のスペクトルの違いから 1,4-CH₃, 2,3-CH, P(Ph), のαC を帰属 した。また、溶液 NMR で 1, 4-Bis (diphenyl-phosphino) butane の芳香環の化学シフト ³はα位で 138.6 および 136.9、B位で 132.9 および 132.8、y位で 128.5 および 128.4、δ位で 128.3ppm とリンに 近づくにつれ低磁場シフトする。そこで残りのシグナルを 140.6, 136.0 はβ、131.7ppm はγおよびδ 位と帰属した(Fig. 2)。今回の測定ではて。(脱分極時間)の増加と共にシグナル強度の拡大が見 られるが、長いて。では'Hスピン拡散が起こり普通のLGCPのスペクトルに近づいていく(Fig. 3, 4)。 通常のLGCPに対するシグナル強度比の変化をみると、τω=1.2ms (LGCP)では 2,3-CH とβ位が より強調されている。これらの原子は31Pからの距離が3Å以内と非常に近いことから、31P近傍の 構造情報を反映していると言える。τ₄₀ = 1ms(CP)のスペクトルでも同様の結果だが 1,4-CH₃まで 見えているので、LGCP よりも ¹H スピン拡散の影響が大きいと考えられる。また、脱分極により減 少した強度の全体の割合はta = 4ms で CP、LGCP でそれぞれ 10.2, 8.8%に達している。ta = 1ms では 3.2, 4.7%である。これを ³¹P あたりの ¹H の個数に換算するとそれぞれ 1.2-1.4 個、0.4-0.6 個 の磁化になる。

Fig. 4 Depolarization time (τ_{dp}) dependence of ¹³C spectra obtained by pulse scheme shown in Fig.1; depolarized by (a) CP, (b) LGCP.

τ_{ab} (ms) [LGCP]

2) ATP·Na2·(H2O) 粉末での測定

CP, LGCP, 及び Fig. 1 による測定から、以下のスペクトルを得た(Fig. 5)。 LGCP で消失した¹H が結合していないシグナルを C5、とC4 または C6 と帰属し、その他のシグナルは主に溶液 ⁴及び 固体 NMR⁶での化学シフト値を基準に帰属した(Table 1)。糖の部分ではシグナルの数が予想さ れるものより多く、アデニン環の部分ではシグナルが重なってしまっているのは、構造が均一でな いためである。また C2が2本に分かれると帰属したのは、強度が他のシグナルに比べて約半分 だったことと、結晶構造[®]で ATP は1格子中に2分子存在し C2'からαP までの距離が2種類に分 かれているからである。そして C2'の 79.0ppm のシグナルが ³¹P からの距離が近いほうと考えれば、

(C2) (C8)

(C4)

(C6

7.4 4.2

4.3 4.7

5.1

4.1

5.4 4.1

4.2 3.8

3.9

2.6

2.7

Fig. 5 (a) CP, (b) LGCP ¹³C spectra of ATP. (c), (d) ¹³C spectra obtained by pulse scheme shown in Fig. 1 depolarized with LGCP. τ_{dp}: (c) 0.48, and (d) 0.96 ms.

*solid state NMR⁵, **solution state NMR⁴) : (acidic) ATP · Na₂, (basic) ATP · Na₄, ***two asymmetric units in the crystal structure⁶: ATP · Na, · (H₂O)₃

143.0

88.8

75.6

70.9

84.8

66.1

3) 蛋白質測定への応用

C8

C1'

C2'

C3'

C4'

C5'

(148.8)

91.9

74.6

79.0

71.2

84.0

65.9

138.1

92.6

75.4

71.5

85.1

63.2

使用したのは ¹³C-¹⁵N フルラベル ATP と ノンラベル H⁺-ATPase βサブユニット(好熱菌由来)の 複合体である。ここで、βサブユニットには1分子中1つの ATP が結合する。しかし、シグナル感度 が弱く ¹³C スペクトルが得られなかったため、¹H 測定で解析を行った(Fig. 6)。ここでも LGCP の方

140.4

88.1

75.3

71.9

84.4

66.2

が CP よりも限定的に磁化の減少が起こっていることが観測できる。 Chiraphos と ATP での結果か $\delta_{\tau_{dp}}$ =1ms では 5 Å 程度まで磁化が移動していると推測されるので、PDB データから α P までの距 離が近いもの(4 Å、5 Å 以下)を選び出しスペクトルの予測を行った。アデニンの化学シフト値³⁾か ら ATP 内の C3', C4'の CH、C5'の CH₂は4、C3'の OH は 5ppm、タンパク内のアミノ酸の NH は 8ppm、 さらに Fig. 6 (e)から ATP の P-OH を 13ppm として、また、半値幅は ATP の 'H スペクトルを予想 し実測に近かった 0.6ppm とし、ローレンツ型線形で計算を行った(Fig. 7)。予想したスペクトルは 5ppm の大きなシグナルが反映されていないので、試料調製時に安定化材として加えたトレハロー スや水和水の影響を考慮する必要が残る。 5ppm の大きなシグナルを除いて考えれば、Fig. 6 (b) は Fig. 7 のアミノ酸を考慮したモデルに帰属できる。同じ τ_{do} の(d)ではアミノ酸残基由来のメチル基

が観測されており、スピ ン拡制の影響のほうが 強いといえる。ATP では 初めに P-OH の磁しての後 CH などに たっているので、今後 しているので、今後 し、同時にとかる でする予定で得られ に 強から ¹³Cでの観測 がなのか定量的に 考察する予定である。

今回開発した方法により、τ₆ = 1ms で³¹Pから5Å程度まで磁化が伝わり、 複雑な蛋白質の固体¹Hスペクトルで も³¹P周辺構造のみに単純化できるこ

とが示された。さらに重水素化などに

よってHのスピン拡散を抑えれば、感

度よく測定が行えると期待できる。

Fig. 6 ATP β subunit complex ¹H spectra with ¹H depolarization by LGCP (a, b), and CP (c, d). τ_{dp} : (a) 0.96, (b) 1.44, (c) 1.0 and (d) 1.4 ms. (e) ATP ¹H spectrum, (f) ATP ¹H spectra with ¹H depolarization by LGCP (τ_{dp} 1.44 ms).

(4) all protons < 5 Å (3) all protons < 4 Å (2) within ATP < 5 Å (1) within ATP < 4 Å 14 12 10 8 6 4 2 0

Fig. 7 Predicted ¹H spectra. (1): Protons within ATP distance between αP lower than 4 Å, (2) 5 Å, (3) all protons lower than 4 Å and (4) 5 Å.

[Reference]

[まとめ]

1)Takely, P. et al., *Chem. Phys. Lett.* (1990) 175, 401-406 2)Sinha, N. et al., *Chem. Phys. Lett.* (2000) 332, 125-130 3)http://www.aist.gojp/RIODB/SDBS/ 4)Johnson, R. F. and Jankowski, W. C., Carbon-13 NMR spectra (1972) Wiley-Interscience 5)Fujiwara, T. et al., *J. Am. Chem. Soc.* (1995) 117, 11351-11352 6)Larson, A., *Acta Cryst.* (1978) B34, 3601-3604

DARR 法による Dipolar truncation の抑制効果の検証 (京大院理) 〇大橋 竜太郎、水野敬、加藤悦子、竹腰 清乃理、寺尾 武彦

Examination of the dipolar truncation under DARR (Department of Chemistry, Graduate School of Science, Kyoto University) O Ryutaro Ohashi, T. Mizuno, E. Katoh, K. Takegoshi, T. Terao

While NOESY has long been the most useful technique to obtain ${}^{1}H{}^{-1}H$ distances in liquids NMR, broadband ${}^{13}C{}^{-13}C$ recoupling techniques in the solid-state NMR don't provide distance informations for multiply/uniformly labeled sample, because of the socalled dipolar truncation. Recently, we have pointed out that ${}^{13}C{}^{-1}H$ dipolar-assisted rotational resonance (DARR)[1] is less affected by the dipolar truncation as compared to other broadband recoupling techniques. In this work, we experimentally examined the dipolar truncation under DARR.

Firstly, we examined ${}^{13}C{}^{-13}C$ polarization transfer curves under DARR and RFDR [2] using fully ${}^{13}C$ labeled glycil-l-isoleucine (Gly-Ile) dilute by natural-abandance one with a ratio of 1:9. The cross-peaks were classified according to their corresponding ${}^{13}C{}^{-13}C$ distances (calculated from the X-ray data). Fig. 1 shows correlation between the mixing time and the cross-peak intensity in the 2D ${}^{13}C{}^{-13}C$ DARR (a) and RFDR (b) polarization-transfer spectra (the MAS speed of 22 kHz, $\nu_0 = 100$ MHz for ${}^{13}C$). It is notable that the build-up curves for the distant ${}^{13}C$ spins under RFDR are less sensitive to the corresponding distances as compared to those under DARR.

Secondly, we examined ¹³C-¹³C correlation 2D NMR with DARR (the mixing time = 500 ms) and RFDR (10 ms) using fully ¹³C labeled N-acetyl-l-prolyl-glycyl-l-phenylalanine (Ac-Pro-Gly-Phe) dilute by natural-abandance one with a ratio of 1:9. Fig. 2 shows correlation between the C-C distances from the X-ray data and the observed cross-peak intensities. Due to the dipolar truncation, RFDR allows us to observe a few inter-residue cross-peaks, while DARR enables us to observe many long-distance crosspeaks. For example, Fig. 3 shows the cross-section spectra of Gly-C_{α} for 2D DARR (a) and 2D RFDR (b). The RFDR slice spectrum typically shows the dipolar truncation effect, that is, except for the directly bonding Gly C=O peak, only a few cross-peaks are appreciable. The avoidance of the dipolar truncation effect can be described to the orientational dependence in DARR recoupling.

[1] K. Takegoshi, Shinji Nakamura, and Takehiko Terao, J. Chem. Phys., vol. 118, Num. 5, 2325 (2003).

[2] A. E. Bennet, J. H. Ok, R. G. Griffin, and S. Vega, J. Chem. Phys. 96, 8624 (1992)

Key words:固体 NMR、ペプチド試料、多次元相関 NMR、距離測定

おおはし りゅうたろう、みずの たかし、かとう えつこ、たけごし きよのり、 てらお たけひこ

Each peak intensity was averaged from several peaks near each distance,

Fig. 2 : Correlation between the C-C distance and the 2D cross-peak intensity under DARR (the mixing time = 500 ms)
(a) and RFDR (the mixing time = 10 ms) (b) observed for 10% [¹³C,¹⁵N] uniformly labeled Ac-Pro-Gly-Phe.

Fig. 3 : The cross-section spectra of $Gly-C_{\alpha} in^{13}C^{-13}C$ correlation 2D NMR under DARR (the mixing time = 500 ms) (a) and RFDR (the mixing time = 10 ms) (b) observed for 10% [¹³C, ¹⁵N] uniformly labeled Ac-Pro-Gly-Phe.

¹³C·CP/MAS NMR による

ポリペプチド・多糖 ポリイオンコンプレックスの構造研究

(1北大院工、2信州大繊維)〇1尾張洋史、1平沖敏文、1堤 耀廣、2山本浩之

Structural Studies of Polyioncomplexes Composed of Synthetic Polypeptides and Polysaccharides by ¹³C CP/MAS NMR in the Solid State

¹Hiroshi Owari, ¹Toshifumi Hiraoki, ¹Akihiro Tsutsumi, ²Hiroyuki Yamamoto ¹Department of Applied Physics, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan

²Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan

Microstructures in polyioncomplexes (PICs) composed of biopolymers such as poly(glutamic acid)(PGA)-chitosan, chitosan-gellan gum, poly(lysine)(PLL)-gellan gum and PLL-PGA were studied by ¹³C-CP/MAS NMR. NMR spectra showed that chitosan and gellan gum make a stoichiometric PIC, while the chitosan-PGA PIC is non-stoichiometric with conformational change of PGA backbone. Their values of $T_{1,0}$ (H), proton spin-lattice relaxation time in rotating frame, suggest that molecular mobility and molecular packing in chitosan-gellan gum PIC are intermediate between those of chitosan and gellan gum. Similar measurements were made on poly(lysine)(PLL)-gellan gum and PLL-PGA PIC.

[目的] 互いに対極の電荷を持つ高分子電解質の混合により形成されるポリイオンコンプレックス (PIC)は、高い機能性を有する高分子材料として、近年幅広い分野で利用されている。しかしながら、 それらのミクロ構造に関しては不明な点が多い。本研究では、生体高分子からなる PIC として、正電 荷を有するキトサン、ポリリジン(PLL)と、負電荷を有するジェランガム、ポリグルタミン酸(PGA) からなる、キトサン・PGA、キトサン・ジェランガム、PLL・ジェランガム、PLL・PGA の4種の PIC に ついて、¹³C-CP/MAS NMR 測定を行い、ミクロ構造、運動性について検討した。

[実験] キトサン(脱アセチル化度 66.5%)、ジェランガム(三栄源 F.F.I 社製)、ポリリジン(重合度 150-300、ナカライテスク社製)、ポリグルタミン酸(重合度 200、味の素社製ポリメチルグルタ メートより調整)の4種の高分子電解質を、水を中心とした溶媒に溶かし、数種類の濃度の溶液を用 意した(Table.1)。それらを組み合わせ、混合する溶液の濃度比率の異なる PIC を調整した。

¹³C CP/MAS NMR 測定は、Bruker DSX-300 を用い、共鳴周波数 75.468MHz、試料回転速度 4kHz、 ¹H90° パルス長 4.5μ s、室温(295K)で行った。また、回転系における ^{1}H スピン・格子緩和時間 $T_{1_{\rho}}(H)$ をスペクトル強度の接触時間依存性から見積った。

	chitosan(acetic acid 0.15M)			
		0.5%	1%	
PDGNa	0.3%		- • O	
water)	2%		0	
	4%	\circ		
ellan gum water)	0.75%	0	0	

 Table.1
 Polymer concentrations.

 O : combinations of solutions to prepare PIC samples.

Key words: ポリイオンコンプレックス、13C-CP/MAS、生体高分子、固体 NMR、緩和時間 おわりひろし、ひらおきとしふみ、つつみあきひろ、やまもとひろゆき

[結果・考察]

 ¹³C-CP/MAS NMRspectra Fig.1) キトサン・PGA PIC、キトサン-ジェランガム PIC 共に、溶液の混 合濃度比率が異なるにもかかわら ず、¹³C CP/MAS スペクトルの相 対強度、化学シフトに変化が見ら れず、混合比に関わらず成分組成、 ミクロ構造、共に一定の PIC が生 成することが示唆された。

キトサン・PGA PIC (B)において、 PIC 中の PGA 主鎖ピーク (C α 、 C=O) は、PGA 単独の場合(A) と比較して低磁場側に現れた。こ の化学シフト変化は、多くのポリ ペプチドで見られる β シートから α ヘリックスへの構造変化に対応

Fig.1 ¹³C CP/MAS NMR spectra of PGA (A), chitosan-PGA PIC (B), chitosan (C), chitosan gellan gum PIC (D),and gellan gum (E).

している。また、キトサン C1 ピークの化学シフト変化や各成分由来のピーク線幅の増加も観測され、 この系の PIC 形成は、両成分の大きなコンホメーション変化を伴うと考えられる。なお、この PIC 中 の各成分の解離基数比は、キチン:キトサン: PGA=2:4:7であり、PGA 過剰の非化学量論的複 合体を示唆する結果が得られている。

キトサン・ジェランガム PIC スペクトル(D) は各成分のピークが重なり合い複雑な波形を示している が、唯一キトサンに 33.5%含まれるキチン由来のメチルピーク(26ppm)と、ジェランガムのメチル ピーク(20ppm)が分離して現れた。これらのピーク面積強度を比較し、この PIC の組成比を見積も った結果、キチン:キトサン:ジェランガム=1:2:2と求まり、この PIC が化学量論的複合体で あることが示唆された。以上の組成比のもとで、キトサン単独スペクトル(C)とジェランガム単独スペ クトル(E)を合成し、PIC スペクトルと比較すると、PIC スペクトルの方が、線幅がやや広がっており、 合成スペクトルとの僅かなズレが見られたがその差は小さく、この系の PIC 形成に伴う運動束縛は、 キトサン・PGA PIC と比較してかなり小さいものと考えられる。

2) ¹H spin-lattice relaxation times in rotating frame, T_{1_0} (H) s

コンタクトタイム依存 ¹³C CP/MAS NMR 測定から、回転系における ¹H のスピン・格子 緩和時間 T₁(H)を見積もり、全ての PIC の ミクロ構造に関する知見を得た。単独、PIC 各々の試料内において、各NMRピークはほ ぼ等しい T₁(H)値を示した。これは、隣り 合う化学グループ間(基間)に速いスピン拡 散が存在し、特に、PIC 中では両成分が数 nm のスケールで良く絡み合っていること を示唆する。

また、キトサン-PGA_PIC の T₁(H) (Fig.1)は、各成分単独の緩和速度(T₁(H)⁻¹)の¹H 数による平均から求まる値(破線) と比較して小さい。これはPIC形成に伴い、 系の¹H 密度が増加し、緩和の効率化が生じ たことを示している。

Fig.2 Composition dependences of $T_{1\rho}$ (H)s in chitosan PGA PIC and chitosan gellan gum PIC.

一方、キトサン-ジェランガム PIC では、PIC の T₁(H)が ¹H 数による平均(破線)と比較して大き いことから、比較的自由体積の大きな構造を形成していると考えられる。

さらに、ピークの線幅とT₁(H)の温度依存性を基にした PIC 中の分子運動性の検討からも、以上の 知見を裏付ける結果が得られている。他の PIC についても同様の解析を行ったので結果を詳細に報告 する。

1) K. Ohkawa, Y. Takahashi, H. Yamamoto, Macromol. Rapid Commun 21, 223-225 (2000)

2) H. Yamamoto, Y. Senoo, Macromol. Chem. Phys. 201, 84-92 (2000)

偏極実験は、半導体レーザーとして、Opto Power 社製 OPC-A20-795-CSPS(波長 795nm)を用い、(1/4) 入板を通して円偏光とした。磁石は NMR 装置の漏洩磁 場(約 120gauss)を利用し、その位置に偏極セルを設置した。偏極セルは 120 ℃ の恒温槽に置いた。セルの形状はシリンダー状で、外形 6cm,長さ 20cm であった。 Rb は 0.2g を高真空(10°Torr)で封入した。平均的な偏極率は約 0.5-1%であった。 用いた Xe ガスは天然のもので、Wilmad 製の 10 φテフロンバルブ付きガラス管 に 1 気圧で封入した。実験に用いた石炭は鉄鋼業で広く利用されている

Goonyella 炭 (C:79.4%,H:4.6%,N:1.8%O:4.2%,S:0.8%)、

Hongei 炭 (C:80.0%,H:2.9%,N:1.%O:2.7%,S:0.8%)、

Adaro 炭(C:63.0%,H:5.1%,N:0.7%O:23.8%,S:0.2%)、

Witbank 炭 (C:73.4%,H:4.4%,N:1.8%O:10.2%,S:0.9%)

J-East 炭 (C:69.6%,H:3.6%,N:1.5%O:6.8%,S:1.4%)

と 385 ℃で急速加熱及び低速加熱処理された Witbank 炭で、粒径は約 150 µ m 程 度であった。

Figure 1 Experimental scheme of Hyper-Polarized Xe System

スピン偏極 Xe の簡単な原理図を Figure 2に示す。以下、簡単に光ポンピング 法を説明する。これは、原子の核外電子にスピンの超偏極状態を作り出し、Xe 核のスピンに移動させることである。具体的には、Rb のようなアルカリ金属は 価電子を1個のみ有するので、よく利用される。Rb の場合、5s 軌道電子1個で

あり、そのスピン状態は外部磁場に平行な β スピ ンと α スピンからなり、熱平衡的にはエネルギー が低い β がわずかに多いが、その差は極めて少な い。ここに、795nmの波長の光を照射すると、電 子は s 軌道から p 軌道に励起される。量子力学の 選択則から、右旋性の円偏光を照射すると、角運 動量の+1を有するので、この光が吸収されるた めには運動量保存の法則から、 β スピンから α ス ピンへの遷移のみが要求され、その結果 s 軌道に ある β スピンのみが p 軌道の α スピン状態に励起 される。励起された電子スピンは熱エネルギーを 発生しながら元の基底状態に戻るが、この際には

Figure 2 Schematic of the hyper polarized process

角運動量の制約を受けないので、αとβの両スピン状態に同程度戻る。結果、s 軌道のβスピンが減少し、αスピンが増加し、電子スピンの超偏極状態が得られ る。このときに、アルカリ金属蒸気と希ガスである Xe を混合しておくと、超偏 極状態をアルカリ金属の電子から希ガスの原子核に移動させることが可能とな り、Xe の NMR 感度を約 100000 倍上昇させることができるのである。⁸⁾

3. 結果と議論

Figure3 に Adaro 炭の標準 Xe ガスを利用した NMR の結果を示す。既に、Botto⁹⁾ らによって報告されているように、細孔由来の吸収は大きな2つのメイン吸収を 与え、圧力項を考慮して解析することで、昨年の本討論会でも報告¹⁰したように、 ポアサイズと化学シフトの関係から、細孔の大きさを推定することが可能である。 但し細孔の化学構造情報は不明である。

Figure 4 Hyper-polarized Xe NMR spectra of Witbank Coal

Figure4 に、Witbank 炭の通常 Xe ガスを利用した場合とスピン偏極 Xe を利用 した場合の測定結果を示す。両者で明らかに形状が異なっている。これは、スピ ン偏極した Xe の活性が、π電子と相互作用することで失われていることに由来 しており、つまり偏極 Xe 由来の吸収は、周辺にπ電子がいない細孔に存在して いることを意味する。またスピン偏極した Xe の化学シフトから判断して、脂肪 族リッチな細孔の大きさはπ電子存在の細孔よりも大きく、且つ量が少ないこと がわかった。例えば、Gooonyella 炭等の場合、スピン偏極した Xe ガスの吸収を 観測することはできなかった。これは、脂肪族と芳香族領域が十分に共存した領

超偏極 Xe 法による石炭細孔の解析

(新日本製鐵(株)先端技術研究所) 〇齋藤公児

(大阪大学 医学部) 藤原英明、木村敦臣

The Study of Micropores in Coal using Xe and Hyper-Porlaized Xe NMR Sprctroscopy \bigcirc Koji Saito^a, Atsuomi Kimura and Hideaki Fujiwara^b

a; Nippon Steel Corporation, Advanced Technology Research Laboratories,

b; Osaka University Facluty of Medicine

SYNOPSIS : Prosity in coal is of great significance because of its influence on coal behavior during mining, preparation and utilization processes. It is well-known that Xe NMR is very poweful to estimate micro pore structures, at the same time there is a lack of information for chemical composition of micropores. In this paper, the micropores structures of some kind of coals and rapid heat treated sample of Witbank coal have been investigated using the combination between Xe and hyper-polarized Xe gas NMR spectroscopy. These combination techniques showed the estimation of average pore size for coals and also these chemical compositions because the activity of hyper-polarized Xe gas is lost with the inteaction of π electron as soon as this gas puts into aromatic regions.

1. はじめに

石炭には細孔が多く存在していることは良く知られており、工業的な石炭利用 を考慮した場合、細孔構造情報は非常に重要である。石炭の細孔構造に関する研 究は多く、吸着法¹⁾ や小角 X 線散乱法²⁾ や EPR 法³⁾ や NMR 法⁴⁾ 等の様々なア プローチがなされている。各手法で多くの情報が得られるが、正確に 10 A以下 の細孔サイズを見積れるのは、NMR 法である。NMR 法では石炭中の水を利用す る方法⁵⁾と外部から Xe ガスを導入しそれをプローブにする方法に大別できるが、 一般的には Xe ガスを導入する方法がより広範囲な炭種に利用できると考えられ ている。Xe ガスをプローブとする方法は、Xe が石炭に対して不活性であり、且 つゼオライト等の広範なデータが利用できること、更に同種核の原子が石炭中に は存在しないことから、正確な細孔の平均サイズを推定できる。しかし、Xe 法 で石炭中に数種類の細孔構造が確認できても、その化学的な組成構造等を特定す ることはできなかった。そこで、我々は Xe をレーザーで偏極させたスピン偏極 Xe が非常に高感度であること⁶⁾及びそのスピン偏極活性が石炭中のπ電子と相互作 用で急激に失われること¹⁾に着目し、スピン偏極 Xe を石炭中に導入し、従来の Xe 法と組み合わせることで、典型的な数種類の石炭及び急速加熱処理した石炭中の 細孔構造に関する新たな知見と得たので、報告する。

2. 実験及びスピン偏極 Xe とは

NMR の測定は、VARIAN 製 INOVA-400WB 型分光計に自作のレーザー偏極シ ステムを付帯した装置で行った。測定周波数は、110.648MHz で測定温度は室温 及び-100 ℃で実施した。基本となる測定は、1 パルス測定で、通常の Xe の場合 には待ち時間を 5sec とし、約 50000 回の積算を実施した。対して、偏極 Xe の場 合には高感度のため、積算回数は1回であった。Figure 1に示すようにレーザー

超偏極 Xe、細孔、石炭

さいとうこうじ、きむらあつおみ、ふじわらひであき

偏極実験は、半導体レーザーとして、Opto Power 社製 OPC-A20-795-CSPS(波長 795nm)を用い、(1/4) 入板を通して円偏光とした。磁石は NMR 装置の漏洩磁 場(約 120gauss)を利用し、その位置に偏極セルを設置した。偏極セルは 120 $^{\circ}$ の恒温槽に置いた。セルの形状はシリンダー状で、外形 6cm,長さ 20cm であった。 Rb は 0.2g を高真空(10°Torr)で封入した。平均的な偏極率は約 0.5-1%であった。 用いた Xe ガスは天然のもので、Wilmad 製の 10 *φ*テフロンバルブ付きガラス管 に 1 気圧で封入した。実験に用いた石炭は鉄鋼業で広く利用されている

Goonyella 炭 (C:79.4%,H:4.6%,N:1.8%O:4.2%,S:0.8%)、

Hongei 炭 (C:80.0%,H:2.9%,N:1.%O:2.7%,S:0.8%)、

Adaro 炭(C:63.0%,H:5.1%,N:0.7%O:23.8%,S:0.2%)、

Witbank 炭 (C:73.4%,H:4.4%,N:1.8%O:10.2%,S:0.9%)

J-East 炭(C:69.6%,H:3.6%,N:1.5%O:6.8%,S:1.4%)

と 385 ℃で急速加熱及び低速加熱処理された Witbank 炭で、粒径は約 150 µ m 程 度であった。

Figure 1 Experimental scheme of Hyper-Polarized Xe System

スピン偏極 Xe の簡単な原理図を Figure 2に示す。以下、簡単に光ポンピング 法を説明する。これは、原子の核外電子にスピンの超偏極状態を作り出し、Xe 核のスピンに移動させることである。具体的には、Rb のようなアルカリ金属は 価電子を1個のみ有するので、よく利用される。Rb の場合、5s 軌道電子1個で

あり、そのスピン状態は外部磁場に平行な β スピ ンと α スピンからなり、熱平衡的にはエネルギー が低い β がわずかに多いが、その差は極めて少な い。ここに、795nmの波長の光を照射すると、電 子は s 軌道から p 軌道に励起される。量子力学の 選択則から、右旋性の円偏光を照射すると、角運 動量の+1を有するので、この光が吸収されるた めには運動量保存の法則から、 β スピンから α ス ピンへの遷移のみが要求され、その結果 s 軌道に ある β スピンのみが p 軌道の α スピン状態に励起 される。励起された電子スピンは熱エネルギーを 発生しながら元の基底状態に戻るが、この際には

Figure 2 Schematic of the hyper polarized process

角運動量の制約を受けないので、αとβの両スピン状態に同程度戻る。結果、s 軌道のβスピンが減少し、αスピンが増加し、電子スピンの超偏極状態が得られ る。このときに、アルカリ金属蒸気と希ガスである Xe を混合しておくと、超偏 極状態をアルカリ金属の電子から希ガスの原子核に移動させることが可能とな り、Xe の NMR 感度を約 100000 倍上昇させることができるのである。⁸⁾

3.結果と議論

Figure3 に Adaro 炭の標準 Xe ガスを利用した NMR の結果を示す。既に、Botto⁹⁾ らによって報告されているように、細孔由来の吸収は大きな2つのメイン吸収を 与え、圧力項を考慮して解析することで、昨年の本討論会でも報告¹⁰したように、 ポアサイズと化学シフトの関係から、細孔の大きさを推定することが可能である。 但し細孔の化学構造情報は不明である。

Figure3 Xe NMR spectrum of Adaro, Relationship between pore-size and chemical-shift

Figure 4 Hyper-polarized Xe NMR spectra of Witbank Coal

Figure4 に、Witbank 炭の通常 Xe ガスを利用した場合とスピン偏極 Xe を利用 した場合の測定結果を示す。両者で明らかに形状が異なっている。これは、スピ ン偏極した Xe の活性が、π電子と相互作用することで失われていることに由来 しており、つまり偏極 Xe 由来の吸収は、周辺にπ電子がいない細孔に存在して いることを意味する。またスピン偏極した Xe の化学シフトから判断して、脂肪 族リッチな細孔の大きさはπ電子存在の細孔よりも大きく、且つ量が少ないこと がわかった。例えば、Gooonyella 炭等の場合、スピン偏極した Xe ガスの吸収を 観測することはできなかった。これは、脂肪族と芳香族領域が十分に共存した領 域にあることを意味しており、この結果は先の Ti-CRAMPS 法で Goonyella 炭は広範囲にスピン拡散が観測された結果と矛盾しない¹¹⁾。

次に次世代コークス炉プロセスで重要なキー技術である急速加熱処理の効果を 本手法で検討した。それは石炭を急速に加熱することで石炭の反応性が向上し ていることが報告されているが、細孔に関する情報は全く不明であり、改質メカ ニズムに不明な点が多いからである。その結果を Table 1 に示す。

sample	Xe chen	Xe chemical shift(ppm)			$T_i(sec)$		
Witbank	79.6	123.6	174.2	20.1	15.4	8.9	
rapid heating	79.1	146.7	175.7	20.5	11.5	8.5	
slow heating	78.5	124.8	168.5	20.9	14.6	5.1	

Table1 NMR parameters of heat treatment for coals

Table1 からわかるように、急速加熱によって細孔径が変化していることが明らか となったとともに、 超偏極でに高感度からはじめて測定できる T1 情報を利用 して、細孔径を形成している 基質の情報を取得することが可能であることがわ かった。これは、基質が脂肪族と芳香族では T₁ が異なることを利用している。 最終的に急速加熱は脂肪族部分を変化させ ているのではなく、芳香族部分の相 互作用を低下させて、反応性が向上したと結論づ けられた。このように急速加 熱処理炭では、通常の Xe では大きな差異は観測されなかったが、スピン偏極 Xe で細孔の存在が確認され、原炭と異なることから、急速加熱処理で主に脂肪族領 域を中心に水素結合等の変化が起きて、その結果細孔構造に変化があったと推定 される。

4.まとめ

スピン超偏極した Xe を併用する NMR 法は非常に有効で、細孔の平均サイズ だけでなく、その細孔を形成する基質の化学組成情報を得ることができる。今後 多くの応用展開が期待される。

参考文献

- 1) J.W.Larsen et al., ACS Symposium Series No.71, (1978)34-49
- 2) J.S.Gethner, J.Appl.Phys, (1986), 59, 1069
- 3) L.S.Cooray et al. Prep, Pap. Am. Chem. Soc. Div. Fuel Chem., (1988), 33, 32-37
- 4) C.Tsiao, et al Energy & Fuels 5,1, (1991)
- 5) 林潤一郎 ら 石炭科学会議発表論文集,37,15, (2000)
- 6) C.R.Bowers, et al. Chem.Phys.Lett. (1993),205,168
- 7) T.Pietras et al. Adv.Mater. 7(10),826,(1995)
- 8)藤原英明 「技術予測シリーズ」日本ビジネスレポート社(2000) 69-75
- 9) R.E.Botto et.al Energy & Fuel, 5,87, (1996),
- 1 0) K.Saito et al. Magn.Reson.Imaging, 21,401,(2003),
- 1 1) K.Saito et al Annual Report on NMR Spectroscopy, 44, (2001).

高分子ラセミ複合体のゾルーゲル転移

(北大院工)〇平沖敏文、北原 竜、武田寛之、堤 耀廣

Sol-Gel Transition of Racemic Polymer Complex Department of Applied Physics, Hokkaido University, Sapporo 060-8628 T. Hiraoki, R. Kitahara, K. Takeda, and A. Tsutsumi

Sol-gel transitions of racemic complexes with α -helical rigid-rod poly(γ -benzyl L-glutamate)(PBLG) and poly(γ -benzyl D-glutamate)(PBDG) in benzene and benzyl alcohol were investigated with deuterium nmr spin-spin relaxation-time(T₂) of solvents, and compared with one of PBLG. The racemic complex, as well as PBLG or PBDG, forms a thermoreversible physical gel in both solvents. T₂ of solvents in solutions highly reflects solution states and slow motions of solvents are present on polymer surfaces in gel. The large hysteresis of T₂ was observed in the transition. The transition temperature from gel to sol is lower for the racemic complex than one for PBLG, and depends on the polymer concentration. These results suggest the presence of weaker specific side-chain interactions between PBLG and PBDG, in addition of cross bridges between polymers in gel.

Poly(γ-benzylL-glutamate)(PBLG)とそのラセミ体(PBDG)はそれぞれ右巻きと左巻 きα-ヘリックスの剛直な棒状高分子である。これらはベンゼンやベンジルアルコー ル(BnOH)中で物理的架橋により熱可逆性ゲルを形成し、ゾルーゲル転移は大きな 温度ヒステリシスを示す。PBLGの等温ゲル化は、高分子濃度3-5%のベンゼン中では 速い過程の次に著しく遅い過程が存在し、BnOH中では高分子濃度1-9%で一段階で進 行する。

本研究では、PBLG/PBDGラセミ複合体-ベンゼン溶液・ベンジルアルコール溶液に おける溶媒の重水素NMR(41.4MHz)の核磁気緩和時間T₂を測定し、ゾルーゲル転移 の温度・高分子濃度・複合体混合比率依存性を調べ、PBLG溶液と比較検討した。

ラセミ複合体(PBLG/PBDG=1/1)-ベンゼン系の高分子濃度0,1,2%のT2の温度依存性 をFig.1に示す。10℃以下のゲル状態では、T2は溶媒のみの場合に比べて著しく小 さく、遅い運動の溶媒分子の存在を示している。ラセミ複合体のゲル状態(1%、 4℃)のT2は0.3sであり、PBLG-ベンゼン系の値0.7sの半分以下である。昇温により 1%では10-20℃、2%では15-25℃とT2が急増し、ゲルからゾルへの転移を示し、転移 温度領域は高分子濃度に依存する。一方PBLG-ベンゼン系では転移温度領域は濃度に よらずほぼ21-27℃であった。30℃以上のゾル状態ではラセミ複合体のT2とPBLGのT2 との差異は見られない。

ゾルーゲル転移、ポリペプチド、ラセミ複合体、緩和時間

ひらおきとしふみ、きたはらりゅう、たけだかんじ、つつみあきひろ

— 428 —

ゾルからの降温過程では、ラセミ複合体~ベンゼン系のT2は高分子濃度1%と2%の両 者とも0℃付近から急激に減少し、ゲル化することを示している。一方、PBLG系の T2は5℃付近から急激に減少してゲル化する。高分子濃度1%における等温ゲル化に おいてラセミ複合体(L:D=1:1)では1.0℃におけるT2は約200分までは急速に減少し、 その後ゆっくりと減少した。一方、5.4℃におけるPBLG系のT2はほぼ単調に減少し た。この過程をAvramiの式で解析し、速度定数と指数を求めた。

ラセミ複合体-ベンゼン系において、L体とD体の混合比率を変えても、昇温過程の プロフィールはほぼ同じになり、転移温度中点は約15℃である。ゾル化を二状態モ デルで解析し、熱力学パラメーターを求めた。得られたΔHは約450kJ/molの発熱反応 であり、PBLG系よりも40%小さい。またΔSは正の値の1.2kJ/molKで、ゾル化により架 橋がはずれ溶媒がより高分子に接触しうることを示しており、PBLG系の約50%であ る。これらの結果は、ラセミ複合体ゲルの分子会合状態がPBLGゲルよりも弱いこと を示唆している。

Fig.2にラセミ複合体、PBLGのBnOH溶液のT2の温度依存性を示す。昇温過程のゾル 化では、T2の変化はラセミ複合体では37~41、41~50℃の二段階で生じ、PBLG系 (41~50℃)より広い。一方、ラセミ複合体の降温過程ではゲル化に伴う明確なT2 の変化は観測されない。4℃における等温ゲル化に伴うT2の経時変化も観測されな かった。

これらの結果は、棒状高分子の架橋には高分子同士の相互作用に加えてL体-D体相 互作用も寄与しているおり、後者はより弱いことを示している。 又、分子会合状態 は溶媒の性質に強く依存することが分かった。

Fig.2 Temperature dependent T_2 of BnOH for racemic complex and PBLG solutions.

- 429 -

温度可変固体¹⁹F MAS NMR を用いた PVDF 及び PVDF/PMMA ブレンドの結晶多形と分子運動性の解析

東工大院理工 〇小関佑、相見敬太郎、安藤慎治

Analysis of Crystal Morphology and Molecular Mobility of PVDF and PVDF/PMMA Blend using Variable Temperature Solid State ¹⁹F MAS NMR

Department of Organic and Polymeric Materials, Tokyo Institute of Technology

Yu Koseki, Keitaro Aimi, Shinji Ando

The crystal morphology and molecular mobility for PVDF homopolymer and the PVDF domain in PVDF/PMMA blends were analyzed using variable-temperature solid state ¹⁹F MAS NMR. According to the composition of blends, the changes in crystal structure of PVDF were monitored from the spectral shapes. As the PMMA content increases, the relaxation parameter $T_{1\rho}^{F}$ for the amorphous phase decrease, which corresponds to the increase in T_{g} . This indicates that the amorphous phase of PVDF in the blends is in the rubbery state above room temperature. As the temperature decreases, the line width of the amorphous phase was broadened, whereas those of crystalline phase were unchanged. This indicates that the amorphous phase with the wide distribution of conformation was gradually frozen at the time scale of NMR measurement. The molecular mobility of the amorphous phase in PVDF [100/0] and the blend [40/60] were also analyzed from the spectral shapes at elevated and lower temperatures.

[緒言] ポリフッ化ビニリデン(PVDF)は種々の結晶構造(α、β、γ型な ど)を有する半結晶性高分子であり、非晶性高分子であるポリメチルメ タクリレート(PMMA)と溶融状態で相溶することが知られている¹⁾。本 研究では温度可変固体¹⁹F MAS NMR 法を用いて、PVDF 及び PVDF/PMMA ブレンドのスペクトル線形及び緩和時間の測定を行い、 測定温度および混合比の変化による PVDF の結晶構造、結晶化度 および非晶部の分子運動性の変化を解析した。

[実験] 測定試料として、PVDF には α 型結晶を含むフィルム(呉羽化 学 KF850 の DMAc 溶液からスピンコート法により作製)及びβ型結晶 を含むフィルム(呉羽化学 KF-ピエゾフィルム)を用いた。また、 PVDF/PMMA ブレンドは、PVDF(KF850)と PMMA(Aldrich)の混合 比を変化させた DMAc 溶液(25wt%)を調製し、スピンコートしたフィル ムを 200℃で 5 分間溶融処理した後、室温で急冷して作製した。固体 ¹⁹F MAS NMR 測定は、Chemagnetics 社製 H-F 二重共鳴 CP/MAS プローブを用いて、¹H 共鳴周波数 300.4 MHz(日本電子社製 EX デ ータシステム)、¹⁹F 90°パルス幅 2.4 μ s、¹H デカップリングパルス幅 3.0 μ s、積算回数 32 回、MAS 回転数 16 kHz(低温測定では 15 kHz) の条件で行った。化学シフト基準は C₆F₆(-163.6 ppm)を外部基準に 用いた。

キーワード: PVDF、PVDF/PMMA ブレンド、¹⁹F NMR、結晶多形、緩和時間

こせき ゆう、あいみ けいたろう、あんどう しんじ

[結果と考察]

Fig.1(a)はスピンロック法により各試料の結晶部を強調して観測した 固体 ¹⁹F MAS スペクトルである。PVDF:PMMA=100:0 ([100/0])にお いてα結晶相(TG⁺TG⁻連鎖)に由来する信号(▲及び●)、非晶相(〇)、 異種結合部(head-to-head 及び tail-to-tail)に由来する信号(◇及び △)が観測された²⁾。一方、[60/40]においてβ結晶相(all-trans 連鎖) に由来する信号(a結晶と同じ位置●に観測される)と同じ位置に信号 が観測され、さらに-98 ppm 付近にα、βとは異なる結晶相の信号(▼) が観測された。しかし、[50/50]において▼と同じ位置に信号は観測さ れず、スペクトル線形は[100/0]と同様であった。これらより、[100/0]及 び[50/50]において結晶成分はα型を形成していることが示された。 [60/40]において観測された●及び▼を帰属するため、磁気遮蔽定数 計算を行ったところ、●よりも高磁場に現われる▼は all-trans と比較 してねじれた主鎖コンホメーションにより形成された結晶相であると考 えられる。Fig.1(b)は[20/80]のスペクトルであるが、結晶相に由来する 信号が観測されなかったことから、両者は相溶して非晶相を形成して いると考えられる。各試料における PMMA 分率に対する PVDF 非晶 部の緩和時間 T_{10} を Fig.2 に示す。PMMA 分率の増加による T_a の 上昇¹⁾、すなわち分子運動性の低下に伴って T₁₀ の減少が観測され た。これはブレンドにおいても PVDF 非晶部が室温以上でゴム状態に あることを示している。

Fig.3は[100/0]の温度可変(-40~20°C)¹⁹F MASスペクトルである。 測定温度の低下とともに PVDF 非晶部の信号強度の低下が見られ、 0°C以下においてスペクトル線形が大きく変化した。結晶部の線幅を 固定し、非晶部の線幅を変化させてピーク分離を行ったところ、各信 号強度比は温度によらずほぼ一定であった。 $T_g(-40°C)$ 付近において 非晶部の線幅は結晶部のそれよりも大きく広幅化することから、NMR のタイムスケールにおいて非晶部はコンホメーションに広い分布をもっ て凍結したと考えられる。

[参考文献]

1) T. Nishi and T. T. Wang Macromolecules 8(6), 909 (1975)

2) S. Ando, R. K. Harris and S. A. Reinsberg Magn. Reson. Chem., 40, 97 (2002)

Fig.2 The plots of $T_{1\rho}^{F}$ for the amorphous phase and weight fraction of PMMA in PVDF/ PMMA blends.

Fig.3 Temperature dependence of ¹⁹F MAS NMR spectra of PVDF. The amorphous components are shown by thin lines.

3 P 3 9

固体NMRによる選択標識GDP型G_i1αサブユニットの測定と解析

○大道弘明¹、戸所泰人¹、若松馨²、藤原敏道¹、阿久津秀雄¹ (¹大阪大学蛋白質研究所、²群馬大学工学部)

Solid-State NMR Studies on the Selectively Isotope Labeled $G_i 1 \alpha$ Subunit in the GDP-Bound form

Hiroaki Omichi¹, Yasuto Todokoro¹, Kaori Wakamatsu², Toshimichi Fujiwara¹, Hideo Akutsu¹ ^{1'}Institute for Protein Research, Osaka University, ² Gunma University

GTP-binding protein (G protein) G_i1 is a signal transduction protein. The α subunit has the active site for GTP hydrolysis. We have applied solid-state NMR techniques, CP-MAS, RFDR and REDOR, to animo acid-specific isotope labeled G_i1 α subunit. We have performed ³¹P-NMR, ¹³C —¹³C 2D correlation and REDOR experiments. We have analyzed the structure of GDP· α subunit complex in terms of conformation dependent chemical shifts. A ³¹P-NMR spectrum shows that GDP takes a unique structure. ¹³C—¹³C 2D correlation spectra indicate that the secondary structure of the complex is analogous to that in the crystal. A REDOR spectrum and its simulation suggest that the conformation around Val335 is not unique by helix.

序

細胞内情報伝達を受け持つ GTP 結合蛋白質 (G蛋白質) Gil の a サブユニットは、GTP 加水分解の触媒活性中心を持つ。スズメバチの毒の成分である 14 残基のペプチド、マスト パランXはC末端のA5と呼ばれるドメインに結合して、この蛋白質を活性化することが 知られており、この機構は受容体によるものと近いと考えられ興味がもたれている。その ための議論の土台となる立体構造についてはX線結晶解析によるものが報告されている¹⁾。 しかし結晶構造では重要な部分の構造の乱れにより情報が得られないなどの問題がある。 溶液NMRによる解析は分子量約4万であるため現状では解析に困難が伴う。

我々は局所的に原子レベルの情報を得ることが可能な高分解能固体NMRの手法を、ア ミノ酸選択的に安定同位体ラベルした GDP 型 G_i1αサブユニットの粉末試料に適用した。 得られた¹³C ケミカルシフトや線幅に基づいて、GDP、2 次構造、A5 ドメインの構造につ いていくつかの知見が得られたので報告する。

キーワード: Gilαサブユニット、 固体NMR、 RFDR、 REDOR

おおみちひろあき、とどころやすと、わかまつかおり、ふじわらとしみち、あくつひでお

-432 -

実験

アミノ酸選択的に安定同位体ラベルした試料の調製は大腸菌の大量発現系により行った。水の結晶化による構造の乱れを抑えるためにトレハロースを加え、液体窒素で冷凍した後、凍結乾燥することにより粉末試料を調製した。354 残基(His-tag を除く)中 19 残基 含まれる Ala の局所構造を観測する目的で¹³C,¹⁵N-Ala 標識試料を調製した。Ala は全体 にわたって存在するので蛋白質の 2 次構造の情報が得られると考えられる。Ala の残基内 CO-C^a相関と C^g-C^a相関を観測するために RFDR 法を用いた。さらに結合している GDP の情報を得るために³¹P-CPMAS スペクトルを測定した。測定に際しては Chemagnetics Infinity Plus (¹H 共鳴周波数 599.96MHz) 固体 NMR 装置、ジルコニウム製 3.2mm ϕ ロータ ーを用いた。

マストパラン結合部位である C 末端の A5 ドメインの局所構造を観測するために Val-¹³CO, Phe-¹⁵N 標識試料を調製した。アミノ酸配列で Val-Phe という配列は V335-F336 しか存在しないため 13 C $-^{15}$ Nの双極子相互作用を用いて V335 のカルボニル炭素のシグナ ルを選択的に観測した。この目的のために展開時間 1.6ms の REDOR 法を用いた。測定に 際しては Chemagnetics Infinity Plus (¹H 共鳴周波数 499.96MHz) 固体 NMR 装置、ジルコ ニウム製 ϕ 4mm ローターを用いた。

結果

¹³C,¹⁵N - Ala 標識試料の³¹P - CPMAS スペクトル

GDP 由来の³¹P - NMR スペクトルを Fig.1 に示す。GDP には α 、 β 位の二つの P が存在 するが、スペクトルもこれを反映して 2 本観測されている。蛋白質に結合したヌクレオチ ドの³¹P - NMR スペクトルについては、ATP 加水分解酵素 ATP-TF₁ β サブユニットに ATP が結合したスペクトルが報告されている²⁾。試料にトレハロースを加えずに凍結乾燥を行 うと水の結晶化により試料の構造が乱れ、固体 NMR 測定においても線幅が 7.5ppm 程度ま で広がる。今回のようにそれぞれ 2.2ppm、3.3ppm の線幅の 2 本のピークが確認できるシ グナルが得られたことは、安定剤として用いたトレハロースにより GDP の構造の乱れが抑 えられていることを示している。

Fig.1 ³¹P-NMR spectrum of GDP bound to $G_11 \alpha$ subunit

--- 433 ---

¹³C,¹⁵N - Ala 標識試料の¹³C-¹³C 化学シフト相関スペクトル

RFDR 法で得られた ¹³C - ¹³C 化学シフト相関スペクトルを Fig.2A に示す。Ala の CO, C^α, C^β間のクロスピークが観測された。さらに Fig.2B は CO - C^α相関を表すクロスピークの部分(囲んだ部分)を拡大したものであるが、これは α - リックス領域では低磁場に、 β シートでは高磁場にシフトする CO, C^αのケミカルシフトを反映したものとなっている。

蛋白質の2次構造をケミカルシフトを用いて解析すべく、量子化学的計算データーベー スに基づいてケミカルシフトを予測するプログラムSHIFTS³⁾を Protein Data Bank (PDB) に登録されている結晶構造 (1GDD) に適用して今回得られたスペクトルと比較した。19 個のうち原子座標が判明している 17 個が予測可能でありこれらをスペクトル上にプロッ トした。予測はスペクトルの傾向をよく反映しており、これらの2次構造は結晶構造と類 似していると考えられる。

Fig.2 ¹³C-¹³C 2D correlation spectra of G_i1 α subunit labeled with¹³C,¹⁵N-Ala

Val-¹³CO, Phe-¹⁵N 標識試料の REDOR スペクトル

C 末端 A 5 (329-350) 部位はX 線構造解析で α ヘリックスとされている。しかし一次構造による予測からはむしろ β シートをとるとされている⁴⁾。Val-¹³CO, Phe-¹⁵N 標識試料において溶液 NMRのHMQC測定を行えば V335の CO シグナルが観測されるはずであるが、シグナルが観測されなかった。これはこの部位が極めて遅い運動をしている可能性を示唆している。そこで我々は出来るだけ構造を保った粉末試料を調製し、固体 NMR で V335の CO シグナルを観測することを試みた。

このようにして測定されたのが Fig.3A の REDOR スペクトルである。S/N が4程度では あるがシグナルが観測されている。シグナルを見ると低磁場のピークと高磁場のピークの 重ねあわせとなっており、それぞれαヘリックス、βシートに対応する構造が残っている と考えられる。これはこの箇所がフレキシブルであることを支持していると考えられる。 このスペクトルを解析するために V335 がαヘリックス構造をとっているもの、V335 がβ シート構造をとっているものが混合しているとしてスペクトル強度、ケミカルシフト等を 計算して REDOR スペクトルのシュミレーションを行った。実測と良く合うように両構造 の比率を決めたものが Fig.3B である。これによると約 70%がαヘリックス、30%がβシ ート構造であることが示されている。現在さらに詳細な解析を進めている。

Fig.3 Observed and simulated REDOR spectra of Val-¹³CO, Phe-¹⁵N labeled G₁1 α subunit

まとめ

以上のように各スペクトルをケミカルシフト、線幅により解析した。その結果今回測定 した粉末試料の2次構造は結晶と類似したものであること、試料の固体状態での GDP 結合 部位周辺の構造はかなり均一であること、V335 は結晶構造とは異なりαヘリックス構造と βシート構造が混在していることを示した。このように大きい線幅が分解能に制限となる 固体 NMR であるが、逆に線幅やケミカルシフトでシグナルの線形を解析することにより 多くの情報を得ることが出来る。

参考文献 1. Mixon, M. et al. Science, 270, 954-960, 1995. 2. 宫坂美行 横浜国立大学工学 研究科修士論文, 2001. 3. Xu, X.-P. et al. J. Biomol. NMR, 21, 321-333, 2001. 4. Takeshi, T. et al. J. Biol. Chem, 273, 3247-3252, 1998.

高速回転下における IH 二量子遷移法によるポリアクリル酸の水素結合研究 (産総研高分子基盤セ、Institute Polymer Research Dresden)

 ○三好利一、U. Scheler
 ○三好利一、U. Scheler

Hydrogen-bonding Structure of Poly(acrylic acid) Characterized by Solid-State NMR

¹Research Center of Macromolecular Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo-Water-front, 2-41-6 Aomi, Kohto-ku, Tokyo, Japan,

and ²Institute Polymer Research Dresden, 01060, Dresden, Germany,

Toshikazu Miyoshi¹ and U. Scheler²

ABSTRACT: Solid-state NMR techniques are applied to investigate hydrogen-bonding structures in poly(acrylic acid) (PAA). ¹H high-speed MAS spectra detected two signals for carboxyl proton of PAA. The chemical shift values for high and low field signals are 10.0 ppm and 12.5 ppm respectively. Application of two dimensional double quantume (DQ) spectrum shows dipolar connectivity within the carboxyl protons at 12.5 ppm and no connectivity within those at 10 ppm. This result evidently demonstrates that the former and latter participate in hydrogen bonding and non-hydrogen bonding, respectively, in PAA. Furthermore, ¹H-¹³C connectivity in the functions form hydrogen bonding and no hydrogen-bonding states is investigated by ¹H-¹³C HETCORE. ¹H MAS and DQ spectra at various temperatures show structural change for hydrogen bonds around T_g .

<緒言> 高分子間に働く相互作用が高分子のマクロな物性に大きく関与している。そのため材料 設計をする上で高分子間の相互作用を精度高く評価することは重要な研究課題のひとつである。従 来、高分子間相互作用を計測する技術として、赤外、ラマン、固体¹³C NMR 法などが幅広く利用さ れてきた。これらの観測スペクトルはいずれも、分子間相互作用に応じて観測周波数が変化する。 本研究では高速 MAS 下で二量子(DQ)遷移法を用いることにより、高分子内部の水素結合とその熱 的特性について検討したので報告する。

<実験>¹H 実験には BRUKER AVANCE500 を用いた。二量子(DQ)遷移には BABA バルス系列 1 を使用した。試料回転速度は 33.33kHz である。¹H-¹³C 異種核相関実験には AVANCE300 を使用した。 試料回転速度は 13kHz である。 1 次元では FSLG バルスを使用し、 1 次元では TPPM でカップリン グを行った。温度補正には Pb(NO₃)₄を用いた。試料には平均分子量 M_w =5000 の poly(acrylic acid) を用いた。この試料のガラス転移温度は 366 K である。

<結果考察> 図1は PAA の(a)MAS 法と(b) DQ フィルターにより得られた¹H 温度可変スペクト ルである。MAS スペクトルではアリファティックとカルボキシルの¹H シグナルが分離して観測さ れた。カルボキシル¹H はダブレット構造を示した。温度上昇に伴い低磁場側(12.5ppm)の成分が高 磁場側に移動し、徐々に消失していくのがわかる。これは温度上昇に伴い水素結合構造が変化する ことを示唆する。アリファティックでは¹H-MAS 法と¹H DQ フィルターMAS 法により得られたス ペクトルでは、大きな線形変化は観測されなかった。一方、カルボキルでは、MAS のみと MAS+DQ

キーワード 「HMAS,二量子遷移、水素結合、高分子 著者ふりがな みよしとしかず ウルリッヒ シェーラー フィルター法より得られたスペクトルでは¹H線形が大きく異なる。325K で測定した DQ フィルタ ースペクトルでは低磁場側のシグナル強度が高磁場側のシグナル強度より大きいのがわかる。この 事実より、低磁場側のシグナルが強く双極子結合していることを示している。DQ フィルタースペ クトルでは温度上昇に伴い、カルボキシルプロトンの強度が急激に小さくなるのがわかる。これは 側鎖の運動性と水素結合に起因すると考えられる。

図 2(a)は BABA バル系列により得られた¹H DQ 遷移相関スペクトルを示す。この方法では¹H-¹H の空間結合様式を示している。同じ原子団内の結合はダイアゴナルピークとして観測され、異なる 原子団の結合はオフダイアゴナルピークとして観測される。スペクトルよりアリファティック領域 のシグナルは強いダイアゴナルピークを示している。一方、カルボキル領域では、12.5ppm のみダ イアゴナルシグナルを示している。DQ シグナルは距離の 6 乗に逆比例するため、*lexc*= 60µs では 0.35nm 以内で隣接する場合に DQ シグナルが観測される。²12.5ppm の¹H シグナルに起因するカル ボキシルグループが水素結合に関与していることを示唆する。カルボキルーアリファティック間の オフダイアゴナル強度が観測されている。一次元 DQ 遷移法により得られた 10.0ppm のシグナルは 異種原子団 ¹H-¹H 間のものであることを示している。この実験より 10.0ppm, 12.5ppm のシグナルを フリーと水素結合している COOH と帰属することができる。図 2(b)は二次元 DQ 遷移法により得ら

れたスペクトルのカルボキル領域の SSB パターンである。測 定は展開時間の時間発展を 1µs ずつ増加させて行った。現在、 シミュレーションプログラムを作製中である。実験と計算より 詳細な原子間距離を取得し、水素結合構造を議論する予定であ る。さらに、異種核相関実験をおこない¹H-¹³C 空間結合様式も 調べたのであわせて報告する。

Fig. 1. ¹H high speed MAS (a) and high speed MAS/DQ NMR spectra at various temperatures. The DQ spectra was obtained by excitation and re-conversion time of $60\mu s$ (2 rotor period), and evolution time of $30\mu s$ (1 rotor period).

<References>

- 1. W. Sommer, et al. J. Magn. Reson. A 1995, 118, 131.
- 2. Schnell, I., J. Am. Chem. Soc., 1998, 120, 11784.

Fig. 2. ¹H DQ 2D correlation NMR spectrum (a) and slice spectra (b) of ¹H DQ SSB NMR spectrum of PAA at 325 K. The excitation time and re-conversion time are $60\mu s$. The evolution time is incremented by 1 rotor period ($30\Box s$) in t_1 dimension (a) and $1\mu s$ (b). (b) The solid and dotted spectra show the slice data at 12.5 and 10 ppm, respectively.

¹H、²H、¹¹B および ²³Na NMR による二十面体型 ホウ素クラスター固体 Na₂[B₁₂H₁₂]・4H₂O の研究

(日大文理¹·筑波大化²) 〇鈴木浩一¹·松村正純¹·浅地哲夫¹·石丸臣一²·池田龍一²

¹H, ²H, ¹¹B and ²³Na NMR studies on an Icosahedral Boron Cluster Solid Na₂[B₁₂H₁₂] ·4H₂O

(Department of Chemistry, College of Humanities and Sciences, Nihon University; Department of Chemistry, University of Tsukuba, Tsukuba)

Koh-ichi Suzuki, Tadasumi Matsumura, Tetsuo Asaji, Shin'ichi Ishimaru and Ryuichi Ikeda

In this study, $Na_2[B_{12}H_{12}] \cdot 4H_2O$ and $Na_2[B_{12}H_{12}] \cdot 4D_2O$, which consist of icosahedral boron cluster ion $[B_{12}H_{12}]^{2}$ are synthesized and investigated by ¹H, ²H, ¹¹B and ²³Na solid state NMR. The 2nd order quadrupolar perturbed central lines are observed in ¹¹B and ²³Na MAS NMR measurements.

【序論】 原子が数個から数千個集合したマイクロクラスターは、その量子サイズ効果、 表面原子の割合が多いこと、さらに結晶では存在しない高い対称性を取り得ることなど から、孤立原子ともバルク固体とも異なる特異な性質を示す。そこで、12 個の原子で 形成され、二十面体型構造をとることで知られている、ホウ素のマイクロクラスターに着 目した。 最近 MgB2の超伝導性でも注目されているホウ素は、III 族で唯一の元素半 導体であり、また3中心の共有結合を作る興味深い元素である。この3中心共有結合 により形成される二十面体型のホウ素クラスターは、フラーレン C₆₀のような共有結合ク ラスターに分類でき、さらにそのアルカリ金属化合物では、超伝導性を示す A₃C₆₀(A: アルカリ金属)のような、機能物性の発現が期待される。本研究では、二十面体型ホ ウ素クラスターB₁₂のダングリングボンドに水素を付加させた[B₁₂H₁₂]²イオンを含む化 合物として、まず Na₂[B₁₂H₁₂]・4H₂O および Na₂[B₁₂H₁₂]・4D₂O を合成し、粉末 X 線回 折、示差熱分析 (DTA)、さらに¹H、²H、¹¹B および²³Na NMR 測定を行なった。

【実験】 合成は、文献[1]に基づいて行なった。 Na₂[B₁₂H₁₂]・4D₂O は Na₂[B₁₂H₁₂]・ 4H₂O を重水にて 3 回再結晶することにより得られた。 粉末 X 線回折には RIGAKU 製 RINT2100S、 DTA 測定には当研究室製 DTA 装置、 ¹H NMR には Bruker 社製

キーワード:ホウ素クラスター・固体 NMR・ナノ物性

すずきこういち・まつむらただすみ・あさぢてつお・いしまるしんいち・いけだりゅういち

SXP-100 NMR 分光器、²H、¹¹B および ²³Na NMR には Bruker 社製 MSL-300 NMR システムおよび Thamway 社製 PROT3100MR NMR 分光器を用いた。

【結果·考察】

Na₂[B₁₂H₁₂]・4H₂Oの粉末 X 線回折結 果および DTA 測定により求めた転移温 度は、文献[2]の値と良く一致し、目的 物が合成できたことが確かめられた。 室温における¹¹B および²³Na NMR ス ペクトルをそれぞれ図1および図2に示 す。¹¹B および²³Na MAS NMR スペク トルでは、それぞれ二次の摂動により構 造をもった中心線のみが観測された。 このことから、B および Na 核の周りの電 場勾配は大きいと考えられる。 Na₂[B₁₂H₁₂]・4H₂O および重水和物 $Na_{2}[B_{12}H_{12}] \cdot 4D_{2}O \mathcal{O}^{1}H NMR T_{1} \downarrow 2$ 成分となり、また Na2[B12H12]・4D2O の ²H NMR スペクトルに液体程度に先鋭 化した成分が検出されたことから、今回 測定した試料には付着水がついている ことが考えられる。 現在 ¹H および ²H NMR 測定のために付着水を取り除い た試料の再調製を行なっている。

【謝辞】本研究は、平成15年度日本板 硝子材料工学助成会研究助成、日本

図 2. Na₂[B₁₂H₁₂]・4H₂O の²³Na NMR スペクトル

大学ハイテク・リサーチ・センタープロジェクト、日本大学学術研究助成金(奨励研究) および日本大学文理学部個人研究費 B に基づいて行なわれたものであり、ここに感 謝の意を表する。

【文献】

[1] N. T. Kuznetsov and G. S. Klimchuk, Russ. J. Inorg. Chem., 16, 645 (1971).
[2] V. I. Ponomarev, et al, Sov. J. Coord. Chem., 17, 12 (1991).

- 439 -

HNbWO₆層状化合物にインターカレートされたn-アルキ ルアミンの固体¹³CNMRによる構造及び分子運動解明 (神奈川大工) O高山俊夫、松永 優

The structural and molecular dynamics elucidations of intercalated n-alkylamines into $\rm HNbWO_6$ layer using solid state $^{13}\rm CNMR$

OT. Takayama, M.Matunaga (Department of Chemistry, Kanagawa University)

Layered oxides built up of transition metal-oxygen polyhedra showing ion exchange and intercalation behaviour are of current interest. In LiNbWO₆ the interlayer alkali ion can be exchanged with proton to give rise to new protonated oxide that exhibits Brønsted acidity. The protonated oxide intercalates n-alkylamines. The interlayer distance of n-alkylamine intercalation compounds against the number of carbon atoms (n) in the alkylchain shows that the interlayer distance increases linearly between n=6 and 18. In order to elucidate the structure and molecular dynamics of intercalated n-alkylamines into HNbWO₆ layer on a microscopic level, we performed ¹³CNMR measurements with the solid state. In the ¹³ CNMR spectra intra-CH₂ peaks of the intercalated n-alkylamines into HNbWO₆ layer were observed at $\delta = 33.5$. It is meant that the amines take the *trans*-former structure (rigidity) on this. The relaxation times of n=12 and 18 were (21.1, 3.9) and (20.1, 3.9) s, respectively. It was shown that two components (rigid and flexible phases) exist on. That is to say, one amine is strongly held in a hole and the other not so.

1. はじめに

空孔や細孔、層空間などの「空間」を有する化合物が、特殊な機能を期待できる材料として注目を集めている。層状化合物の層間は、二次元的に制限された空間であるため、ゲストの配向はホストの層状化合物によって制御することが可能であり、有機化合物の大きさや性質によって取り込まれ方が異なることから、分離や選択的化学反応への応用が可能である。このように、これらに関する研究は合成はもとより構造評価から触媒・触媒担体・吸着剤などの応用展開が最近急激に行われている。

ルチル型層状化合物HNbWO₆はプレステッド酸性を示しアルキルアミンなどの塩 基をインターカレートすることが知られている。しかし、インターカレートされたア ルキルアミンが層内でどのような配向をし、どのような分子運動をしているのかはい まだ明確になっていない。そこで我々はインターカレートされた各種n·アルキルアミン(n·($C_mH_{2m+1}NH_2$)、m=6,12,18)の固体¹³C-NMRスペクトルと¹³C緩和時間を測定 することによってその分子配向・分子運動を明らかにする。

2. 実験

n·(C_mH_{2m+1}NH₂)_{*}HNbWO₆·yH₂O (m=6,12,18) は次の方法で合成した。炭酸リ チウム:五酸化ニニオブ:三酸化タングステン=1:1:2のモル比で混合し、電気炉 で800℃、24時間加熱することでLiNbWO₆を焼成し、LiNbWO₆のLi部を2M硝 酸中でHとしHNbWO₆に変換し、HNbWO₆と各種アルキルアミンをn·ヘキサン 中に入れ、24時間撹拌加熱還流することによりHNbWO₆へ各種アミンをインター カレートした。

カレートした。 固体 ¹³CCP/MASNMR 測定には JEOL-ECA270WB(MAS=6,18kHz)を用いた。¹³C 緩和時間(T₁CP)測定は Torchia 法にて行った。化学シフト基準は TMS である。 3. 結果及び考察

n-(C,H_{2m},NH₂)、HNbWO₆·yH₂O (m=6, 12, 18)の層内各種アルキルアミンの内部メチレン (CH₂)基の化学シフトは δ =33.5 であった(Fig. 1)。この値は層内各種アルキルアミンの 分子が剛直な結晶状態(all-*trans*)として存在していることを示す。層内のアミン類の 分子運動を議論するために¹³C緩和時間を測定した。Table 1 にインターカレートさ れた n-アルキルアミンと比較のためのアルキレンジアミンの T₁CP 値を示す。

キーワード:HNbWO。層状化合物、インターカレートされたn-アルキルアミン、固体¹³CNMR、¹³CNMR緩和時間、分子配向・分子運動

○たかやまとしお、まつながまさる

m=6, m=12, m=18の内部 CH。基の T, CP 値はそれぞれ 0.65, (3.9, 21.1), (3.9, 20.1)s であった。m=6の比較的小さな値はアルキル基が柔軟な結晶状態を取っているのに対して、アルキルが長くなった m=12, m=18 では二つの成分に対応する T, CP 値を示した。これは層内に強く束縛されたメチレン部分(緩和時間が長い)と層内の束縛から比較的自由になっているメチレン部分(緩和時間が短い)が存在することを意味している。すなわち HNbWO6のブレステッド酸点と n-アルキルアミンの N の非共有電子対とが強く結合して、層壁に埋もれるように包摂された n-アルキルアミンと比較的束縛が少なく包摂された n-アルキルアミンと比較的束縛が少なく包括された n-アルキルアミンと比較的束縛が少なく包括された n-アルキルアミンと比較的束縛が少なく包括された n-アルキルアミンの二種類が存在していることを示す(Fig.2)。また両端にジアミン基を有する H_NC, H_2, NH2 の T, CP は 110.7s と大きく、これは二ヶ所のアンカーで固定されたように包摂されていることを意味している。

Fig.1 ¹³CNMR spectrum of intercalated n·C₁₈H₃₇NH₂ (/ppm)

Fig.2 C ₁₈ H ₃₇ NH ₂ /HNb)W	O_6
--	----	-------

arkyleneonaliine/mind/w 06						
H2NC12H24NH2/HNbWO6	H ₂ N	CH ₂	CH ₂	(CH ₂) ₃	CH ₂ /2	
T ₁ :s		18.9	60.9	110.7	105.9	
C ₆ H ₁₃ NH ₂ /HNbWO ₆	H ₂ N	CH ₂	CH ₂	(CH ₂) ₂	CH ₂	CH ₃
(1成分のみ)T ₁ :s		0.55	0.84	0.65	0.93	1.76
C12H25NH2/HNbWO6	H ₂ N	CH ₂	(CH ₂) ₉	CH ₂	CH ₂	
(成分1)T ₁ :s			3.9	2.8	2.9	
C12H25NH2/HNbWO6	H ₂ N	CH ₂	(CH ₂) ₉	CH ₂	CH ₂	
(成分2)T ₁ :s			21.1			
C ₁₈ H ₃₇ NH ₂ /HNbWO ₆	H ₂ N	CH ₂	(CH ₂) ₁₅	CH ₂	CH ₂	
(成分1)T ₁ :s		-	3.9	4.7	2.9	
C18H37NH2/HNbWO6	H ₂ N	CH ₂	(CH ₂) ₁₅	CH ₂	CH ₂	
(成分2)T ₁ :s			20.1	12.1		

Table 1. ¹³C-relaxation times(T₁:s) of n-alkylamines and alkylenediamine/HNbWO₆

²⁹Si CP/MAS NMR による無機-有機ハイブリッドゲルの 均質性の評価 (産総研物質プロセス¹・早大理工²)

〇小森佳 β^1 、中島 β^2 、菅原義之²、林 繁信¹

Silicon-29 CP/MAS NMR Study of Inorganic-Organic Hybrids: Homogeneity of Sol-Gel Derived Hybrid Gels (Institute for Materials & Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST)¹ and Department of Applied Chemistry, Waseda University²) Yoshihiko KOMORI¹, Hiroshi NAKASHIMA², Yoshiyuki SUGAHARA² and Shigenobu HAYASHI¹

The structures of sol-gel derived hybrid gels prepared by co-hydrolysis of tetraethoxysilane (TEOS)-organotrialkoxysilane (RTES, RSi(OC₂H₅)₃, R = CH₃, C₅H₁₁, C₈H₁₇ and C₆H₅) mixtures (TEOS: RTES: CH₃CH₂OH: H₂O: HNO₃ = 0.5: 0.5: 10: x: 0.3; x = 2, 5, 10 and 20) were characterized based on signal intensities of ²⁹Si CP/MAS NMR as a function of the contact time. The contact time dependencies of the signals for Q⁴ (Si(OSi)₄) units were successfully simulated by assuming distributed cross relaxation times (T_{SiH}) and an intrinsic ¹H spin-lattice relaxation time in the rotating frame ($T_{1\rho}^{H}$). The distribution ranges of T_{SiH} for the TEOS–RTES gels broadened as the water content increased, suggesting that the Q⁴ units tended to be separated from the T units and that the local concentration of ¹H spins around the Q⁴ unit tended to decrease.

1. 緒言

近年、無機-有機複合材料に対する関心が高まり、有機基が直接結合したオルガノアルコキシシランを用いたゾル-ゲル法により得られる有機修飾セラミックスが注目を集めている。この材料の物性は最終的な生成物の構造に依存するため、望ましい物性・機能を有する材料設計を行う上でゲルの構造を解明することが重要な課題である。以前、我々はテトラエトキシシラン(Si(OCH₂CH₃)₄; TEOS)と三官能性オルガノアルコキシシラン(RSi(OCH₂CH₃)₅, R = CH₃, C₅H₁, C₆H₅; RTES)の共加水分解・重縮合反応によって得られたゲルの構造を固体²⁹Si CP/MAS NMR を用いて検討した。¹⁾ 4種類の Si サイト (T², RSi(OSi)₂(OH); T³, (RSi(OSi)₅; Q³, Si(OSi)₃(OH); Q⁴, Si(OSi)₄)が観察され、各シグナルに関して²⁹Si シグナル強度(M(t))のコンタクトタイム(t)依存性を測定し、式1を用いて回転系での¹Hスピンー格子緩和時間($T_{1\rho}$ ^H)と²⁹Si -¹Hスピン間の交差緩和時間(T_{Sit})を算出した。

$$M(t) = M_{cp} \left[\exp\left(-\frac{t}{T_{l\rho}}\right) - \exp\left(-\frac{t}{T_{SiH}}\right) \right] \left(1 - \frac{T_{SiH}}{T_{l\rho}}\right)^{-1}$$
(1)

その結果、 Q^4 ユニットの $T_{1\rho}^{H}$ は T^2 , T^3 , Q^3 ユニットの $T_{1\rho}^{H}$ と比較して見かけ上、大きな値が得られた。 Q^4 ユニット内には¹H スピンがないため、この現象は T_{SH} に分布があり、 T_{SH} の

固体NMR、CP/MAS、緩和時間、無機有機ハイブリッド、ゾルーゲル反応 こもりよしひこ、なかしまひろし、すがはらよしゆき、はやししげのぶ

— 442 —

2. 実験方法

ゲルの作製は TEOS と RTES (例: C₃H₁₁Si(OCH₂CH₃)₃, C5TES)を用いた。TEOS: RTES: CH₃CH₂OH: H₂O: HNO₃ を 0.5: 0.5: 10: *x*: 0.3 の割合で混合し、添加水の量 *x* は 2, 5, 10, 20 と 変化させた。混合後、60 ℃ で数日間エージングし、真空乾燥したキセロゲルを試料とした。 固体²⁹Si CP/MAS NMR 測定はBruker ASX400 を用い、共鳴周波数 79.5 MHz、回転数 4.5 kHz、 繰り返し時間 5 s で行った。またコンタクトタイムは 0.1 から 50 ms に変化させて測定した。

3. 結果·考察

式1中の*T*_{sit}に分布を導入した式2を用いてQ⁴シグナル強度のコンタクトタイム依存性の シミュレーションを行った。また分布関数*P*(*T*_{sit})はもっとも単純な線形のものを用いた。

$$M(t) = C \int \left\{ P(T_{\text{siH}}) \cdot \left[\exp\left(-\frac{t}{T_{1\rho}}\right) - \exp\left(-\frac{t}{T_{\text{siH}}}\right) \right] \cdot \left(1 - \frac{T_{\text{siH}}}{T_{1\rho}}\right)^{-1} \right\} dT_{\text{siH}}$$
(2)

$$P(T_{\rm SiH}) = C'(100 - q \cdot T_{\rm SiH}) \qquad (T_{\rm th} < T_{\rm SiH} < \frac{100}{q})$$
(3)

ここで C, C'は定数、qは分布関数の特性を示す定数、 T_{th} は T_{SiH} の最小値を示すしきい値である。 $T_{1\rho}^{H}$ は T^2 、 T^3 、 Q^3 ユニットにおいて式1で求めた値を使用した。式2、3を用いて実験

値をフィッティングした一例を図1に示 す。TEOS-C5TES の系では x=2 において q=7、 T_{SH} の分布は $3\sim14$ ms, x=20 では q=4、 T_{SH} の分布は $3\sim25$ ms が得られ、添 加した水の量の増大に伴い分布が広がる 傾向にあることを示した。分布の広がり は 29 Si-¹H スピン間距離の離れている成 分の増加を示しており、Q⁴ユニットの凝 集を意味する。この他のゲルのシミュレ ーション結果ついては当日報告する。

4. 参考文献

 1) 菅原義之、中島寛、林繁信、黒田一幸, 第 36 回NMR討論会講演要旨集, 395 (1997).

Fast Multi-Dimensional NMR Spectroscopy

(Varian Ltd., and Jesus College, Cambridge University)

OEriks Kupce^a and Ray Freeman^b

Considerable sensitivity gains provided by cryogenic probes coupled with availability of increasingly high magnetic field strength open new possibilities for development of fast methods for data acquisition in bio-molecular NMR. Such methods can speed up multidimensional NMR spectroscopy by up to three orders of magnitude. We shall discuss two new fast NMR methods - multidimensional Hadamard NMR spectroscopy and fast 3D NMR using projection-reconstruction method.

First we demonstrate the feasibility of direct frequency-domain excitation with a new approach that employs an extensive array of soft radiofrequency pulses, and shows how it can offer certain practical advantages over the traditional Fourier transform method. The key is the introduction of an encoding scheme based on Hadamard matrices, providing a clean separation of signals from the different irradiation channels. For one-dimensional spectra the Hadamard scheme allows a great deal of flexibility in choosing which regions of the spectrum are excited and which are not, suggesting, for example, a new method for water suppression. By eliminating the need for step-by-step exploration of the evolution dimensions in multidimensional spectroscopy, the Hadamard technique can speed up data acquisition by orders of magnitude, paving the way for high-dimensional experiments in a reasonably short time. Practical examples of two- and three-dimensional Hadamard spectroscopy are presented for some small molecules and the proteins agitoxin and ubiquitin [1-5].

 $\neq - \nabla - F$: Hadamard NMR spectroscopy, Projection-reconstruction method

えりっくす くぶちぇ、れい ふりーまん

- 444 --

The projection-reconstruction method (PR NMR) is an alternative scheme for fast multidimensional spectroscopy and is related to methods employed in X-ray tomography. In the second part of this work we describe the PR NMR appoach for fast acquisition of threedimensional NMR spectra by reconstruction from a set of plane projections. In principle the internal structure of any three-dimensional object can be computed by measuring the X-ray absorption in several different directions. In an analogous manner, a three-dimensional NMR spectrum can be reconstructed from projections of the absorption intensity onto planes inclined at different angles (see Fig. 1). In contrast to the continuous nature of a physiological sample, NMR spectra are discrete and usually well-resolved, presenting a much more favorable case for reconstruction. Only a very small number of different projections suffice to recreate the entire three-dimensional spectrum, speeding up data acquisition by an order of magnitude [5,6].

Fig. 1. Strip plot of 3D HNCO spectrum of 1mM ubiquitin recorded at various tilt angles.

References.

[1] Kupce, E. and Freeman, R., J. Magn. Reson. 162, 158-165 (2003).

- [2] Kupce, E. and Freeman, R., J. Magn. Reson. 162, 300-310 (2003).
- [3] Kupce, E. and Freeman, R., J. Magn. Reson. 163, 56-63 (2003).
- [4] Kupce, E. and Freeman, R., J. Biomol. NMR, 25, 349–354 (2003).
- [5] Kupce, E. and Freeman, R., J. Biomol. NMR, 27, 101-113, (2003).
- [6] Kupce, E. and Freeman, R., J. Biomol. NMR, in press.

- 445 -

クライオジェニックプローブによる微量化合物の構造解析

(㈱)三菱化学科学技術研究センター 横浜分析センター) 〇櫻井愛子,松原康史

¹H-¹³C HMBC Spectrum for 3 Micrograms of 2-Acetylphenothiazine Using Cryogenic NMR Probe

Mitsubishi Chemical Group Science And Technology Research Center, Inc. Analytical Services Division, Yokohama Laboratory Aiko Sakurai and Koshi Matsubara

The ¹H-¹³C HMBC spectrum containing all the expected cross peaks was acquired for 3 micrograms of 2-acetylphenothiazine using a Bruker Cryoprobe and 3mm Shigemi micro sample tube. The spectrum was acquired in 43 hours at 298 K in the field of 11.7 T. To optimize the experimental conditions, we explored several sampling methods and compared the signal to noise ratio of ¹H NMR spectra using cryogenic NMR probe and micro sample tubes.

はじめに

低分子量の有機化合物の構造を決定する場合,¹H-¹³C HMBC スペクトルを用いて部分構造 をつなぎ分子構造を構築する方法は極めて有効である.しかし,例えば医薬品の代謝物や不 純物,あるいは天然物など試料が微量である場合には,HMBC で解析に十分な相関シグナル が検出されないことが多々ある.そこで,高感度なクライオジェニックプローブと種々のミ クロ試料管を用いることにより,いかに微量の試料で NMR スペクトルが測定できるかを実 験的に確認した.

実験・結果

装置はブルカー社製 Avance DRX500 分光計,プローブはブルカー社製 ¹H {¹³C / ¹⁵N } クラ イオプローブを用いた.測定温度は 25℃である.試料量を一定にして種々のミクロ試料管で ¹H NMR スペクトルを測定し,S/N 比を比較した. 2-Acetylphenothiazine 3.0µg (分子量 241,12.4 nmol) を重 DMSO に溶解し,外径 5mm または 3mm の NMR 試料管およびシゲ ミ製対称形ミクロ試料管を用いて測定した ¹H NMR スペクトルを Fig. 1 に示す.7.4ppm の ダブレットシグナルの S/N 比を比較した結果,3mm シゲミ管を用いた場合に最も S/N 比が 高く,通常の 5mm 試料管と比較して2倍,5mm シゲミ管と比較しても2割の改善がみられ た.3mm シゲミ管を用いて43 時間で測定した試料 3 µg の HMBC スペクトルの部分拡大 図を Fig. 2 に示す.この領域に期待される 16 個の相関シグナルが全て観測された.クライ オジェニックプローブとミクロ試料管を用いれば,試料量 10 µg 以下の微量化合物でも HMBC で構造が解析できる可能性がある.

クライオジェニックプローブ、微量化合物

さくらいあいこ,まつばらこうし

Figure 1. ¹H NMR spectra of 3 μ g of 2-acetylphenothiazine in DMSO- d_6 with a) 3mm Shigemi tube (90 μ L), b) 3mm tube (150 μ L), c) 5mm Shigemi tube (250 μ L), and d) 5mm tube (450 μ L).

Figure 2. Expansion from the ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC spectrum for 3 µg of 2-acetylphenothiazine in 90 µL DMSO- d_6 with 3mm Shigemi tube. The total experimental time was 43 h.
3 P46

固体 NMR を用いたスペルミジン・ATP 複合体の立体配座回析 (阪大院理) 〇相根 岳志、出村 哲夫、丸吉 京介、松森 信明 村田 道雄

Conformational study of spermidine analogues upon complexation with ATP using Solid State NMR Method, REDOR

Graduate School of Science, Osaka University OTakeshi Sagane, Tetsuo Demura, Keisuke Maruyoshi, Nobuaki Matsumori and Michio Murata

Polyamines putrescine, spermidine and spermine are known to form a complex with anionic biomolecules (e.g. DNA, RNA and ATP), hence presumably bearing multiple functions in living organisms. However the precise mode of action for these polyamines are still unknown. For the conformational analysis of spermidine-ATP complex, $[^{13}C, ^{15}N]$ double labeled spermidine was synthesized and subjected to SSNMR method, $^{13}C\{^{15}N\}$ REDOR. The results indicated that the C₇-C₈-C₉-N₁₀ part of spermidine tend to take the bent conformation compared with the N₆-C₇-C₈-C₉ part in the ATP complex.

序 生体内における塩基性物質であるポリアミン類は、核酸やタンパク質などの陽イオン性高分子物 質と相互作用することによって、リン酸化の促進や細胞増殖促進など多岐にわたる生理活性を担ってい る ¹⁾。しかし、これらの生理活性は比較的高濃度において生体分子との弱い相互作用を介して発現され るために、その重要性にも関わらず活性発現機構の分子基盤の解明は大きく遅れている ²⁾。そこで我々 は、ポリアミン類の分子複合体の構造を解明するため、そのモデルケースとして X 線構造の得られていな いスペルミジン(SPD)・ATP 複合体(Fig.1)に着目し、複合体形成時におけるスペルミジンの立体配座変 化の解析を固体 NMR を用い解明を試みることとした。

実験 スペルミジンの3結合離れ た位置を特異的に¹³C,¹⁵N で標識 し、これらの核間距離によって ATP との複合体形成時におけるス ペルミジンの立体配座の解析を試 みた。6,9 位、および7,10 位を標 識化した SPD 誘導体(Fig.21,2)を 同位体天然存在比の SPD で5 倍に 希釈して SPD ATP 複合体を調製 し凍結乾燥によって水を除いた 後、¹³C¹⁵N} REDOR を適応し、

キーワード : 固体 NMR、REDOR、立体配座解析、スペルミジン、ATP さがね たけし、でむら てつお、まるよし けいすけ、まつもり のぶあき、むらた みちお 核間距離を求めた(Fig.3)。また、既知の結晶であるスペルミジンリン酸塩 3 水和物(SPD リン酸塩) についても、どうようにして調製し、同じく¹³C {¹⁵N} REDOR を測定した³¹

Fig.2 Labeled SPD analogues

結果と考察

測定結果を Fig.3 に示す。結晶構 造の明らかな SPD リン酸塩の REDOR を測定したところ、 13C-15N間の距離はX線回析から 求められた値より顕著に大きな 値を示した。これは、13C-15Nの 近傍に高濃度で存在するリン原 子による影響であるとも考えら れる。しかし、このような系の詳 細な解析例が乏しく、その他の影 響も含めて現在検討中である。実 際の原子間距離については、³¹P の影響を含めて補正する必要が あると考えられる。このように ATP との複合体形成時における SPD の立体配座について、原子 間距離を直接求めることができ なかったので、各試料間の相対的

Fig.3 Normalized dipolar dephased signal intensities with best fit theoritical Curves ¹³C{¹⁵N} REDOR with xy4, MAS 3.5 kHz. [6,9]labeled SPD-ATP(●), [7,10]labeled SPD-ATP(■), [6,9]labeled SPD phosphate trihydride(O), [7,10]labeled SPD phosphate trihydride(□). *Recalibration is necessary for these REDOR curves.

な¹³C^{·15}N 間距離の検討を行うこととした。SPD リン酸塩においては X 線解析によってすべての SPD の結合が anti 配座をとっていることが分かっており、これに比べて SPD·ATP 複合体におい ては、顕著に¹³C^{·15}N 間の距離が短縮している。また分子中央を標識した 1 より分子末端を標識 した 2 がより強く減衰している。これらは、溶液における解析結果と同様であり、SPD が ATP との複合体を形成することによって屈曲した配座の割合が増加したことを示唆している。しかし、 リン原子の位置を考慮する必要があり、現在検討中である。

参考文献

1) Johnson, L. R.; McCormack, S. A, J. Physiol. Pharmacol., 2001, 52, 327-349.

Watanabe, S.; Kusama Eguchi, K.; Kobayashi, H.; Igarashi, K. J. Biol. Chem. 1991, 266, 20803 20809.
 Huse, Yukiko; Iitaka, Yoichi, Acta. Cryst., 1969, B25, 498 509.

キーワード索引

著者索引

参加者名簿(予約者)

キーワード索引		5'ーアミノウリジン	3P3	ENTH	2
		5 員環	3P35	ethylene oxide	2
(数字・アルファベット)		7回膜貫通型蛋白質	1P8	exocytosis	3
¹ H- ³¹ P 交差分極	3P32	90度パルス幅	1P2	FixJ	2
Hスピン拡散	3P32	920MHz	3P1	flagelliform silk	3
Hスピン拡散	2P34	Ada	2P17	fMRI	2
」H スペクトル	2P28	Arabidopsis thaliana	2P10	four-helical up-and-down	
Hパルス磁場勾配 NMR 法	3P23	ATP	1P16	bundle fold	2
H 間距離測定	2P34	automatic analysis	2P27	GABARAP	3
H 脱分極	3P32	BETA-ARM	3P8	Gel-phase NMR	2
¹²⁹ Xe	1L6	bicelle	3P6	Gil α サブユニット	3
¹²⁹ Xe	1P45	Blue-shifting	3P22	GPCR	1
¹²⁹ Xe NMR	2P38	brassinosteroid 生合成阻害剤	1P21	growth arrest specific 2	1
¹³ C CP/MAS	1P34	Broadband recoupling	3P33	HETCOR	1
¹³ C NMR	2P22	capping 構造	2P16	high magnetic field	3
¹³ C NMR	3P25	CAST/CNMR	3P20	HNbWO6層状化合物	. 3
¹³ CNMR緩和時間	3P42	CCQM	1P47	HR-HMBC 法	3
¹³ C スペクトル	2P28	C-F 双極子結合定数	1P21	HR-J-resolved HMBC 法	3
¹³ C 化学シフトテンソル	3L6	CHO	3P22	HSQC	2
¹³ C 標識アミノ酸	2P34	Channel Cavity	2P25	HSQC	1
¹⁵ N CP/MAS	1P34	CHO 相互作用	1P17	HTH モチーフ	2
¹⁹ F	3P35	CHドメイン	3P7	HTH モチーフ	2
¹⁹ F CP/MAS NMR	1P32	COP9 signalosome	2P14	INADEQUATE	1
¹⁹ F NMR	1P12	CP	1P27	Indirect spin-spin	
¹⁹ F NMR	3P38	CP/MAS	1P30	coupling	1
³¹ P NMR	2P29	CP/MAS	3P43	InP	1
³¹ P NMR	1P30	CP/MAS	1P38	Intermolecular multiple quant	um
31Pスペクトル	2P28	CP ダイナミクス	1P32	coherence	2
in vivo	2P29	CRAZED sequence	2P47	J-resolved HMBC 法	3
nfeD	2P15	cryogenic probes	3P44	K・チャネル阻害ペプチド	2
¹³ C -CP/MAS	3P34	CT-COSY	3P27	KAI	2
¹³ C NMR	1P17	CYANA	2P6	Lamin	2
¹³ C NMR	2P46	CYANA	2P10	LC-NMR	1
¹³ C NMR 緩和	2P37	CYANA	2P27	Lee-Goldburg	1
MN	1P26	DARR	2P33	MAP-LC3	3
¹⁵ N-CPMAS	2P35	decoupling	1P25	MARK	2
¹⁷ O NMR	1P17	DNA 結合タンパク質	2P35	MAS	1
¹⁷ O NMR	1L12	DNA 結合ドメイン	2P18	MAS	2
170 ラベルポリマー	1L12	DNA 結合ドメイン	1P13	MAS	3
'Η	3P40	DNA 結合ドメイン	3P5	MAS-J-HMQC	1
'H MAS NMR	1P33	DNA 結合ドメイン	3P16	mastoparan	3
¹ H NMR	2P46	DPFGSE-NOESY/ROESY	3P2	MHC クラス I タンパク質	3
21.6T	3P1	DPFGSE-TOCSY	3P2	MIDI	2
4 重鎖	1P15	DQF	2P4	MQMAS	1
4 重鎖構造	3L3	DTI	3P29	MQMAS	1

2P10 2P22 3P15 2P12 3L7 2P32

2P13 3P10 2P3 3P39 1P8 1P7 1P41 3P44 3P42 3P21 3P21 2P3 1P8 2P18 2P14 1P41

1P30 1P30

2P47 3P21 2P19 2P8 2P6 1P47 1L4 3P10 2P8 1P25 2P34 3P40 1P41 3P6 3P17 2P32 1P36 1P38

— 451 —

MQMAS	1L7	REDOR	1P40	安定同位体標識	1P15
MRI	3L12	REDOR	2P42	安定同位体標識	1P18
MRI	3P29	REDOR	3P46	安定同位体標識	3L10
MRI	3P30	RFDR	3P39	アンフォテリシン B	3L.10
MRI	1P43	RFDR	2P40	イオン交換型ゼオライト	1P35
MR マイクロスコープ	3L13	RNA アプタマー	1P15	異常な化学シフト	1P17
Musashi	1P10	RNA 結合蛋白質	1P10	イソペプチド結合	3P13
NADPH オキシダーゼ	1P6	S/N	1L3	遺伝子発現	3L12
Nation 膜	2P26	SAIL	3L4	異方性	1P11
NikA	3L2	SAIL	1P9	異方性	3P29
NMR	3L1	SAIL	2P9	イメージング	3P28
NMR	1P8	SH3	3P9	インターカレートされた	
NMR	2P17	SI 単位系	1P47	n-アルキルアミン	3P42
NMR	3P17	solid-state NMR	1P34	永久磁石	1P43
NMR	3L5	Sp1	3P16	永久磁石磁気回路	1P42
NMR	2P27	SPI	2P30	液晶	1L12
NMR イメージ	2P30	SPT	3P2	液晶	3P25
NMR イメージング	2P29	SQF	2P4	液晶性高分子	1P20
NMR イメージング法	2P25	T1CP	1P34	エタン	1P22
NOESY	3P1	T1の計測	2P31	エナンチオマー	1P21
NQR	1P46	T2*	3P30	エラスチン	3L7
Nutation 実験	1P2	T2の計測	2P31	延伸	1L10
n-パラフィン	1P29	THREE-HELIX BUNDLE	3P8	遠距離情報	2L1
N 末端ヘリックス	3P10	transgelin	3P7	オイルワックスゲル	3P26
OMAS	1P25	TraR	2P18	オーバートーン	1P26
p47phox	3P9	triple helix bandle	2P16	温度変化	1L2
PAS domain	2P7	TRNOE	3P19	音楽脳機能	2P32
PB1 ドメイン	1P6	TROSY	3L2		
PCIドメイン	2P14	Tryptophan	2P35	(か行)	
PC モチーフ	1P6	ubiquitin-fold	3P12	カイコ	3P5
PH0471	2P15	UBL	2P11	解析ツール	2P6
Poly(ε-L-lysine)	1P34	UIM	2P11	回転相	1P29
propylene oxide	2P22	VACP	1P27	海綿骨体積率(TMVF)	3P31
protein	2P27	XiX	2P33	界面活性剤	2P22
Protein structure	2P10	yeast	2P24	開発	2P1
PVA/PAA	1L10			外部複基準法	3P22
PVAc	2P38	(あ行)		化学シフト	1L1
PVDF	3P38	亜鉛フィンガー	3P16	化学シフト	1P35
PVDF/PMMA ブレンド	3P38	亜鉛結合タンパク質	1P7	化学シフト異方性	1P21
Pyrococcus horikoshii	2P15	圧力依存性	1P35	化学シフト予測	3P20
RecA	2P35	アミノ酸選択的標識	2P5	拡散 🕔	3P23
recoupling	2P33	アラビドプシス cDNA	3L11	拡散	1P22
recoupling	1P25	アラミド	2P23	拡散	3P29
REDOR	3L10	安定性	3L9	拡散係数	1P20
REDOR	3P39	安定同位体ラベル	1P28	拡散係数	1P29

核スピン偏極移行	1L5	固体 ¹³ CNMR	3P42	構造プロテオミクス	3P8
核間距離	1P32	固体NMR	3P24	構造プロテオミクス	2P16
核酸結合タンパク質	3L3	固体 NMR	1P24	構造解析	2L2
嵩高いケトン	1P17	固体 NMR	1P25	構造解析	2P11
活性酸素	3P9	固体 NMR	1P27	構造解析	3P11
カードハウス構造	3P26	固体NMR	3P33	構造解析	2P7
ガラス	1P38	固体 NMR	2P34	構造解析	2P22
ガラス転移温度	2P36	固体NMR	3L8	構造解析	1P26
緩和	1P46	固体NMR	2P39	構造解析	1P28
緩和時間	3P3	固体 NMR	1P28	構造機能相関	2L2
緩和時間	2P39	固体NMR	3P39	高圧 ¹²⁹ XeNMR	1P35
緩和時間	2P36	固体 NMR	2P40	高圧 NMR	2L2
緩和時間	3P34	固体 NMR	3P34	高温・高圧	1P3
緩和時間	3P37	固体NMR	2P35	高温高圧	1P5
緩和時間	3P38	固体 NMR	2P41	高温超伝導	2P44
緩和時間	3P43	固体 NMR	1L9	高感度プローブ	1P44
緩和時間	1P39	固体 NMR	3P41	高感度化	1P38
機能性 RNA	1P15	固体NMR	3P43	高感度化	1L7
機能性核酸	3L3	固体 NMR	1P40	高感度化	1P45
キチン	1P41	固体 NMR	1P37	高効率化	1L6
キラル液晶	1P21	固体 NMR	2P43	高磁場	1P44
吸水	2P30	固体NMR	1L7	高磁場 MRI	2P28
吸着	2P43	固体 NMR	3P46	高磁場 MRI	3P27
吸着举動	1P35	固体高分解能 NMR	3P32	高速 MAS	1P31
距離測定	3P33	固体高分解能 NMR	1P31	高分解能	3P25
局所構造	3P14	交換速度定数	1P23	高分解能 ¹ H NMR	3P18
局所構造	1L9	交差分極	1P31	高分解能マジック	
局所励起	3P27	交差分極	1L4	アングルスピニング	3P18
均一同位体標識	2P40	交差飽和法	3P6	高分解能動的構造	3L6
均一標識試料	1P 37	好中球	3P9	高分子	3P40
クライオジェニックプローブ	3P45	広帯域プローブ	1L3	高分子ゲル	3P23
クライオプローブ	3L1	抗プリオン薬	3L9	高分子ゲル	2P25
繰り返し配列	3P5	抗菌性ペプチド	3P24	高分子電解質	2P26
グルタミン	3P27	抗原-抗体反応	3P17	高分子量蛋白質	3L2
グルタミン酸	3P27	構造	1L10	高偏極分子液体	1L5
クロレラユビキチン	3P14	構造ゲノム科学	1P44	骨量計測	3P31
結晶化	1P39	構造プロテオミクス	3L11	コヒーレンス選択	2P4
結晶構造	2P41	構造プロテオミクス	3P12	*	2P30
結晶多形	3P38	構造プロテオミクス	2P13	小麦胚芽	2P5
結晶多形	2P41	構造プロテオミクス	1P7	コンパクト MRI	3P31
ケミカルシフト	3P22	構造プロテオミクス	2P6	コンパクト MRI	1P42
検出限界	1L3	構造プロテオミクス	2P14	コンパクトMRI	1P43
絹タンパク質	1P28	構造プロテオミクス	3P7	コンホメーション解析	3P3
絹モデルペプチド	1P40	構造プロテオミクス	2P8		
原子間距離	2P42	構造プロテオミクス	3P15		

(さ行)		重水素標識	3L4	相互作用	3L5
細孔	3P36	重水素標識	1P9	相互作用解析	3P4
酒類の熟成	2P21	重水素標識	2P9	相対論的効果	1L1
三酢酸セルロース	2P41	常圧	3P28	相転移	1L8
酸化損傷ヌクレオチド	3P11	常磁性 NMR	1P12	相同組換之	1P4
酸素17	1L 7	常磁性シフト	1P14	測定パラメータ	1P2
酸素-17ラベル化技術	1P38	常磁性金属	2L1	測定条件設定	1P1
残余双極子カップリング	1P18	信号帰属	2P40	ゾルーゲル転移	3P37
シェープドパルス	3P3	診断用	1P42	ゾルーゲル反応	3P43
磁化率テンソル	1P14	人体用	1P42		
時間温度換算則	2P37	水素結合	3P14	(た行)	
四極子相互作用	1L4	水素結合	3L3	ダイアッド	2P23
シグナル伝達	1P6	水素結合	1P15	大規模施設	1P44
自己拡散係数	1L2	水素結合	3P22	タイトレーション	1P13
自己拡散係数	2P24	水素結合	1P33	ダイナミクス	2L2
自己拡散係数	2P26	水和	1P36	ダイナミクス	3L9
自己拡散係数	3P26	スターポリマー	3P23	ダイナミクス	1P10
四次構造シグナル	3P13	ステロイド配糖体	3P2	ダイナミクス	1P28
四重極カップリング	1P26	スピンラベル	3P19	多核種 NMR	2P28
脂質生体分子	1P11	スピン拡散	1L11	タグの付加	2P3
脂質二重膜	3P24	スピン拡散	1P40	多孔性金属錯体	2P43
磁石	2P44	スピン拡散法	1P37	多次元 NMR	2P18
実用化	1L6	スピン結合定数	1P16	多次元 NMR	2P20
自動化	2P1	スペルミジン	1P16	多次元NMR	3L8
自動化	1P1	スペルミジン	3P46	多量子遷移	2P4
自動生成装置	1P45	スポーツ傷害	1P42	対流効果	1L2
シトクロム c	1P14	制限拡散	2P25	縦緩和	1L8
磁場勾配 NMR	1P22	制限空間	2P24	蛋白質	3P11
磁場勾配 NMR	2P26	成形パルス	2P2	蛋白質-DNA 相互作用	1P13
磁場勾配NMR	3P26	生成装置	1L6	蛋白質合成	2P5
磁場勾配 NMR	1P29	生体高分子	3P34	蛋白質複合体	3P4
磁場勾配 NMR 法	2P25	生体膜	1P11	蛋白質複合体	3L5
磁場循環法	2P45	生体膜	3L10	タンパク質	2L1
磁場配向	1P11	静電ポテンシャル	1P10	タンパク質の構造・機能	1P44
磁場配向	1P18	石炭	3P36	タンパク質の高次構造	1P14
自発磁場配向膜	3L6	線幅増大	1P26	タンパク質構造	3L8
ジフェニルヘキサトリエン	1L11	セグメント運動	2P37	タンパク質溶液 NMR 測定	1P1
シラノール	1P19	ゼロ磁場 NMR・低磁場 NMR	2P45	置換反応	1P19
シリコーン	1L12	選択的プロトン標識	3L2	超高磁場勾配 ¹³ CNMR	1P20
遮蔽テンソル	1L1	選択的緩和法	3P3	超並列型 MR マイクロスコープ	3L13
自由体積	2P38	双極子磁場分離	1P24	超偏極。	1L6
主鎖の帰属	1P4	層状化合物	1P36	超偏極	1P45
受精	2P29	相関時間分布	2P37	超偏極 Xe	3P36
重水素	1L4	相互作用	1P4	超偏極二次元 NMR 法	1P23
重水素化	3L2	相互作用	3P17	超臨界水	1P5

超臨界流体	1P3	(は行)		分子認識	3L1
ディジタルデータ	3L13	配向	3P19	分子配向·分子運動	3P42
低次元	1P46	バイセル	3P18	分子配列	1L11
低磁場 NMR	1L5	バイセル	1P18	ペプチド	3P18
低出力ラジオ波	1P24	パイ共役系高分子	1L8	ペプチド	3P19
定量 NMR	1P47	白質病変	3P29	ペプチドグリカン認識	2P20
データベース	3P20	バクテリオクロロフィル c	1P37	ペプチド試料	3P33
データベース	2P46	バクテリオロドプシン	1P31	ヘムタンパク質	1P12
テロメア	3L3	パーフルオロ	3P35	ヘムの配位構造	1P14
天然存在比	2P42	バリノマイシン	3P18	偏極 He−3	3P28
転移交差飽和法	3L5	パルスシーケンス	2P1	芳香族ポリイミド	1P32
転写因子	3P5	パルスシーケンス	2P2	芳香族ポリエステル	1P22
転写因子	3P16	パルス磁場勾配	1L2	ホウ素クラスター	3P41
転写制御因子	2P17	パルス磁場勾配	2P24	ポリアンチモン酸	1P19
電荷輸送材料	1L9	半導体ガス配管技術	1P45	ポリイオンコンプレックス	3P34
電子構造	1P12	光ポンピング	1L5	ポリエステルカーボネート	2P23
凍結乾燥製剤	2P36	光偏極キセノン	1L5	ポリグルタミン誘導体	2P37
糖タンパク質	1P18	非晶構造	1L9	ポリジエチルシロキサン	1P20
糖鎖	3L1	非晶質	1P39	ポリビニルアルコール	2P39
動的核偏極(DNP)	2P45	ヒスチジン	2L1	ポリフェノール	2P21
動的举動	3P17	非線形最小自乗フィッティング	1P2	ポリペプチド	3P37
同位体標識	3L8	나 cDNA	3L11	ポリリン酸	3L12
同位体標識	2P42	ヒトcDNA	3P15	翻訳後修飾	3P13
同位体標識 同時測定	2P42 2P4	ヒトcDNA ヒト胚子	3P15 3L13	翻訳後修飾	3P13
同位体標識 同時測定 ドメイン解剖学	2P42 2P4 2P15	ヒトcDNA ヒト胚子 微量サンプル	3P15 3L13 1L3	翻訳後修飾 (ま行)	3P13
同位体標識 同時測定 ドメイン解剖学 トランスミッタ	2P42 2P4 2P15 2P2	EhcDNA Eh胚子 微量サンプル 微量化合物	3P15 3L13 1L3 3P45	翻訳後修飾 (ま行) マウス	3P13 1P43
同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド	2P42 2P4 2P15 2P2 2P23	EFcDNA EF胚子 微量サンプル 微量化合物 微量試料	3P15 3L13 1L3 3P45 3P2	翻訳後修飾 (ま行) マウス マウス cDNA	3P13 1P43 3L11
同位体標職 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食	2P42 2P4 2P15 2P2 2P23 3P10	EhcDNA Eh胚子 微量サンプル 微量化合物 微量試料 表面	3P15 3L13 1L3 3P45 3P2 1L3	翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA	3P13 1P43 3L11 3P12
同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド 貪食	2P42 2P4 2P15 2P2 2P23 3P10	EhcDNA Eh胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン	3P15 3L13 1L3 3P45 3P2 1L3 3P5	翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA マウス cDNA	3P13 1P43 3L11 3P12 2P13
同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行)	2P42 2P4 2P15 2P2 2P23 3P10	 ヒトcDNA ヒト胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン 不確かさ 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47	翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA マウス cDNA マウス cDNA	3P13 1P43 3L11 3P12 2P13 1P7
 同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行) ナノ複合体 	2P42 2P4 2P15 2P2 2P23 3P10 1P19	 ヒトcDNA ヒト胚子 微量サンブル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7	翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA	3P13 1P43 3L11 3P12 2P13 1P7 3P7
 同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行) ナノ複合体 ナノ物性 	2P42 2P4 2P15 2P2 2P23 3P10 1P19 3P41	EhcDNA EhEDNA EhEDNA 他 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9	翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8
 同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド 含食 (な行) ナノ複合体 ナノ物性 二次元 ¹H スピン拡散 NMR 	2P42 2P4 2P15 2P2 2P23 3P10 1P19 3P41 1L11	 ヒトcDNA ヒト胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 プリオン プレンド 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10	翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16
同位体標職 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行) ナノ複合体 ナノ物性 二次元 ¹ H スピン拡散 NMR 二次元 NMR	2P42 2P4 2P15 2P2 2P23 3P10 1P19 3P41 1L11 1P12	 ヒトcDNA ヒト胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 プリオン プレンド プローブ 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1	翻訳後修飾 (ま行) マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19
同位体標職 同時測定 ドメイン解剖学 トランスミッタ トリアッド 含食 (な行) ナノ複合体 ナノ物性 二次元 ¹ H スピン拡散 NMR 二次元 NMR 二次元 NMR	2P42 2P4 2P15 2P2 3P10 1P19 3P41 1L11 1P12 3L7	ヒトcDNA ヒトEDNA ヒト胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 プリオン プレンド プローブ プローブ	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1 1P3	翻訳後修飾 (ま行) マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA アウス cDNA アウス cDNA	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11
同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行) ナノ複合体 ナノ物性 二次元 ¹ H スピン拡散 NMR 二次元 NMR 二次元スピン拡散固体 NMR 法 二次元交換 NMR	2P42 2P4 2P15 2P2 3P10 1P19 3P41 1L11 1P12 3L7 1L8	とトcDNA とト胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 プリオン プレンド プローブ プローブ プローブ プロトン NMR	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1 1P3 2P21	翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA レックス cDNA レックス cDNA レックス cDNA レックス cDNA レックス cDNA レックス cDNA	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11 2P40
同位体標職 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行) ナノ複合体 ナノ物性 二次元 ¹ H スピン拡散 NMR 二次元 NMR 二次元 NMR 二次元交換 NMR 二次元交換 NMR 二成分情報伝達系	2P42 2P4 2P15 2P2 2P23 3P10 1P19 3P41 1L11 1P12 3L7 1L8 2P12	 ヒトcDNA ヒト胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 プリオン プレンド プローブ プローブ プロトン NMR プロモーター配列 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1 1P3 2P21 1P13	翻訳後修飾 (ま行) マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA レーシス cDNA レーシス cDNA 膜 膜タンパク質 膜タンパク質	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11 2P40 1P31
同位体標職 同時測定 ドメイン解剖学 トランスミッタ トリアッド 含食 (な行) ナノ複合体 ナノ物性 二次元 ¹ H スピン拡散 NMR 二次元 NMR 二次元スピン拡散固体 NMR 法 二次元交換 NMR 二成分情報伝達系 二 <u>量</u> 子遷移	2P42 2P4 2P15 2P2 3P10 1P19 3P41 1L11 1P12 3L7 1L8 2P12 3P40	 ヒトcDNA ヒト胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 プリオン プレンド プローブ プローブ プロモーター配列 分光計 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1 1P3 2P21 1P13 2P1	翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA レス マウス cDNA レス マウス cDNA レス マウス cDNA レス マウス cDNA レス マウス cDNA レス マウス cDNA レス マウス cDNA レス マウス cDNA マウス cDNA	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11 2P40 1P31 2P15
同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行) ナノ複合体 ナノ物性 二次元 ¹ H スピン拡散 NMR 二次元 NMR 二次元 NMR 二次元スビン拡散固体 NMR 法 二次元交換 NMR 二成分情報伝達系 二量子遷移 ニジマス	2P42 2P4 2P15 2P2 3P10 1P19 3P41 1L11 1P12 3L7 1L8 2P12 3P40 2P29	 ヒトcDNA ヒト胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 プリオン プレンド プローブ プローブ プロモーター配列 分光計 分子運動 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1 1P3 2P21 1P13 2P1 2P36	翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA レス マウス cDNA レス マウス cDNA レス マウス cDNA レス マウス cDNA レス レス レス レス レス レス レス レス レス レス レス レス レス	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11 2P40 1P31 2P15 3L6
同位体標職 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行) ナノ複合体 ナノ物性 二次元 ¹ H スピン拡散 NMR 二次元 NMR 二次元 NMR 二次元交換 NMR 二次元交換 NMR 二成分情報伝達系 二量子遷移 ニジマス 尿素アダクト	2P42 2P4 2P15 2P2 2P23 3P10 1P19 3P41 1L11 1P12 3L7 1L8 2P12 3P40 2P29 1P29	 ヒトcDNA ヒト胚子 微量サンプル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 プリオン プリオン プローブ プローブ プローブ プロトン NMR プロモーター配列 分光計 分子運動 分子運動性 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1 1P3 2P21 1P13 2P1 2P36 3P35	翻訳後修飾 (ま行) マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA マウス cDNA 膜 膜タンパク質 膜タンパク質 膜タンパク質 膜の合 マジック角回転	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11 2P40 1P31 2P15 3L6 3L8
 同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行) ナノ複合体 ナノ物性 二次元¹H スピン拡散 NMR 二次元 NMR 二次元交換 NMR 二次元交換 NMR 二成分情報伝達系 二量子遷移 ニジマス 尿素アダクト 脳機能診断 	2P42 2P4 2P15 2P2 3P10 1P19 3P41 1L11 1P12 3L7 1L8 2P12 3P40 2P29 1P29 3P29	 ヒトcDNA ヒト胚子 微量サンブル 微量化合物 微量試料 表面 フィブロイン 不確かさ 不均一構造 プリオン ブレンド プローブ プローブ プロトン NMR プロモーター配列 分光計 分子運動性 分子運動性 分子調パッキング 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1 1P3 2P21 1P13 2P1 2P1 2P36 3P35 1P32	 翻訳後修飾 (ま行) マウス マウス cDNA マン cDNA <li< td=""><td>3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11 2P40 1P31 2P15 3L6 3L8 2P2</td></li<>	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11 2P40 1P31 2P15 3L6 3L8 2P2
 同位体標識 同時測定 ドメイン解剖学 トランスミッタ トリアッド 含食 (な行) ナノ複合体 ナノ物性 二次元¹H スピン拡散 NMR 二次元 NMR 二次元スピン拡散固体 NMR 法 二次元交換 NMR 二成分情報伝達系 二量子遷移 ニジマス 尿素アダクト 脳機能診断 脳酸素飽和度 	2P42 2P4 2P15 2P2 3P10 1P19 3P41 1L11 1P12 3L7 1L8 2P12 3P40 2P29 1P29 3P29 3P29 3P30	 ヒトcDNA ヒト胚子 微量サンブル 微量化合物 微量記料 表面 フィブロイン 不確かさ 不均一構造 プリオン ブレンド プローブ プローブ プロトン NMR プロモーター配列 分光計 分子運動性 分子間パッキング 分子間双極子相互作用 	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1 1P3 2P21 1P13 2P1 2P36 3P35 1P32 3L10	 翻訳後修飾 (ま行) マウス マウス cDNA マンパク質 原 原 ロ マレチシーケンサ マルチンテージ法 	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11 2P40 1P31 2P15 3L6 3L8 2P2 1L4
同位体標職 同時測定 ドメイン解剖学 トランスミッタ トリアッド 食食 (な行) ナノ複合体 ナノ物性 二次元 ¹ H スピン拡散 NMR 二次元 NMR 二次元 NMR 二次元スビン拡散固体 NMR 法 二次元交換 NMR 二成分情報伝達系 二量子遷移 ニジマス 尿素アダクト 脳機能診断 脳酸素飽和度	2P42 2P4 2P15 2P2 3P10 1P19 3P41 1L11 1P12 3L7 1L8 2P12 3P40 2P29 1P29 3P29 3P29 3P30	ヒトcDNA ヒト広DNA ヒト胚子 微量サンプル 微量化合物 化合物	3P15 3L13 1L3 3P45 3P2 1L3 3P5 1P47 3L7 3L9 1L10 2P1 1P3 2P21 1P13 2P1 2P36 3P35 1P32 3L10 2P43	 翻訳後修飾 (ま行) マウス マウス cDNA マウス cDNA	3P13 1P43 3L11 3P12 2P13 1P7 3P7 3P8 2P16 3P19 1P11 2P40 1P31 2P15 3L6 3L8 2P2 1L4 2P26

水ーエタノール	2P21	有機天然物	2P46	立体構造	2L1
水分布イメージ	2P30	ユニット特異的ラベル	3P13	立体構造	3P4
無機有機ハイブリッド	3P43	ユビキチン	2L2	立体構造	2P19
無機一有機複合体	1P19	ユビキチン	2P11	立体構造	1P10
無細胞	2P5	ユビキチン	3P13	立体構造	2P17
無細胞タンパク質合成	3L4	ユビキチンリガーゼ	3L1	立体構造	3P35
無細胞タンパク質合成	3L11	溶液 NMR	2P3	立体構造	1P40
無細胞タンパク質合成	3P12	溶液 NMR	3P11	立体構造	2P42
無細胞タンパク質合成	2P13	溶液 NMR	2P19	立体構造解析	2P18
無細胞タンパク質合成	1P7	溶液 NMR	3P12	立体構造解析	2P20
無細胞タンパク質合成	2P14	溶液 NMR	2P13	立体構造決定	3L4
無細胞タンパク質合成	1P9	溶液 NMR	2P7	立体構造決定	1P9
無細胞タンパク質合成	2P9	横緩和	1L8	立体構造決定	2P9
無細胞タンパク質合成	3P7	弱い相互作用	1P16	立体整列同位体標識	3L4
無細胞タンパク質合成	2P8			立体整列同位体標識	1P9
メタン	1P22	(6行)		立体整列同位体標識	2P9
メチル化	2P17	ラセミ複合体	3P37	立体配座解析	1P16
メリチン	3L6	卵白リゾチウム	3P1	立体配座解析	3P46
モノマー連鎖分布	2P23	リズム	2P32	流通式 NMR	1P5
モンモリロナイト	2P39	立体異性体	3P20	量子化学計算	1P33
•		立体化学	3P20	レーザ励起	
(や行)	-			三重項状態	2P45

有機 EL

1L9

著者索引		Rajesh Sundaresan	1P4	浅野敦志	1L12
		Rajesh Sundaresan	3L2	吉田茂男	1P21
(数字 アルファベット)	Scheler Ulrich	3P40	芦田 淳	1P40
Aceti. D.	1P9	S. D. Swanson	2SSL5	芦田 淳	2P33
Bentum Jan van	1L3	Tame Jeremy	3L2	阿曽幸男	2P36
Carninci Piero	1P7	Tytgat Jan	2P19	阿曽幸男	1P39
Carninci Piero	2P6	Warren S. Warren	2P47	穴井孝弘	2P1
Carninci Piero	3P7	Weimer Allan	2P1	穴井孝弘	3P1
Carninci Piero	2P8	Wiench Jerzy	1L12	穴井孝弘	2P2
Carninci Piero	3P8	Wright David	2P45	阿部 敦	2P1
Carninci Piero	3P12			網田富士嗣	1P5
Carninci Piero	2P13	(あ行)		荒川貴博	3L11
Carninci Piero	2P16	相澤崇史	1P3	荒川貴博	1P7
Carninci Piero	3L11	相沢智康	3P5	荒川貴博	2P6
Corzo Gerardo	3P24	相見敬太郎	1P32	荒川貴博	3P7
Gomboo Myagmarsur	e 1L8	相見敬太郎	3P35	荒川貴博	2P8
Ponnampalam	2P19	青木雅昭	3P15	荒川貴博	3P8
Guentert Peter	2P8	青木雅昭	1P7	荒川貴博	3P12
Guentert Peter	1P44	青木雅昭	2P6	荒川貴博	2P13
Guentert Peter	1P7	青木雅昭	3P7	荒川貴博	2P16
Guentert Peter	2P6	青木雅昭	2P8	安藤 勲	1P20
Guentert Peter	3P7	青木雅昭	3P8	安藤 勲	1P29
Guentert Peter	3P12	青木雅昭	3P12	安藤 勲	1P22
Guentert Peter	2P13	青木雅昭	2P13	安藤 勲 ^	3P23
Guentert Peter	2P10	青木雅昭	2P16	安藤 勲	2P25
Guentert Peter	2P27	青木雅昭	2P10	安藤 勲	1L12
Guentert Peter	3L11	赤木香予	2P7	安藤慎治	1P32
Heddle Jonathan	3L2	秋葉悦男	2P26	安藤慎治	3P35
Huys Isabelle	2P19	秋葉悦男	1L2	飯島隆広	1P30
Janssen Hans	1L3	秋庭健吾	1P37	飯田秀博	2P32
JunGoo Jee	3P4	阿久津秀雄	1P37	五十嵐泰夫	1P14
JunGoo Jee	2P11	阿久津秀雄	3P32	碇 正臣	2P6
JunGoo Jee	2P27	阿久津秀雄	2P34	生島 豊	1P3
Kentgens Arno P.M.	1L3	阿久津秀雄	2P40	池内宏貴	3L10
Kershaw Jeff	2P45	阿久津秀雄	3L8	池田哲朗	1P15
Krishnaswami Ashok	2P1	阿久津秀雄	3P39	池田哲郎	3L3
Kumar Penmetcha	1P15	浅川直紀	1L8	池田龍一	3P41
Kupce Eriks	3P44 .	朝倉克夫	1P1	石井 毅	3P19
K. Wüthrich	2SL	朝倉克夫	1P2	石川 潔	1L5
Lopez-Mendez Blan	c 2P10	朝倉克夫	2P1	石川彦成	2P1
Lopez-Mendez Blan	c 2P27	朝倉克夫	3P1	石川冬木	3L3
Malcolmson John	2P1	朝倉哲郎	3P18	石田信昭	2P30
Markley. J. L.	1P9	朝倉哲郎	1P28	石津浩二	3P23
M. VanCauteren	2SSL4	朝倉哲郎	2P23	石丸臣一	3P41
McKay Trevor	2P1	朝倉哲郎	2P33	伊藤允好	1P21
Mukasa Sseziwa	2P1	朝倉哲郎	1P40	伊藤 隆	2P12
Nietlispach Daniel	3L2	朝倉哲郎	3L7	伊藤 隆	2P35
Nirthanan Selvanayag	a 2P19	浅地哲夫	3P25	伊藤 隆	3L2
Pantoja-Uceda Davi	d 2P27	浅地哲夫	3P41	伊藤隆	1P4
Pruski Marek	1L12	浅野敦志	2P39	伊藤 隆	1P13

— 457 —

稻岡斉彦	3P19	圓見純一郎	3P30	甲斐荘正恒	3P14
稻垣冬彦	1P6	大石 修	2P24	甲斐荘正恒	3P32
稲垣冬彦	3P9	大石 徹	3L10	甲斐荘正恒	2P34
井上匡子	3P8	大木 出	2P11	甲斐荘正恒	3L4
井上 仁	1P4	大木 忍	1P30	嘉数あや	1P28
井上 真	3P15	大窪貴洋	1P36	柿谷吉則	1P37
井上 真	1P7	大窪貴洋	1P45	葛西佑一	2P12-
井上 真	2P6	大久保忠恭	2P17	葛西祐一	1P13
井上 真	3P7	大久保忠恭	3P16	笠原浩司	3L12
井上 真	3P8	大郷耕輔	3L7	梶 弘典	1L9
井上真	3P12	大竹紀夫	1P45	梶本興亜	1P5
井上真	2P13	大竹紀夫	1L6	片岡正和	2P18
井上 真	2P14	大塚紀一郎	2P1	片平正人	1P10
バエ バ 井ト 直	2P16	大西东洋	2P22	片平正人	1P15
リエ 兵 土ト 直	2P10	大野綾子	3P4	片平正人	3L3
ガエ 突	11.8	大橋樹	1P15	加藤恵	2P4
开工我八 世上 任 众	303	大橋蔵	313	加藤悦子	2P7
开工任八	1D10	大橋帝大郎	323	加藤健一	2P20
泊俄是120 今开告册	1010	大面电入印 大亚 受	11.8	加藤晃一	1P18
今 开 貝雄 众开史立	115		3030	加藤显一	211
今开么多	1L0 ·	<u> </u>	2D16	<u>加</u> 燥九 金角	1P3
右开一么 .	3013	夏百たもよ	21 10	並八休九人	11 0 2025
右译及于 山子 王	11247	四日の 9 0 回日 の 9 0	1010	永 府 兵八	1P20
右下 孝	3P24	问野木 之 四 博士	105	金坂 位	11 12
岩 下田紀	2P9	阿	120	金坂 付	1000
上杉啃一	1P10	岡本 戊	2P38	金術康二	11.7
上杉啃一	1P15	秋野孝史	2P4	金備康	11.7
上杉晴一	3L3	奥泉智之	1P15	上日意杨	3P23
上田貴洋	1P35	奥田秀泰	1P8	紙谷(村田)同十	3P11
上野隆	3P10	小椋賢冶	1P6	紙谷浩之	-3P11
植野嘉之	3L10	小椋賢冶	3P9	亀田恒偲	1P28
浅見忠男	1P21	長内 隆	3P15	電出恒徳	2P33
鵜澤 洵	3P2	長内 隆	1P7	亀田恒徳	1P40
鵜澤 洵	1P21	長内 隆	2P6	狩野広美	2P30
宇高恵子	3P17	長内 隆	3P7	河合 純	3L11
宇田広子	1P7	長内 隆	2P8	河合 純	1P7
内野新一	2P37	長内 隆	3P8	河合 純	2P6
内山 進	JP14	長内 隆	3P12	河合 純	3P7
宇津澤慎	1P42	長内 隆	2P13	河合 純	2P8
内海博明	2P1	長内 隆	2P16	河合 純	3P8
梅木辰也	1P3	長内 隆	2P10	河合 純	3P12
梅田雅宏	3P29	小野 明	3L4	河合 純	2P13
浦崎洋平	1P5	小野真也	2P31	河合 純	2P16
江川文子	1P37	小野真也	3L13	川口恭輔	3P5
江川文子	2P40	小原 收	3P15	川口 謙	3P18
江口太郎	1P35	小原 收	3L11	川瀬泰司	3L7
榎園能章	3L3	尾張洋史	3P34	河野敬一	3P10
惠良田知樹	2P41			川村 出	1P31
遠藤一央	2P43	(か行)		菅野巖	2P45
遠藤 弘	2P16	甲斐荘正恒	1P9	木川隆則	1P44
遠藤弥重太	2P5	甲斐荘正恒	2P9	木川隆則	3P15

— 458 —

	01.1.1	田上书茶	0005	小井井井公司	0.04
本川隆則 	3111	黑木里樹	2P25	小怀央和	324
不川隆則	IP7	黒不里樹		小林衔筱	2P40
不川隆則	2P6	黑子弘道	1110	小林佑伙	1214
不川隆則	3P7	黒 凖 卓二	2P39	小杯佑次	2P17
木川隆則	2P8	桑田一夫	319	小杯祐次	3P16
木川隆則	3P8	小泉 聡	2P25	小松一男	3P26
木川隆則	3P12	国府島庸之	1P6	小松千江子	2P18
木川隆則	2P13	河野隆英	3P10	木南英紀	3P10
木川隆則	2P14	河野俊之	2P5	小森佳彦	3P43
木川隆則	2P16	河野俊之	2P19	小山 泰	1P37
木川隆則	2P10	河野俊之	1P15	近藤靖	2P45
菊地 淳	1P11	河野俊之	2P3 -		
菊池 淳	1P18	河野俊之	3P6	(さ行)	
菊野玲子	3P15	河野俊之	2P18	齋藤公児	1P38
奇世媛	3L12	河野俊之	3P19	齋藤公児	3P36
北川 進	2P43	甲野裕之	2P41	斎藤公児	1P45
木田 惇	2P1	甲野裕之	1P41	齋藤公児	1L7
北原 竜	3P37	小神 将	3P14	斎藤 智	1P10
北原 亮	2L2	古久保哲郎	3L12	齋藤 剛	1P47
氣田佳喜	2P1	越野広雪	3P20	斉藤 肇	1P31
氣田佳喜	3P1	小柴生造	1P7	齋藤深雪	2P13
太 笠晋一	1P47	小柴生诰	2P6	斎藤もよこ	1L6
金 義義	1P29	小柴生造	3P7	坂上紀子	3P12
业 百久 木村敬臣	3P28	小些生造	2P8	相根岳志	3P46
木村敦臣	1P21	小些生造	3P12	櫻井愛子	3P45
木村敬臣	1P23	小些生造	2P13	佐々木千鶴	1P34
木材軟匠	3P36	小些生造	2P10	佐藤一紀	2P19
木材一雄	3P18	小嶋茂雄	2P36	佐藤浩三	2P1
木村田子	3P26	小嶋茂雄	1P39	佐藤秀紀	2P26
木材花昭	1P20	归嶋長次郎	2P3	佐藤寛子	3P20
木村英昭	120	炉嶋長次郎	2P7	佐藤深雪	3P7
木材黄阳	11 12	厚嶋長次郎	2P11	三本太至宏	1P14
木山明宏	2P45	児嶋長次郎	3P11	志田敏夫	2P20
水山 <u>引</u> 仏 大士 司	20 10 2D1	归嶋長次郎	21.1	溶临一 雄	3L11
	1010	原嶋長次郎	2P20	篠崎一雄	2P10
口 尿成 丁醛磨	11 15	「「「「「「「「「」」」」」」。	31.13	篠原正法	2P22
工廠優	1034	巨瀬勝美	1P42	柴田武彦	2P12
国本伯書	2012	小問佐	3P38	柴田武彦	2P35
肩面かわり	21.12	化酶 勒	1P30	些田武彦	1P4
启団かわり	1012	及麻 · 秋 小而中纪	31.3	柴田武彦	1P13
肩島かわり	1001	小四面和	2 <u>7</u> 2	米山山沙	1P7
采 原 靶 明	201	小孙权人	210 2D10	米田英 ^市 嶋田一夫	3P6
采原範明	3F1 1D40		2413 0D19	·哈田一夫	315
禾 平 峃 叻 西 本 钿 本	101	小林伸一即	1D15	□◎□□ 八 清水 禎	1P30
宋 平 笛 尤 西 十 钿 本	100	小妆你去	3D3	清水盲人	2P5
禾 个 智 尤	172	小种肉是	2FU 011	ホーキー	2020
米 平智尤	271 2002	小种夜连	206	1月小天110 下洲田甬—	103
黑 个 里砌	3FZ3 1D00	小仲圓乙	200	白石来人	3P16
黑不 里 砌	120	小外国公	2F0 0D00		10/10
黑不重樹	1P22	小外和秋	1010	口加了	1040
黒木重樹	1P29	小种犬典	1510	口加了	1542

白川昌宏	3L2	関ロ順一	2P20	田中啓二	3P13
白川昌宏	3P4	関亦克彦	1P21	田中剛史	2P18
白川昌宏	2P11	関 原明	3L11	田中忠蔵	3P29
白川昌宏	3P13	闋 原明	2P10	田中 亮	1P45
白川昌宏	2P15	瀬戸治男	3P21	田中 亮	1L6
白川昌宏	3L12	外谷英嗣	1P15	田中良二	2P1
白水美香子	3P15	外谷英嗣	3L3	谷田以誠	3P10
白水美香子	1P44	園田与理子	1L11	田畑 亮	2P7
白水美香子	3L11	.*		田村裕介	1P15
白水美香子	1P7	(た行)		千葉かおり	3P17
白水美香子	2P6	太 虎林	1P14	趙 晨華	3P12
白水美香子	3P7	高井光男	2P41	陳 偉萍	3P29
白水美香子	2P8	高木芳弘	1L5	塚本直樹	1L9
白水美香子	3P8	高杉憲司	2P1	辻 暁	1P31
白水美香子	3P12	高瀨聖也	3P19	辻田義治	2P38
白水美香子	2P13	高橋征三	2P4	堤 耀廣	3P34
白水美香子	2P14	高橋栄夫	3P6	堤 耀廣	2P37
白水美香子	2P16	高橋大樹	1P37	堤 耀廣	3P37
白水美香子	2P10	高橋大樹	2P34	出村哲夫	1P16
城 宜嗣	2P12	高屋展宏	3P27	出村哲夫	3P46
城 宜嗣	1P13	高屋展宏	2P28	出村誠	3P5
秦 旭栄	1P17	高山真一	1P14	寺内 勉	1P9
末松浩人	2P1	高山俊夫	3P42	寺内 勉	2P9
末松浩人	3P1	滝澤徹	2P22	寺内 勉	3L4
須貝真理子	2P18	瀧之脇浩人	2P17	寺尾武彦	1P25
菅向志郎	3P14	滝谷重治	3P5	寺尾武彦	1P27
菅澤 薫	2P11	竹内 恒	3P6	寺尾武彦	3P33
菅原由子	2P19	竹内 茂	3P1	寺尾武彦	1P5
菅原義之	3P43	竹腰清乃理	1P27	寺尾武彦	1P26
杉浦眞喜子	1P21	竹腰清乃理	3P33	寺尾武彦	1L4
杉浦眞喜子	3P3	竹腰清乃理	1P5	寺尾武彦	2SSL1
杉浦幸雄	3P16	竹腰清乃理	1P26	寺田貴帆	3P15
杉原文徳	3L12	竹腰清乃理	1L4	寺田貴帆	3P7
杉森 望	1P9	竹腰清乃理	2SSL1	寺田貴帆	1P7
鈴木秋弘	1P12	武田和行	2SSL1	寺田貴帆	2P6
鈴木浩一	3P41	武田寛之	3P37	寺田貴帆	2P8
鈴木咲良	2P14	立入直紀	1P14	寺田貴帆	3P8
住本英樹	1P6	龍野宏人	3P35	寺田貴帆	3P12
住本英樹	3P9	田仲昭子	3P15	寺田貴帆	2P13
清宮恭子	2P16	田仲昭子	3L11	寺田貴帆	2P14
関 英子	3P15	田仲昭子	1P7	寺田貴帆	2P16
関 英子	1P7	田仲昭子	2P6	寺田貴帆	2P10
関 英子	2P6	田仲昭子	3P7	照井教文	1P12
闋 英子	3P7	田仲昭子	2P8	照井教文	1P14
関 英子	2P8	田仲昭子	3P8	天野剛志	3P4
関 英子	3P8	田仲昭子	3P12	天野剛志	2P11
関 英子	3P12	田仲昭子	2P13	天野剛志	3P13
関 英子	2P13	田仲昭子	2P16	藤部康弘	1P46
関 英子	2P16	田仲昭子	1P44	栃尾尚哉	2P8
関 英子	2P10	田仲昭子	2P10	栃尾豪人	3P4

- 460 -

栃尾豪人	2P11	成瀬昭二	3P29	林崎良英	3P12
杤尾豪人	3P13	新津 守	1P42	林崎良英	2P13
杤尾豪人	2P15	西野直人	1P11	林崎良英	2P14
栃尾豪人	3L12	西村勝之	1P24	林崎良英	2P16
戸所泰人	3P39	西村勝之	3L6	林 繁信	3P43
富澤 忠	3P7	西村勝之	1P31	林 繁信	1L11
富沢 忠	2P13	西村勝之	2P42	林 秀則	3P13
富澤 忠	2P10	西村伸太郎	3P29	林 文晶	3P15
富羽貞範	3P31	西村真美子	1P18	林 文晶	1P44
冨羽貞範	1P42	西山裕介	1P25	林 文晶	3L11
鞆康子	2P8	西山大介	2P29	林 文晶	3P8
鞆康子	3P12	新田勝利	3P5	林 文晶	2P16
虎谷秀一	3L6	布川絵未	1P7	早水紀久子	2P26
虎谷秀一	2P42	布川絵未	2P6	早水紀久子	2P46
鳥飼真之介	3P9	布川絵未	3P7	早水紀久子	1L2
鳥澤拓也	1P9	布川絵未	2P8	原島秀吉	3P11
鳥澤拓也	2P9	布川絵未	3P12	原田英里砂	3P32
鳥澤拓也	3L4	布川絵未	2P13	半田晋也	3L13
		沼田ゆかり	2P41	日元 徹	2P1
(な行)		根本暢明	1P1	百名一男	2P1
内藤 晶	1P24	根本暢明	1P2	平井佑紀	1P12
内藤 晶	3L6	根本暢明	2P1	平沖敏文	3P34
内藤晶	1P31	根本暢明	3P1	平冲敏文	2P37
内藤 晶	2P42	根本暢明	2P2	平沖敏文	3P37
内藤茂弘	2P30	野口真路	3P19	平賀 隆	1L6
中家幸子	1P47	野村 薫	3P24	平川典子	3P7
中井敏晴	1L6	野村 薫	3P14	平戸麻里	2P13
長尾 聡	1P12	野村 誠	2L1	廣明秀一	2P11
中尾佳範	1P21			廣明秀一	3P4
中川将利	3P17	(は行)		廣明秀一	3P13
中川泰雄	2P23	拝師智之	3L13	廣明秀一	2P15
永阪文惣	2P23	拝師智之	1P42	廣田 洋	3P15
仲座良造	3P28	端健二郎	1P30	廣田 洋	1P45
中澤靖元	2P33	畠山盛明	1L7	廣田 洋	3L11
中澤靖元	1P40	畠中秀樹	1P44	廣田 洋	1P7
中嶋暉躬	3P24	畠中秀樹	3L11	廣田 洋	3P1
長島敏雄	3P15	畠中秀樹	2P14	廣田 洋	2P6
中島 寛	3P43	畑中 稔	2P35	廣田 洋	3P7
長瀬隆弘	3P15	八田玲子	3P8	廣田 洋	2P8
永田 崇	1P10	八田玲子	2P16	廣田 洋	3P8
中西洋志	1P17	服部峰之	1P45	廣田 洋	3P12
中西洋志	3P17	服部峰之	1L6	廣田 洋	2P13
中西康哲	2P43	花岡文雄	2P11	廣田 洋	2P16
仲村高志	2P44	濱名宏章	3P12	廣田 洋	2P10
中村壮史	3P6	林崎良英	3L11	廣安文子	3P12
中村和浩	2P45	林崎良英	1P7	付凱	1P22
中村寛夫	2P12	林崎良英	2P6	深澤 隼	1P26
中村寛夫	1P13	林崎良英	3P7	福井洋之	1L1
中山 学	3P15	林崎良英	2P8	福地将志	1P27
中山 学	3L11	林崎良英	3P8	福永雅喜	3P29

福原忠雄	3P26	松生 勝	1L10	三森文行	2SSL3
藤井直之	2P1	松尾 洋	3P15	宮久保圭祐	1P35
藤岡優子	1P6	松尾 洋	3P8	宮下博之	1P10
藤川昭彦	3P29	松尾 洋	2P16	宮ノ入洋平	1P10
藤倉由紀子	1P7	松上明正	1P15	宮ノ入洋平	3L3
藤重昇永	1P20	松上明正	3L3	宫本和英	1P7
藤重昇永	1L12	松倉順一	2P1	宫本哲雄	2P1
藤本康雄	3P2	松田貴意	3P15	宮本瑞夕	1P7
藤森裕基	3P25	松田貴意	2P10	三好利一	3P40
藤原健一朗	3P4	松田貴意	1P7	向出政伸	1P5
藤原健一朗	2P11	松田貴意	2P6	武藤勝紀	1P34
藤原健一朗	3P13	松田貴意	3P7	武藤 裕	1P44
藤原敏道	1P37	松田貴意	2P8	武藤 裕	3L11
藤原敏道	3P32	松田貴意	3P8	村上隆史	2P38
藤原敏道	2P34	松田貴意	3P12	村田道雄	1P16
藤原敏道	3P39	松田貴意	2P13	村田道雄	3P46
藤原敏道	2P40	松田貴意	2P16	村田道雄	3L10
藤原敏道	3L8	松田夏子	2P6	村山守男	1L6
藤原英明	3P28	松田安弘	2P17	元田容子	2P8
藤原英明	1P21	松田裕生	2P23	森井太一	2P15
藤原英明	1P23	松田善正	3L13	守誠一朗	1L8
藤原英明	3P36	松田善正	1P42	森 貴志	1P34
降旗一夫	3P21	松永 優	3P42	森田勇人	2P5
降旗一夫	2P46	松成一朗	3P29	森田勇人	3P13
逸見 光	1P14	松林恒夫	3P14	森田将史	3L12
北條正司	2P21	松原清彦	1L8		
細田和男	3P19	松原康史	3P45	(や行)	
細野政美	2P1	松村正純	3P41	矢嶋一賀	3P29
堀井文敬	1P19	松森信明	1P16	安田聡子	3P7
堀井文敬	1L9	松森信明	3P46	柳瀬大亮	3P29
堀内正隆	1P6	松森信明	3L10	矢吹 孝	3P15
堀毛悟史	2P43	丸本佳代子	1P10	矢吹 孝	1P7
本多 尚	1P33	丸本佳代子	1P15	矢吹 孝	2P6
本多賢吉	2P35	丸吉京介	1P16	矢吹 孝	3P7
本多賢吉	1P4	丸吉京介 🧳	3P46	矢吹 孝	2P8
本間一弘	1L6	三上真一	1P14	矢吹 孝	3P8
		美川 務	1P4	矢吹 孝	3P12
(ま行)		三島正規	2P3	矢吹 孝	2P13
前澤国芳	1P35	三島正規	2P7	矢吹 孝	2P16
前田史郎	2P22	三島正規	3P11	矢吹 孝	2P10
前田史郎	1P34	三島正規	2P20	山内一夫	1L3
前田秀明	1P44	三島正規	2L1	八巻 健	3P5
前田秀明	3L11	水口峰之	3P10	山口 悟	1P31
前田秀明	1P11	水野和子	3P22	山口芳樹	1P18
前田秀明	3P1	水野 敬	1L4	山崎和彦	3L11
増田善雄	1P3	水野元博	2P47	山崎千春	1P2
松井郁夫	2P15	三田 肇	1P12	山崎千春	2P1
松井政徳	1P22	三田 肇	1P14	山崎俊夫	1P25
松井政徳	2P25	三森文行	3P27	山崎俊夫	2P35
松岡 茂	3L10	三森文行	2P28	山崎俊夫	1P44

ġ.

山崎俊夫	3L11	好田真由美	3P12
山崎俊正	2P7	好田真由美	2P13
山田知典	1L9	好田真由美	2P16
山田幸弘	1P16	好田真由美	2P10
山根祐治	1P22	吉永壮佐	1P6
山根祐治	2P25	吉水広明	2P38
山本俊雄	1P28	米山桃子	3P11
山本浩之	3P34		
山本 靖	1P19	(ら行)	
山本泰彦	1P12	李華	2P13
山本泰彦	1P14		
山本隆一	1L8	(わ行)	
湯澤 聰	1P6	若井篤志	2P45
湯沢 聰	3P9	若松 馨	3P19
横塚暁人	3P26	若松 馨	3P6
横山英志	2P15	若松 馨	3P39
横山茂之	3P15	若山哲也	1P23
横山茂之	1P44	和田健彦	3P3
横山茂之	3L11	渡辺順次	1P22
横山茂之	1P7	渡部徳子	2P29
横山茂之	1P11	渡邊英宏	3P27
横山茂之	3P1	渡邊英宏	2P28
横山茂之	2P6	渡辺道直	1P10
横山茂之	3P7	渡辺 恵	2P13
横山茂之	2P8	和田仁	3P1
横山茂之	3P8		
横山茂之	3P12		
横山茂之 横山茂之	3P12 2P13		
横山茂之 横山茂之 横山茂之	3P12 2P13 2P14		
横山茂之 横山茂之 横山茂之 横山茂之	3P12 2P13 2P14 2P16		
横山茂之 横山茂之 横山茂之 横山茂之 横山茂之	3P12 2P13 2P14 2P16 2P10		
(横山茂之 横山茂之 横山茂之 横山茂之 横山茂之 古岡澄江	3P12 2P13 2P14 2P16 2P10 2P36		
(横山茂之 横山茂之 横山茂之 横山茂之 横山茂之 吉岡 澄江	3P12 2P13 2P14 2P16 2P10 2P36 1P39		
(横横横横) 横山 茂之之 横山 茂之之 横山 茂之之 茂之 茂之 之 茂之之 八 茂之之 八 茂之之 八 茂之之 八 茂之之 八 茂之之 八 茂之之 八 茂之之 八 茂之之 八 茂之之 八 四 八 茂之之 八 四 八 茂之之 八 四 八 四 八 四 八 四 八 四 〇 四 〇 四 〇 四 〇 四 〇 四	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42		
(横横横横横横横) 横横山山 茂之之 之之之 之之 之之 之之 之之 之之 之之 之之	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1		
(横横横横横横横) 一之之之之之之之之之之之之之之之之之之之之之之之之之之之之之之之之之之之之	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2		
(横横横横横横) 一之之之之之之之之之之之之之之之之之之之之之之之之之之之之之) 正正悟 「「大敏敏朝	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29		
(横横横横横横横)山山町町町川川崎港(茂茂之之之之)、正正悟後(大)、「大)、「大)、「大)、「大)、「大)、「大)、「大)、「大)、「大)、「	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10		
、横横横横横横 吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2		
《橫橫橫橫橫橫橫 吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17		
《横横横横横莺吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16		
《横横横横横吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉吉	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16 3P14		
《横横横横横吉吉吉吉吉吉吉吉吉吉吉吉吉斯日山山山山岡岡岡川川崎澤田田田田田田茂茂茂茂茂澄澄 正正悟綾茂卓卓 真一之之之之之江江大敏敏朗子男也也均由其	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16 3P14 3P15		
《横横横横横吉吉吉吉吉吉吉吉吉吉吉好好1山山山山山岡岡岡川川崎澤田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16 3P14 3P15 1P44		
(横横横横黄吉吉吉吉吉吉吉吉吉吉吉吉好好好に山山山山山岡岡岡川川崎澤田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16 3P14 3P15 1P44 3L11		
《横横横横横吉吉吉吉吉吉吉吉吉吉吉吉吉好好好好日山山山山山岡岡岡川川崎澤田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16 3P14 3P15 1P44 3L11 1P7		
《横横横横横吉吉吉吉吉吉吉吉吉吉吉吉吉好好好好好山山山山山山岡岡川川崎澤田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16 3P14 3P15 1P44 3L11 1P7 2P6		
《横横横横横吉吉吉吉吉吉吉吉吉吉吉吉好好好好好好」山山山山山岡岡岡川川崎澤田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16 3P14 3P15 1P44 3L11 1P7 2P6 3P7		
《横横横横黄吉吉吉吉吉吉吉吉吉吉吉吉好好好好好好好了一山山山山山岡岡岡川川崎澤田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16 3P14 3P15 1P44 3L11 1P7 2P6 3P7 2P8		
《横横横横黄吉吉吉吉吉吉吉吉吉吉吉吉好好好好好好好好了,一个小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小	3P12 2P13 2P14 2P16 2P10 2P36 1P39 1P42 3P1 2SSL2 2P29 1L10 3P2 2P17 3P16 3P14 3P15 1P44 3L11 1P7 2P6 3P7 2P8 3P8		

参加者名簿	所属	Tel
	1 住所	F-mail
相見敬太郎	更京工業大学大学院理工学研究科 有機·高分子物質専攻	03-5734-2889
あいみ けいたろう	安藤慎治研究室	03-5734-2889
	152-8552	kaimi@polymer.titech.ac.ip
	目黒区大岡山 2−12−1	
赤坂 一之	近畿大学生物理工学部 理研播磨研究所細胞情報伝達	0736-77-0345(内 4110)
あかさか かずゆき	649-6493	0739-77-4754
	和歌山県那賀郡打田町西三谷 930	akasaka8@spring8.or.jp
秋庭 健吾	大阪大学蛋白質研究所 物性研究部門	06-6879-8598(内 8598)
あきば けんご	565-0871	06-6879-8599
	大阪府吹田市山田丘 3-2	k-akiba@protein.osaka-u.ac.jp
阿久津 秀雄	大阪大学蛋白質研究所 物性部門	06-6879-8597
あくつ ひでお	565-0871	06-6879-8599
	吹田市山田丘 3-2	akutsu@protein.osaka-u.ac.jp
浅川 直紀	東京工業大学大学院生命理工学研究科	045-924-5796
あさかわ なおき	226-8501	045-924-5827nasakawa@bio.ti
	横浜市緑区長津田町 4259	tech.ac.jp
朝倉 哲郎	東京農工大学工学部 生命工学科	042-383-7733
あさくら てつお	184-8588	042-383-7733
	東京都小金井市中町 2-24-16	asakura@cc.tuat.ac.jp
浅野 敦志	防衛大学校 応用科学群応用化学科	046-841-3810(内 3596)
あさの あつし	239-8686	046-844-5901
	橫須賀市走水 1-10-20	asanoa@nda.ac.jp
浅野間 文夫	奈良先端科学技術大学院大学 物質創成科学研究科	0743-72-6174
あさのま ふみお	631-0024	0743-72-6009
· ·	奈良県生駒市髙山町 8916-5	asanoma@ms.aist-nara.ac.jp
芦田 淳	バリアンテクノロジーズジャパン NMR 応用部	03-5232-1238
あしだ じゅん	108-0023	03-5232-1264
	東京都港区芝浦 4−16−36	jun.ashida@varianinc.com
東 利雄	藤沢薬品工業株式会社 物性研究所	06-6390-1824
あずま としお	532-8514	06-6304-1392
	大阪市淀川区加島 2-1-6	toshio_azuma@po.fujisawa.co.jp
阿曽 幸男	国立医薬品食品衛生研究所	03-37008547
あそ ゆきお	158-8501	03-3707-6950
	東京都世田谷区上用賀 1-18-1	aso@nihs.go.jp

参加者名簿 名前	所属	Tel FAX
	住所	E-mail
阿部 孝政	理化学研究所ゲノム科学総合研究センター	045-503-9212
あべ たかまさ	タンパク質構造・機能研究グループ	045-503-9210
	230-0045	tabe@gsc.riken.go.jp
	横浜市鶴見区末広町 1−7−22	
阿部 絹子	日本メジフィジックス株式会社 創薬研究所	0438-64-1626
あべ きぬこ	299-0266	0438-62-6969
	千葉県袖ヶ浦市北袖 3-1	kinuko_abe@nmp.co.jp
荒田 洋治		
あらた ようじ		arata@blue.ocn.ne.jp
有村 雅敏	沢井製薬株式会社 研究部合成グループ	06-6928-8180
ありむら まさとし	535-0004	06-6923-0610
	大阪市旭区生江1丁目8番14号	m.arimura@sawai.co.jp
安藤 勲	東京工業大学大学院理工学研究科物質科学専攻	03-5734-2139
あんどう いさお	安藤(勲)研究室	03-5734-2889
	152-8552	iando@polymer.titech.ac.jp
	東京都目黒区大岡山 2-12-1	
飯島 隆広	物質・材料研究機構 強磁場研究センター磁場利用グループ	029-863-5483
いいじま たかひろ	305-0003	029-863-5571
	茨城県つくば市桜 3-13	IIJIMA.Takahiro@nims.go.jp
池田 博	東京工業大学大学院生命理工学研究科 生物プロセス専攻	045-924-5758
いけだ ひろし	226-8501	045-924-5833
	横浜市緑区長津田町 4259	hikeda@bio.titech.ac.jp
石田 信昭	独立行政法人食品総合研究所	029-838-8057
いしだ のぶあき	分析科学部品質情報解析研究室	029-838-7996
	305-8642	nobu@nfri.affrc.go.jp
	茨城県つくば市観音台 2-1-2	
伊藤隆	理化学研究所	045-508-7224
いとう ゆたか	生体超分子構造・機能研究協力グループ	045-508-7364
	230-0045	ito@louise.riken.go.jp
	神奈川県横浜市鶴見区末広町 1-7-29	
井上 匡子	理化学研究所横浜研究所 ゲノム科学総合研究センター	045-503-9462
いのうえ きょうこ	タンパク質構造・機能研究グループ	045-503-9641
	230-0045	kyokoino@gsc.riken.go.jp
	横浜市鶴見区末広町 1-7-22	
井ノ岡 博	武田薬品工業(株) 医薬探索センター	06-6300-6382
	552-5550 大阪市淀川区十三本町 2-17-85	Inooka_Hiroshi@takeda.co.jp

参加者名簿 名前	、 所属 〒 住所	Te! FAX F-mail
 今井 宏彦		0791-58-0138
いまい ひろひこ	座	0791-58-0137
	678-1297	h.imai@sci.himeji-tech.ac.jp
	兵庫県赤穂郡上郡町光都 3-2-1	
井町 美佐子	ブルカー・バイオスピン株式会社 アプリケーション部	029-852-1235(内 220)
いまち みさこ	305-0051	029-858-0322
	茨城県つくば市二の宮 3-21-5	misako.imachi@bruker~biospin.
		Ч
岩下 孝	(財)サントリー生物有機科学研究所 機器分析室	075-962-6044
いわした たかし	618-8503	075-962-2115
	大阪府三島郡島本町 若山台 1-1-1	iwashita@sunbor.or.jp
岩瀬 由紀子	福岡大学薬学部 中央機器室	092-871-6631(内 6651)
いわせ ゆきこ	814-0180	092-863-0389
•	福岡市城南区七隈 8−19−1	wase@fukuokau.ac.jp
植木 定雄	ブルカー・パイオスピン株式会社 マーケッティング部	029-852-1234(内 443)
うえき さだお	305-0051	029-858-0322
	茨城県つくば市二の宮 3-21-5	sadao.ueki@bruker.jp
上田 安夫	住友チタニウム株式会社 開発部 商品開発グループ	06-6413-4334(内 3300)
うえだ やすお	660-8533	06-6413-4361
	兵庫県尼崎市東浜町1番地	yueda@sumitomo-ti.co.jp
上田 貴洋	大阪大学総合学術博物館/大学院理学研究科	06-6850-5791
うえだ たかひろ	化学専攻資料先端研究室	06-6850-5785
	560-0043	ueda@museum.osaka-u.ac.jp
• •	豊中市待兼山町 1-16	
鵜澤 洵	理化学研究所植物科学研究センター	048-467-9529
うざわ じゅん	351-0198	048-462-4959
	埼玉県和光市広沢 2-1	juzawa@postman.riken.go.jp
内野 新一	北海道大学大学院工学研究科	011-706-6642
うちの しんいち	置子物理工学専攻物質物理工学講座	011-716-6175
	060-8628	schwarz@eng.hokudai.ac.jp
	札幌市北区北 13 西 8	
梅木 辰也	産業技術総合研究所 超臨界流体研究センター	022-237-5211
うめき たつや	983-8551	022-237-5224
	仙台市宮城野区苦竹 4-2-1	t-umeki@aist.go.jp
圓見 純一郎	国立循環器病センター研究所 放射線医学部	06-6833-5012(内 2560)
えんみ	565-8565	06-6835-5429
じゅんいちろう	大阪府吹田市藤白台 5-7-1	enmi@ri.ncv.go.jp

- 466 --

参加者名簿	所属	Tel
名前	₹	FAX
· · · · · · · · · · · · · · · · · · ·		E-mail
大石修	分子科学研究所	0564-55-7427
おおいし おさむ	444-8585	0564-54-2254
	愛知県岡崎市明大寺町 字西郷中 38 番地	oishi@ims.ac.jp
大木 進野	北陸先端科学技術大学院大学	0761-51-1461
おおき しんや	ナノマテリアルテクノロジーセンター	0761-51-1455
	923-1292	shinya-o@jaist.ac.jp
	石川県能美郡辰口町旭台 1-1	
大郷 耕輔	東京農工大学大学院工学研究科	042-388-7025
おおごう こうすけ	生命工学専攻生体機能工学講座	042-383-7733
. · · ·	184-8588	ohgo@cc.tuat.ac.jp
	東京都小金井市 中町 2-24-16	· .
大竹 紀夫	東横化学(株)研究開発室	044-435-5866(内 687)
おおたけ のりお	211-8502	044-435-6678
	神奈川県川崎市 中原区中丸子 1280	ohtake-norio@toyoko-jp.com
大橋 芸奈	理化学研究所 GSC タンパク智繕浩機能研究グループ	045-503-9212
おおはし わかな	230-0045	045-503-9210
	横浜市鶴見区末広町 1-7-22	wohashi@gsc.riken.go.jp
大道 弘明	大阪大学 蛋白質研究所物性部門	06-6879-8598(内 8598)
おおみち ひろあき	565-0871	06-6879-8599
	大阪府吹田市山田丘 3-2	OMICHI@protein.osaka-u.ac.jp
岡 秀行	東ソー分析センター 南陽事業部解析グループ	0834-63-9921
おか ひでゆき	746-0006	0834-63-9940
· .	山口県周南市開成町 4560	oka@tosoh-arc.co.jp
小川 潔	旭化成ファーマ(㈱) 創薬第一研究所	0558-76-7085
おがわ きよし	410-2321	0558-76-2947
,	静岡県田方郡大仁町三福 632-1	ogawa.kg@om.asahi-kasei.co.jp
荻野 孝史	国立精神・神経センター神経研究所	042-341-2711(内 5252)
おぎの たかし	187-8502	042-342-7521
	東京都小平市 小川東町 4-1-1	ogino@ncnp.go.jp
奥田 秀泰	奈良先端科学技術大学院大学バイオサイエンス研究科	0743-72-5572
おくだ ひでやす	630-0101	0743-72-5579
	奈良県生駒市高山町 8916-5	hi-okuda@bs.aist-nara.ac.jp
小野 真也	筑波大学物理工学系巨瀨研究室	029-853-5214
おの しんや	筑波大学大学院理工学研究科	029-853-5205
	300-8573	ono@mrlab.bk.tsukuba.ac.jp
	茨城県つくば市天王台 1-1-1	

— 467 **—**

参加者名簿 冬前	所属	Tel
ייה בר	住所	F-mail
		011-716-6642(内 6642)
おわり ひろし	量子物理工学専攻分子物理工学分野	011-716-6175
	060-8628	owari@eng.hokudai.ac.ip
	北海道札幌市北区北 13 西 8	
嘉数 あや	東京農工大学大学院工学研究科	042-383-7733
かかず あや	生命工学専攻生体機能工学講座	042-383-7733
	184-8588	kakazu@cc.tuat.ac.jp
:	東京都小金井市 中町 2-24-16	
香川 晃徳	大阪大学大学院基礎工学研究科 システム創成専攻	06-6850-6323
かがわ あきのり	電子光科学領域量子機能エレクトロニクス講座	06-6850-6339
	560-8531	kagawa@qc.ee.es.osaka~u.ac.jp
	豊中市待兼山町 1-3	
垣田 信吾	協和発酵工業(株)東京研究所	042-725-2555(内 2220)
かきた しんご	194-8533	042-726-8330
	東京都町田市旭町 3-6-6	skakita@kyowa.co.jp
葛西 佑一	横浜市立大学大学院総合理学研究科	045-508-7224
かさい ゆういち	生体超分子システム科学専攻	045-508-7364
	230-0046	kyuichi@postman.riken.go.jp
	神奈川県横浜市鶴見区 末広町 1-7-29	
19 31 #		
焼 弘典	泉都大学化学研究所 材料物性基礎二	0/74-38-3149
かし ひろのり		0//4-38-3148
	京都府于冶巾ユケ庄	kaji@sci.kyoto-u.ac.jp
	横近国立士学士学院理信修和研究院 白秋理语 k 楼般部月	045-220-4264
カキ エス	1與从国立八十八十/元煤境情報研究/元 日然煤境と情報的1	045-335 4264
21200 200	<u> </u>	masakata@unulac.in
		masakaca@ynu.ac.jp
片平 律子	協和発酵工業(株)東京研究所	042-725-2555(内 2211)
かたひら りつこ	194-8533	042-726-8330
	町田市旭町 3-6-6	rkatahira@kvowa.co.ip
加藤 健一	奈良先端科学技術大学院大学バイオサイエンス研究科	0743-72-5572(内 5575)
かとう けんいち	生体高分子構造学講座	0743-72-5579
	630-0101	k-kato@bs.aist-nara.ac.jp
	奈良県生駒市高山町 8916-5	
•		
加藤 祐子	東和大学工業化学科 バイオ工学コース	092-541-1512(内)971
かとう ゆうこ	815-0015	
	福岡市南区筑紫丘 1-1-1	yukato@tohwa-u.ac.jp

参加者名簿	所属	Tel
名前		FAX
加藤一光一	名古屋巾立大字大字院渠字研究科 生命分于慎道子分野	052-836-3447
かとう こういち	40/-002/	052-830-3447
	石口座市场低区口边通 3-1	Kkatowphar.nagoya~cu.ac.jp
門底窗	ブルカー・バイオスピン株式会社、マーケティング部	06-6394-8989
かどはら ひろし	532-0004	06-6394-9559
		hiroshi.kadohara@bruker-biosp
		injp
金久保 光央	産業技術総合研究所 超臨界流体研究センター	022-237-5211
かなくぼ みつひろ	983-8551	022-236-6839
· · · · · · · · ·	仙台市宮城野区苦竹 4─2─1	m-kanakubo@aist.go.jp
金澤 奈美	東京水産大学水産学部 食品生産学科	03-5463-0403
かなざわ なみ	108-8477	03-5463-0643
на стана на селото н Селото на селото на с	東京都港区港南 4-5-7	f005023@cc.tokyo-u-fish.ac.jp
		00 5704 0000
金坂 符	東京上某人子理上子研究科物資科字專攻 女藤熙研	03-5734-2880
かねさかしよう	152~8522	
· .	来京都日黑区入间山 2-12-1	skanesakepolymer.titech.ac.jp
金橋 康二	新日本製鐵(株) 技術開発本部	0439-80-2264
かねはし こうじ	先端技術研究所 解析科学研究部	0439-80-2746
	293-8511	kanehasi@re.nsc.co.jp
	千葉県富津市新富 20-1	
亀田 篤司	大阪大学蛋白質研究所 溶液学部門	06-6879-8615
かめだ あつし	565-0871	06-6879-8616
	大阪府吹田市山田丘 3-2	atkame@protein.osaka-u.ac.jp
川口謙	(株)東レリサーチセンター 構造解析研究室	0467-32-9976
かわぐち けん	248-8555	0467-32-0414
	鎌倉市手広 1111	Ken_Kawaguchi@trc.toray.co.jp
川口 折朗	ゴルカー・バイナフピン株式合社、技術サービマ部	06-6304-8080
川口 白切 かわぐた てつろう	532-0004	06-6394-9559
MAN 5 (20)	552 5554 大阪市涼川区西宮原 1-8-29 テラサキ第 2 ビル 2 階	tetsuro kawaguchi@bruker-bio
		spin.in
		- 1- unite
川村 出	横浜国立大学大学院工学府 機能発現工学専攻	045-339-4232(内 4231)
かわむら いずる	機能解析化学コース	045-339-4251
	240-8501	d02ga210@ynu.ac.jp
	神奈川県横浜市保土ヶ谷区常盤台 79-5	

参加者名簿 名前	所属	Tel FAX
	住所	E-mail
木川 隆則	理化学研究所 ゲノム科学総合研究センター	045-503-9203
きがわ たかのり	タンパク質構造・機能研究グループ	045-503-9643
	230-0045	kigawa@jota.gsc.riken.go.jp
	横浜市鶴見区末広町 1-7-22	
北原 亮	理化学研究所播磨研究所	0791-58-2838
きたはら りょう	679-5148	0791-58-2835
	兵庫県佐用郡三日月町 光都 1-1-1	kitahara@spring8.or.jp
金養美	東京工業大学 理工学研究科 物質化学専攻 安藤勲研	03-5734-2880
きむ そんみ	152-8522	03-5734-2889
	東京都目黒区大岡山 2-12-1	smkim@polymer.titech.ac.jp
木村 敦臣	大阪大学大学院医学系研究科保健学専攻医用物理工学講	06-6879-2577
きむら あつおみ	<u>æ</u>	06-6879-2577
	565-0871	kimura@sahs.med.osaka−u.ac.j
	吹田市山田丘 1-7	p
木村 朋子	(株)資生堂 研究開発本部 安全性・分析センター 分析研	045-590-6057
きむら ともこ	究室。	045-590-6089
	224-8558	tomoko.kimura@to.shiseido.co.j
	横浜市都筑区早渕 2-2-1	p
木村 由美子	日本大学薬学部 分析センター	047-465-7362
きむら ゆみこ	274-8555	047-465-7362
	千葉県船橋市習志野台 7-7-1	kimura@pha.nihon-u.ac.jp
木村 雅晴	住友化学工業株式会社 有機合成研究所	06-6466-5171(内 3704)
きむら まさはる	研究グループ(分析物性)	06-6466-5459
	554-8558	kimuram5@sc.sumitomo-chem.
	大阪市此花区春日出中 3-1-98	cojp
木村 英昭	東京工業大学大学院理工学研究科	03-5734-2880
きむら ひであき	物質科学専攻安藤(勲)研究室	03-5734-2889
	152-8552	hkimura@polymer.titech.ac.jp
	東京都目黒区大岡山 2-12-1	
日下 康成	京都大学化学研究所 材料物性基礎研究部門3	0774-38-3152
くさか やすなり	611-0011	0774-38-3148
	京都府宇治市五ケ庄	kusaka@molmat.kuicr.kyoto-u.
		acjp
串田 克彦	バリアンテクノロジーズジャパン NMR 応用部	03-5232-1238
くしだ かつひこ	108-0023	03-5232-1264
	東京都港区芝浦 4-16-36	katsuhiko.kushida@varianinc.c

*7*0 —

om

参加者名簿 ^{夕前}	所属	Tel Fax
10 89	住所	E-mail
 楠瀬 香織	大正製薬株式会社 医薬研究所 リード探索研究室	048-669-3061(内 3139)
くすのせ かおり	331-9530	048-652-7254
	埼玉県さいたま市 北区吉野町 1-403	k.kusunose@po.rd.taisho.co.jp
窪田 聖子	明治薬科大学 機器分析センター	0424-95-8418
くぼた しょうこ	204-8588	0424-95-8418
	清瀬市野塩 2-522-1	s-kubota@my-pharm.ac.jp
栗田 順一	バリアンテクノロジーズジャパン NMR 応用部	03-5232-1238
くりた じゅんいち	108-0023	03-5232-1264
	東京都港区芝浦 4-16-36	junichi.kurita@varianinc.com
要本 兵明	筑波大学大学院教理物智利学研究科 巨潮研究室	029-853-5214
イイ 山り たけあき		029-853-5205
	茨城県つくば市天王台 1-1-1	kurimoto@mrlab.bk.tsukuba.ac.
		p
要本 智充	日本電子株式会社 システム技術本部 第1グループ	042-542-2235
いもと ともみつ	196-8558	042-546-7225
	東京都昭島市武蔵野 3-1-2	kurimoto@jeol.co.jp
昆子 弘 道	奈良女子大学大学院人間文化研究科 共生自然科学 真政	0742-20-3461
(スす 7)スみち		0742-20-3461
	奈良県奈良市北魚屋西町	kurosu@cc.nara-wu.ac.jp
	ゴルカー・パノナッピンセナ会社 せ彼井 ビッゴ	020-052-1226/11 222)
キロ 辛大	クルカー・ハイオスとン株式去社 技術サービス部	029-852-1230(14 333)
いに ゆきめ	305-0091 茶城県 つくばま 二の宮 3-01-5	UZ9-838-U322
	茨城県 リーム市 二 の 宮 3-21-5	yuxio.kuroda@brukerjp
黒田 義弘	京都大学薬学研究科 製剤機能解析学分野	075-753-4530
、ろた よしひろ	606-8501 京都市左京区吉田下阿達町	yokuroda@pharm.kyoto-u.ac.jp
1111日 日本	防衛大学校 広用科学群応用化学科応用分析化学講座	046-841-3810(内 2283)
べっ ナイぞう	239-8686	046-841-5910
	横須賀市走水 1-10-20	kurotu@nda.ac.jp
桑田 一夫	岐阜大学医学部 蛋白高次機能学	058-267-2227
わた かずお	500-8705	058-267-2962
	岐阜市司町 40	kuwata@cc.gifu-u.ac.jp
甲野 裕之	ブルカー・バイオスピン株式会社 アプリケーション部	029-852-1235
こうの ひろゆき	305-0051	029-858-0322
	茨城県つくば市二の宮 3-21-5	hiroyuki.kono@bruker-biospin.j
		P

参加者名簿 名前	所属	Tel FAX
100	住所	E-mail
	構造生物学研究ユニット	042-724-6285
こうの としゆき	194-8511	042-724-6296
	東京都町田市南大谷 11 号	tkohno@libra.ls.m-kagaku.co.jp
河野 隆英	富山医科薬科大学薬学部 構造生物学研究室	076-434-7574
こうの たかひで	930-0194	076-434-5061
	富山市杉谷 2630	pd029003@st.toyama-mpu.ac.j
		p
小神 将	ブルカーバイオスピン株式会社 技術サービス部	029-852-1236
こがみ まさる	305-0051	029-858-0322
	茨城県つくば市二の宮 3-21-5	masaru.kogami@bruker-biospin
		jp
越野 広雪	理化学研究所 先端技術開発支援センター	048-467-9361
こしの ひろゆき	351-0198	048-462-4627
	埼玉県和光市広沢 2-1	koshino@postman.riken.go.jp
小柴 生造	理化学研究所横浜研究所ゲノム科学総合研究センター	045-503-9317
こしば せいぞう	タンパク質構造・機能研究グループ	045-503-9643
	230-0045	koshiba@postman.riken.go.jp
	橫浜市鶴見区末広町 1-7-22	
小島 登貴子	埼玉県産業技術総合センター北部研究所 生物工学部	048-521-0614
こじま ときこ	360-0031	048-525-6052
	埼玉県熊谷市末広 2-133	tkojima@itc-n.pref.saitama.jp
児嶋 長次郎	奈良先端科学技術大学院大学バイオサイエンス研究科	0743-72-5571
こじま ちょうじろう	分子生物学専攻生体高分子構造学講座	0743-72-5579
	630-0192	kojima@bs.aist-nara.ac.jp
	生駒市高山町 8916-5	
小関佑	東京工業大学大学院理工学研究科	03-5734-2889
こせき ゆう	有機·高分子物質專攻安藤慎治研究室	03-5734-2889
	152-8552	ykoseki@polymer.titech.ac.jp
	東京都目黒区大岡山 2-12-1	
小林 将俊	大阪大学 蛋白質研究所 物性部門	06-6879-8598
こばやし まさとし	565-0871	06-6879-8599
	大阪府吹田市山田丘 3-2	mkobayas@protein.osaka-u.ac.
		qi
小林 邦子	三菱化学生命科学研究所 構造生物学研究ユニット	042-724-6285
こばやし くにこ	194-8511	042-724-6296
	東京都町田市南大谷 11 号	kuniko@libra.ls.m-kagaku.co.ip

<u> — 472 —</u>

参加者名簿 名前	所属 〒 住所	Tel FAX E-mail
小林直	星薬科大学 機器センター	03-5498-5197(内 3008)
こばやし なお	142-8501	03-5498-5034
	東京都品川区荏原 2-4-41	konao@hoshi.ac.jp
小林 雅幸	日本電子株式会社 東京支店分析営業 G	042-528-3281
こばやし まさゆき	190-0012	042-528-3439
	東京都立川市曙町 2-8-3	maskobay@jeol.co.jp
小森 佳彦	產業技術総合研究所	029-861-4515
こもり よしひこ	物質プロセス研究部門物性解析グループ	029-861-4515
	305-8565	y.komori@aist.go.jp
. · · · ·	茨城県つくば市東 1-1-1 中央第5	
齋藤 剛	(独)産業技術総合研究所計測標準研究部門	029-861-4618
さいとう たけし	有機分析科高分子標準研究室	029-861-4487
	305-8565	takeshi.saito@aist.go.jp
	茨城県つくば市東 1-1-1 中央 5-2	
齋藤 公児	新日本製鐵(株)先端技術研究所 解析科学研究部	0439-80-2270
さいとう こうじ	293-8511	0439-80-2746
	富津市新富 20~1	saito@re.nsc.co.jp
相根 岳志	∽ 大阪大学大学院理学研究科 化学専攻生体分子化学講座	06-6850-5790(内 5790)
さがね たけし	560-0043	06-6850-5774
• • • •	豊中市待兼山町 1-16	sagane@ch.wani.osaka~u.ac.jp
佐藤 一	ブルカー・バイオスピン株式会社 アプリケーション部	029-852-1235(内 211)
さとう はじめ	305-0051	029-858-0322
х. С. С. С	茨城県つくば市二の宮 3-21-5	hajime.sato@bruker-biospin.jp
佐藤 秀紀	(株)日産アーク 研究部 有機分析研究室	046-867-5283
さとう ひでのり	237-0061	046-866-5814
	横須賀市夏島町1番地	sato_hi@nissan-arc.co.jp
佐藤 智則	沢井製薬株式会社 研究部 合成グループ	06-6928-8180
さとう とものり	535-0004	06-6923-0610
	大阪市旭区生江 1-8-14	t.sato@sawai.co.jp
沢辺 紀子	東京理科大学薬学部	04-7121-3691(内 6560)
さわべ のりこ	278-8510	04-7121-3608
•	千葉県野田市山崎 2641	sawabe@rs.tus.ac.jp
均選 委幸	三井株式会社 探索研究所	03-3492-3131(内 3732)
ゴー カー	140-8710	03-5436-8565
	東京都品川区広町 1-2-58	hideyu@shina.sankyo.co.jp
		· · · · · · · · · · · · · · · · · · ·

藤美 かじよし 一夫 いちお 弘樹 * ひろき 武志 がき たけし 夏	 〒 住所 ㈱アズウェル 研究開発部 製品研究室 567-0806 大阪府茨木市庄 2-24-3 東京大学大学院薬学系研究科 生体分子機能学講座 113-0033 文京区本郷 7-3-1 東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14 	FAX E-mail 072-622-4941(内 310) 072-622-4999 fu-shichino@azwell.co.jp 03-5841-4810 03-3815-6540 shimada@iw-nmr.f.u-tokyo.ac, p 022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
藤美	(共ア/1 (㈱アズウェル 研究開発部 製品研究室 567-0806 大阪府茨木市庄 2-24-3 東京大学大学院薬学系研究科 生体分子機能学講座 113-0033 文京区本郷 7-3-1 東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	072-622-4941(内 310) 072-622-4999 fu-shichino@azwell.co.jp 03-5841-4810 03-3815-6540 shimada@iw-nmr.f.u-tokyo.ac, p 022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
 小、 ふじよし 一夫 いちお 弘樹 ひろき 武志 がき たけし 亨 	567-0806 大阪府茨木市庄 2-24-3 東京大学大学院薬学系研究科 生体分子機能学講座 113-0033 文京区本郷 7-3-1 東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	072-622-4999 fu-shichino@azwell.co.jp 03-5841-4810 03-3815-6540 shimada@iw-nmr.f.u-tokyo.ac, p 022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
ー夫 いちお 弘樹 [*] ひろき 武志 がき たけし 亨	大阪府茨木市庄 2-24-3 東京大学大学院薬学系研究科 生体分子機能学講座 113-0033 文京区本郷 7-3-1 東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	fu-shichino@azwell.cojp 03-5841-4810 03-3815-6540 shimada@iw-nmr.f.u-tokyo.ac, p 022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
ー夫 いちお	東京大学大学院薬学系研究科 生体分子機能学講座 113-0033 文京区本郷 7-3-1 東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	03-5841-4810 03-3815-6540 shimada@iw-nmr.f.u-tokyo.ac, p 022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
ー × …いちお むひろき 武志 がき たけし 亨	東京入学大学院架学系研究科 生体分子機能学調座 113-0033 文京区本郷 7-3-1 東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	03-5841-4810 03-3815-6540 shimada@iw-nmr.f.u-tokyo.ac, p 022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
弘樹 * ひろき 武志 がき たけし 亨	113-0033 文京区本郷 7-3-1 東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	03-3815-8540 shimada@iw-nmr.f.u-tokyo.ac, p 022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
弘樹 [*] ひろき 武志 がき たけし 亨	東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	p 022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
弘樹 [*] ひろき 武志 がき たけし 亨	東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	P 022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
弘樹 [*] ひろき 武志 がき たけし 亨	東北大学大学院生命科学研究科 981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	022-717-8805 022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
* ひろき 武志 がき たけし 亨	981-8555 宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	022-717-8806 hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
武志 がき たけし 亨	宮城県仙台市青葉区 堤通雨宮町 1-1 沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	hiroki@biochem.tohoku.ac.jp 06-6926-2628 06-6923-0610
武志 がき たけし 亨	沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	06-6926-2628 06-6923-0610
武志 がき たけし 亨	沢井製薬株式会社 大阪研究所 合成グループ 535-0004 大阪府大阪市 旭区生江 1-8-14	06-6926-2628 06-6923-0610
がき たけし 亨	535-0004 大阪府大阪市 旭区生江 1-8-14	06-6923-0610
· · ·	大阪府大阪市 旭区生江 1-8-14	t also rali@aavort t-
亨		L.Shogaki@SaWai.Co.jp
亨		
-	筑波大学物理工学系理工学研究科 巨瀬研究室	029-853-5214
とおる	305–8573	
	茨城県つくば市天王台 1-1-1	shirai@mrlab.bk.tsukuba.ac.jp
平三郎	東京薬科大学薬学部 第一薬品分析化学	0426-76-4537(内 2405)
う へいさぶろう	192-0392	0426-76-4537
	東京都八王子堀之内 1432-1	shindo@ps.toyaku.ac.jp
眞喜子	神戸薬科大学 中央分析室	078-441-7591
らまきこ	658-8558	078-441-7591
	神戸市東灘区 本山北町 4 - 19 -1	makiko-s@kobepharma-u.ac.jp
立 ⁄ 一	横近市立士学士学院総会理学研究到	045-508-7215
入る こんよく	後次中立大子大子院総百座子明九件 佐休祝公子シュテノ利学市広計測利学研究安	045-508-7215
	王体超力于ノス) 本科子寺攻計 別科子 研究主 230-0045	huntoku@teurumi.vokohama-c
	200 0040 横近市鶴目区末広町 1-7-29	
		0.00Jp
望	東京都立大学大学院理学研究科 有機構造生物化学研究室	0426-77-1111(内 3552)
ー り のぞみ	192-0397	0426-77-2544
	東京都八王子市南大沢 1-1	sugimori@nmr.chem.metro-u.a
		cjp
咲良	理化学研究所 ゲノム科学総合研究センター	045-503-9314(内 5551)
さくら	タンパク質構造・機能研究グループ	045-503-9496
	230-0045	sakura@gsc.riken.go.jp
	横浜市鶴見区末広町 1-7-22	
**	日本十岁女祖学和 化学教	02-3330-1151(中 5300)
////////////////////////////////////	口本八子乂理子部 10子科 152-0550	03-5317-0422
こついら	190-8990	03-031/~9433
	眞 喜 子 ら 支 ら <i>徳 ぷんと</i> く 望 り の ぞみ 供 さ く ら 二	東京都八王子堀之内 1432-1 眞喜子 神戸薬科大学 中央分析室 らまきこ 658-8558 神戸市東灘区 本山北町 4 - 19 -1 文徳 横浜市立大学大学院総合理学研究科 さら ぶんとく 生体超分子システム科学専攻計測科学研究室 230-0045 横浜市鶴見区末広町 1-7-29 望 東京都立大学大学院理学研究科 有機構造生物化学研究室 りのぞみ 192-0397 東京都八王子市南大沢 1-1 咲良 理化学研究所 ゲノム科学総合研究センター さくら タンパク質構造・機能研究グループ 230-0045 横浜市鶴見区末広町 1-7-22 浩一 日本大学文理学部 化学科 こういち 156-8550 車京都世田公区 桜 上水 3-25-40

.

参加者名簿	所属	Tel
名前	〒	FAX
	大阪大学理学専攻 化学科 NMR 室	06-6850-4570
せいじ あだち	560-0043	sadachi@chem.sci.osaka-u.ac.j
	豊中市待兼山1番1号	p
清宮 恭子	理化学研究所 ゲノム科学総合研究センター	045-503-9642
せいみや きょうこ	230-0045	043-503-9641
	横浜市鶴見区末広町 1−7−22 中央研究棟 C116	seimiya@gsc.riken.go.jp
40 H.M		
潮尾 方輝	京都府立医科大学 生理学·生理機能制御字部門	075-251-5309
せみ よしくる	602-0841	075-251-0295
	泉都市工泉区洞原町 仏小路工かる健井町 403	yseo@rj8.so=net.ne.jp
関 宏子	千葉大学 分析センター	043-290-3810
せきひろこ	263-8522	043-290-3813
	千葉市稲毛区弥生町 1-33	seki@cac.chiba−u.ac.jp
関口 和彦	富山化学工業株式会社分析研究部	076-431-8269(内 5631)
せきぐち かずひこ	930-8508	076-431-8208
	富山県富山市下奥井 2-4-1	KAZUHIKO_SEKIGUCHI@toya
•		ma-chemical.co.jp
84 4 4		A.4. 407 0505
関小 兄彦	理化字研究所植物機能研究室 埼玉大字理上字研究科	048-467-9525
せきまた かつひこ	351-0198 体工目和坐古広辺 2-1	048-402-4074
	「与玉宗和无印広水 2 ⁻ 1	sekimata@postman.nken.go.jp
高橋 亮	湧永製薬株式会社 創薬研究所 合成化学研究室	0826-45-2331
たかはし りょう	739-1195	0826-45-4351
	広島県高田郡甲田町 下甲立 1624	r_taka0521@yahoo.co.jp
高橋 大樹	大阪大学蛋白質研究所物性部門	06-6879-8598
たかはし ひろき	565-0871	06-6879-8599
	大阪府吹田市山田丘 3-2	daiki@protein.osaka-u.ac.jp
古话 炎土	辛娄性 <u>维</u> 纷合理实际 开始烤银额长斑实力、方	02-2500-0112
高橋 木大 たかけり ひでち	生来技術総合研究所 生物情報解析研究センター 135-0064	03-3588-8099
TEMIAC O'COS	■ 53 0004 ■ 方 41-6	hid@ibirc.aist.go.ip
高橋 征三	日本女子大学理学部物質生物科学科	03-5981-3670
たかはし せいぞう	112-8681	03-5981-3656
Ŧ	東京都文京区目白台 2-8-1	t_seizo@fc.jwu.ac.jp
高屋 展宏	(独)国立環境研究所 環境ホルモン棟	029-850-2862
たかや のぶひろ	305-8506	029-850-2880
2	茨城県つくば市小野川 16-2	takaya.nobuhiro@nies.go.jp

参加者名簿 名前	所属 〒 住所	Tel FAX E−mail
高山 俊夫	神奈川大学工学部応用化学科	045-481-5661(内 3889)
たかやま としお	221-8686	045-413-9770
· •	横浜市神奈川区六角橋 3-27-1	takayt01@kanagawa-u.ac.jp
高山 陽子	塩野義製薬(株)創薬研究所 副所長席化学系物理化学 G	0664585861(内 5278)
たかやま ようこ	553-0002	06-6458-0987
	大阪市福島区鷺洲 5-12-4	yohko.takayama@shionogi.co.jp
瀧之脇 浩人	大阪大学大学院薬学研究科 分子薬科学専攻高分子化学分	06-6879-8222
たきのわき ひろと	野	06-6879-8221
	565-0871	hiroto@phs.osaka-u.ac.jp
· · · · ·	大阪府吹田市山田丘 1-7	
竹内 敦子	神戸薬科大学 中央分析室	078-441-7592
たけうち あつこ	658-8558	078-441-7591
	神戸市東灘区 本山北町 4-19-1	takeuchi@kobepharma~u.ac.jp
竹腰 清乃理	京都大学大学院理学研究科化学 分子構造研究室	075-753-4015
たけごし きよのり	606-8502	075-753-4000
	京都市左京区北白川追分町	takeyan@kuchem.kyoto−u.ac.jp
龍野 宏人	東京工業大学大学院理工学研究科	03-5734-2889
たつの ひろと	有機·高分子物質專攻安藤慎治研究室	03-5734-2889
	152-8552	htatsuno@polymer.titech.ac.jp
	東京都目黒区大岡山 2-12-1	
田中 亮	東横化学株式会社 研究開発室	044-435-5866
たなか りょう	211-8502	044-435-6678
	神奈川県川崎市中丸子 1280	tanaka-ryo@toyoko-jp.com
田中 剛史	三菱化学生命科学研究所 構造生物学研究ユニット	042-724-6285
たなか たけし	194-8511	042-724-6296
	東京都町田市南大谷 11 号	takeshi@libra.ls.m-kagaku.co.jp
田中 彬嗣	九州大学大学院薬学研究院 NMR 測定室	092-642-6551
たなか よしつぐ	812-8582	092-642-6551
	福岡市東区馬出 3-1-1	y.tanaka@adm.phar.kyushu~u.a c.jp
		Contraction Sector
田畑 亮	奈良先端科学技術大学院大学バイオサイエンス研究科	0743-72-5577
たばた りょう	分子生物学専攻生体高分子構造学講座	0743-72-5579
	6300101	r-tabata@bs.aist-nara.ac.jp
	奈良県生駒市高山町 8916-5	
田村 友美	ブルカー・バイオスピン株式会社 マーケティング部	06-6394-8989
たむら ともみ	532-0004	06-6394-9559
· · · ·	大阪市淀川区西宮原 1-8-29 テラサキ第2ビル2階	tomomi.tamura@bruker-biospi
	3	njp

参加 去 夕 簿	"窗	Tel
多加油石海 名前	7/1/2%	FAX
	住所	E-mail
田村 充	田村技術士事務所	03-3664-6515
たむら みつる	103-0007	03-3664-6515
	東京都中央区日本橋浜町 3-16-9-804	PFG00657@nifty.ne.jp
去】 南 幻	统法十岁十岁时 教田杨贺利尚可办利 山土可办完	020952-7270
立八 直転 た山いは たたき	巩成八千八千阮 数理彻夏科子研九科 山本研九王	029-853 7370
129019 4032	305-8571 茨城県つノビ市モモン 1-1-1	tachiiri@dmh.chem.tsukuha.ac.i
	次列示 フィは 仰天 エロー・トー 生 中水 修正 休し 000	D
趙晨華	理化学研究所ゲノム科学総合センター	045-503-9317
ちょう しんか	タンパク質構造機能研究グループ・タンパク質構造研究チー	
1997 - B	<u></u>	zhao@gsc.riken.go.jp
	230-0045	
	横浜市鶴見区末広町 1-7-22	
堤 耀廣	北海道大学大学院工学研究科	011-706-6639
つつみ あきひろ	畳子物理工学専攻物質物理工学講座	011-706-6639
	060-8628	atsutsu@eng.hokudai.ac.jp
	札幌市北区北 13 西 8	
***		0544 00 7040
津野 倶冶	晶士与具ノイルム 晶工宮研究所 4.5 440	0544-26-7642
50 666	418-8666	
	静间绕备工品币入中里 200	shinji_tsuno@iujihim.co.jp
弟子丸雄一	JSR株式会社 物性分析室	0593-45-8059
でしまる ゆういち	510-8552	0593-45-8107
	三重県四日市市川尻町 100	yuuichi_deshimaru@jsr.co.jp
出村 誠	北海道大学大学院理学研究科	011-706-2771
でむら まこと	生物科学専攻生体高分子解析学講座	011-706-2771
	060-0810	demura@sci.hokudai.ac.jp
	札幌市北区北 10 西 8	
寺尾 武彦	京都大学大学院理学研究科 化学教室分子構造化学研究室	075-753-4011
てらお たけひこ	606-8502	075-753-4000
	京都市左京区北白川追分町	terao@kuchem.kyoto-u.ac.jp
	楼近本立十学士学院纷合理学环办到	045-508-7215
大野 剛芯	俄杰田立入于入于阮松口理于 听九件 开住投公之計測封受護应	045-508-7361
こんの たけし	王 平坦刀丁百 炽 1+于舑/庄 920_0045	tenno@tsurumi.vokohama-cu.a
•	250 0040 横浜市雑県区支広町 1-7-29	C.D
土居 幹嗣	大阪大学理学研究科·理学部 化学専攻固体 NMR 測定室	06-6850-5567(内 5567)
どい もとつぐ	560-0043	06-6850-5567
	豊中市待兼山町 1-1	mdoi@chem.sci.osaka-u.ac.jp
		4

参加者名簿 名前	所属	Tel FAX
·	住所	E-mail
堂本 竹雄	ブルカー・バイオスピン株式会社 マーケティング部	029-852-1234(内 442)
どうもと たけお	305-0051	029-858-0322
	茨城県つくば市二の宮 3-21-5	takeo.domoto@bruker~biospin.j
		p
土江 松美	大阪市立大学理学研究科 有機化学2研究室	06-6605-2597
どえ まつみ	558-8585	06-6605-2597
÷	大阪市住吉区杉本 3-3-138	matsumi@sci.osaka-cu.ac.jp
		0.15 500 0017
初尾 向哉	理化学研究所横浜研究所ケノム科学総合研究センター	045-503-9317
とちお なおや	タンハク質構造・機能研究クルーノタンハク質構造研究ナー ,	
		tochio@gsc.riken.go.jp
	230-0040	
	傾洪巾鶴兒区木/ム┙」1∼/~22	
宣選 中	理化学研究所 ゲノム総合利学研究センター	045-503-9643
副岸 心 とみざわ ただ!	ないパク質構造・機能研究グループ	045-503-9317
		tomizawa@gsc riken go in
	200 0040 袖会川県横浜市鶴見区 支広町 1-7-22	tomizawa egoon kongojp
:		
冨羽 貞範	筑波大学物理工学系 巨瀨研究室	029-853-5214
とみは さだのり	305-8573	029-853-5145
	茨城県つくば市天王台 1-1-1	tomiha@mrlab.bk.tsukuba.ac.jp
虎谷 秀一	横浜国立大学工学府	045-339-4231
とらや しゅういち	機能発現工学専攻物質機能解析化学⊐ース	
	240-8501	toraya@ynu.ac.jp
	横浜市保土ヶ谷区 常盤台 79-5	
内藤 晶	横浜国立大学大学院工学研究院	045-339-4232
ないとう あきら	240-8501	045-339-4251
	横浜市保土ヶ谷区常盤台 79-5	naito@ynu.ac.jp
中井 利仁	バリアンテクノロジーズジャパン NMR 応用部	03-5232-1238
なかい としひと	108-0023	03-5232-1264
	東京都港区芝浦 4−16−36	toshihito.nakai@varianinc.com
中国体物	地西南利士学士学院蒋学研究利 苏学事功生会有機化学議	079-453-7502(151 7502)
甲尾 住和	仲户架科入子入子阮架子研究科 架子寻攻主叩有做化子講	078-453-7592
ゆかめ よしのり	/≇ 695_9559	ien35157@et kohenharma-u aa
· · · · · · · · · · · · · · · · · · ·	000-6006 独百古東灘区 太山北町 4 丁日 10-1	jeussionest.kobephanna u.ac.
		ч с
長尾 訟	筑波大学大学院数理物質科学研究科 生物無機化学研究室	0298-53-7369
ながお、さとし	305-0001	0298-53-7369
	茨城県つくば市天王台 1-1-1	s_nagao@dmb.chem.tsukuba.ac
;		jp

参加者名簿	所属	Tel
名前		FAX
		E-mail
仲ピー良造	大阪大学大学院医学糸研究科保健学専攻医用物理工学講	06-6879-2577
なかさ よしそう		06-6879-2577
		nakazay@sahs.med.osaka=u.ac.
н	吹田市山田庄 1-7	qL
永晴 女物		040 506 0101
小阪 文心 たがさか ごんそう	而入\怀/ 悟垣胜彻研先所 1019512	042~080~8121
1811. CN. 1810. C.)	191-0012 東古初日野市地にに 4-2-2	
	未示部口封印/27114-3-2	bunsowenino.teijin.co.jp
中澤 靖元	東京農工大学工学部生命工学科 胡食研究室	042-388-7025
なかざわ やすもと		042-383-7733
	東京都小金井市 中町 2-24-16	vasumoto@cc.tuat.ac.ip
長島 敏雄	RIKEN GSC タンパク構造・機能研究グループ	045-503-9462
ながしま としお	230-0045	045-503-9641
	横浜市鶴見区末広町 1~7-22	toshion@gsc.riken.go.jp
中西 康哲	京都大学大学院工学研究科	075-383-2734
なかにし やすのり	合成·生物化学専攻機能化学講座	075-383-2732
	615-8510	ynakani@sbchem.kyoto-u.ac.jp
	京都市西京区京都大学桂	
山村 姜っ	東方工業大学資源化学研究研	045-024-5110(15 5110)
エカ 義之	スホエネハ于貝///にナリス/// 226-8503	045-924-5109
an 05 aoire	描述市級区長津田町 4259	vnakamur@restitech.ac.in
仲村 高志	理化学研究所 中央研究所	048-467-9362
なかむら たかし	先端技術開発支援センター 物質構造解析チーム	048-462-4627
	351-0198	takashi.nakamura@postman.rik
•	埼玉県和光市広沢 2-1	en.go.jp
中村 壮史	産業技術総合研究所生物情報解析研究センター	03-3599-8090
なかむら たけふみ	構造ゲノム解析グループ分子認識解析チーム	03-3599-8099
	135-0064	tnakamura@jbirc.aist.go.jp
	東京都江東区 青海 2-41-6	
144 data	上的上兴上兴的历光才和办利但他兴喜地在前处地不光来	00 0070 0077
個崎 美智子	大阪大学大学院医学系研究科保健学専攻医用物理工学講	06-68/9-25/7
ならさざ みちこ		00-08/9-20/7
	303-00/1 10	ninarazakwsans.meu.osaka-u.a
		900
西野 直人	横浜市立大学大学院総合理学研究科	045-508-7207
にしの なおと	生体超分子システム科学専攻先端 MR 科学研究室	045-508-7360
	230-0045	nishino@gsc.riken.go.jp
	横浜市鶴見区末広町 1-7-29	

参加者名簿 名前	所属	Tel FAX
. · ·	住所	E-mail
西山 裕介	理化学研究所 GSC タンパク質構造・機能研究グループ	045-503-9229
にしやま ゆうすけ	230-0045	045-503-9228
	横浜市鶴見区末広町 1−7−22	nishi@gsc.riken.go.jp
西山 隆司	帝国臟器製薬株式会社川崎研究所	044-812-8649
にしやま たかし	製品開発研究部分析センター	044-811-6898
	213-8522	nishiyama-t@kw.teikoku-horm
	川崎市高津区下作延1604	one.co.jp
西山 大介	東京水産大学水産学部 食品生産学科	03-5463-0403
にしやま だいすけ	108-8477	03-5463-0643
	東京都港区港南 4-5-7	fm02514@cc.tokyo-u-fish.ac.jp
沼田 ゆかり	北海道大学大学院工学研究科	011-706-6568
ぬまた ゆかり	060-8628	011-706-6568
	札幌市北区北 13 西 8	numata@dove~mc.eng.hokudai.
		ac.jp
殿口 洪	쓥	02 2600-0151(th 2216)
野口 滋 のパナーレビス	第一要架体式会社 聚架技術研究所	03-5000-0151([-] 2510)
015 010	江戸川区北葛西 1-16-13	noguczow@daiichipharm.co.jp
		· · · · · · · · · · · · · · · · · · ·
野田 康夫	関西学院大学理工学部 物理学科	079-565-8511
のだ やすお	669-1337	079-565-9077
	三田市学園2丁目1番地	yasuonoda@kwansei.ac.jp
野村 薫	サントリー生物有機科学研究所	075-962-3742
のむら かおる	618-8503	075-962-2115
	大阪府三島郡島本町 若山台 1-1-1	nomura@sunbor.or.jp
甲予本寸 詞之	奈良先端科学技術大学院大学バイオサイエンス研究科	0743-72-5577
のからまこと	分子生物学専攻生体高分子構造学講座	0743-72-5579
	630-0101	m-nomura@bs.aist-nara.ac.jp
	奈良県生駒市高山町 8916-5	
長谷川 淳	第一製薬株式会社 創薬開拓研究所	03-3680-0151(内 3466)
はせがわ じゅん	134-8630	03-5696-4266
	東京都江戸川区 北葛西 1-16-13	haseg7li@daiichipharm.co.jp
第4 	ᅖᄮᆇᄪᅘᇎᄰᇧᆺᆋᆇᄵᇫᄪᅘᆂᆞᇰ	045-502-0220
畑ツ 感	理16子研究所7ノム科子総合研究センター 5、パク愛携法,機能研究が』→1	040-000-9229
はたなか みのる	>ノハノ貝悟垣 成能研究ソル──ノ 220-0045	u40-000-9220 minoruh@aso rikan ao io
	230 ⁰⁰⁴³ 楼派主想目区主庄町 1_7_99	minorunægso.nken.go.jp
	按,供归蠲元位不,ΔΨ, 1⁻,/⁻ζζ	
八田 玲子	理化学研究所 GSC C116	045-503-9642
はった れいこ	230-0045	045-503-9641
	横浜市鶴見区末広町 1-7-22	rei8@gsc.riken.go.jp

— 480 —

参加者名簿 名前	所属	Tel FAX
	住所	E-mail
服部 峰之	(独) 産業技術総合研究所	029-861-5537
はっとり みねゆき	光技術研究部門 デバイス機能化技術G	029-861-5540
	305-8568	mhattori@ni.aist.go.jp
· ·	茨城県つくば市梅園 1-1-1 中央第二	
濱島 斉	㈱三和化学研究所 創薬研究所	0594-72-6221(内 363)
はまじま ひとし	511-0406	0594-82-0072
	三重県員弁郡北勢町 塩崎 363	h_hamajima@mb4.skk-net.com
濱田 季之	理化学研究所ゲノム科学総合研究センター	045-503-9212
はまだとしゆき		045-503-9210
	230-0045	thamada@gsc.riken.go.in
	横浜市鶴県区末広町 1-7-22	and ddg goon monigoly
林繁信	産業技術総合研究所	029-861-4515
はやししげのぶ	物質プロセス研究部門物性解析グループ	029-861-4515
	305-8565	havashi.s@aist.go.jp
	茨城県つくば市東 1-1-1 中央5	
		· · · · ·
林 文晶	理化学研究所ゲノム科学総合研究センター	045-503-9462
はやし ふみあき	タンパク質機能・構造研究グループ	045-503-9641
	230-0045	fhayashi@gsc.riken.go.jp
	横浜市鶴見区末広町 1−7−22	
早水 紀久子	産業技術総合研究所 電力エネルギー研究部門	029~861-6295
はやみず きくこ	305-8565	029-861-6295
	つくば市東つくば 中央第5	hayamizu.k@aist.go.jp
丙 * -	今1.11.光子光华圣人46 创资甘 都可办了	070 101 0010
	备山1亿子工来休式会社 剧架基盤研究所 000 0500	076-431-8218
125 200	930-6306	U/U-431-6206
	备山泉备山印下突升 2 ⁻⁴⁻¹	EIJI_HARA@toyama-chemical.
		coʻlh
原田 治幸	京都大学大学院工学研究科 分子工学専攻分子設計学講座	075-383-2542
はらだ はるゆき	615-8510	075-383-2541
	京都市西京区京都大学桂	haruyuki@mds.moleng.kyoto-u.
		ac.jp
原田 英里砂	大阪大学蛋白質研究所(社)バイオ産業情報化コンソーシア	06-6879-8598
はらだ えりさ	A second se	06-6879-8599
•	565-0871	harada@protein.osaka-u.ac.jp
	大阪府吹田市山田丘 3-2	011 700 0010
平沖 敏文		UII-/06-6640
ひらおき としふみ	北海道大学大学院工学研究科 量子物理工学専攻	
	060-8628	niraokiweng.nokudai.ac.jp

参加者名簿	所属	Tel
名前		FAX
廣明 秀一		045-508-7214(内 7214)
ひろあき ひでかす	横浜市立大字大字院総合埋字研究科	045-508-7361
	生体超分子システム科学専攻	hiroakih@tsurumi.yokohama-c
	230-0045	u.ac.jp
	横浜市鶴見区末広町 1-7-29	
廣田 洋	理化学研究所ゲノム科学総合研究センター	045-503-9211
ひろた ひろし	タンパク質構造・機能研究グループ	045-503-9210
	230-0045	hirota@gsc.riken.go.jp
	横浜市鶴見区末広町 1-7-22	
福井 洋之	北見工業大学	(0157)26-9402
ふくい ひろゆき	090-8507	0157-24-7719
	北見市公園町 165	fukui@gaea.chem.kitami-it.ac.j
		p
	· · · · · · · · · · · · · · · · · · ·	
福士 江里	北海道大学院農学研究科 GC-MS·NMR 研究室	011-726-7249
ふくし えり	060-8589	
	札幌市北区北9西9	feria@cen.agr.hokudai.ac.jp
招言 演了	十四十尚十尚院医尚玄田农利保健当事作医田施田工学课	06.6070 0577
1回画 /子丁 こノレフ パットノー	入败入于入于阮医子示听先科床健于寻攻医用初 <u>连</u> 工子讲 应	00-08/9-23/7
ふくとみ しねんこ		00-08/9-23/7
	吹田市山田王 1-7	
福見 俊夫	松山大学経営学部	089-925-7111
ふくみとしお	790-8578	
	松山市文京町4-2	fukumit@zmail.plala.or.io
藤川 昭彦	藤沢薬品工業株式会社 創薬先端技術研究室	0767-26-3311
ふじかわ あきひこ	925-0613	0767-26-3314
	石川県羽咋市飯山町ヲ32	fujikawa@mprcf.or.jp
藤倉 一繁	バリアンテクノロジーズジャパン NMR 応用部	03-5232-1238
ふじくら かずしげ	108-0023	03-5232-1264
	東京都港区芝浦 4-16-36	kazushige.fujikura@varianinc.c
		om
藤森 裕基	日本大学文理学部 化学科	03-3329-1151(内 5710)
ふじもり ひろき	156-8550	03-5317-9433
	世田谷区桜上水 3-25-40	fujimori@chs.nihon-u.ac.jp
藤原 敏道	大阪大学蛋白質研究所 物性部門	06-6879-8598
ふじわら としみち	565-0871	06-6879-8599
	吹田市山田丘 3-2	tfjwr@protein.osaka-u.ac.jp

- 482 -
| 参加者名簿
名前 | 所属 | Tel |
|-------------|--------------------------------|-------------------------------|
| ניה בר | 住所 | E-mail |
| | 大阪大学医学系研究科保健学専攻医用物理工学講座 | 06-6879-2573 |
| ふじわら ひであき | 565-0871 | 06-6879-2573 |
| | 吹田市山田丘 1-7 | fujiwara@sahs.med.osaka−u.ac. |
| | | qi |
| 降旗 一夫 | 東京大学大学院農学応用生命科学研究科 | |
| ふりはた かずお | 応用生命化学専攻 | 03-5841-5460 |
| | 113-8657 | 03-5841-8485 |
| | 東京都文京区弥生 1-1-1 | furihata@iam.u-tokyo.ac.jp |
| 古田 浩祐 | 杏林製薬(株)創薬研究所 研究管理課 | 0280-56-2201(内 303) |
| ふるた ひろすけ | 329-0114 | 0280-57-1293 |
| · · · · · | 栃木県下都賀郡野木町 野木2399-1 | hirosuke.furuta@mb.kyorin-pha |
| | | rm.co.jp |
| | | |
| ベルヒリ マーカス | ブルカー・バイオスピン株式会社 アプリケーション部 | 029-852-1235(内 212) |
| | 305-0051 | 029-858-0322 |
| | 茨城県つくば市二の宮 3-21-5 | markus.waelchli@bruker-biospi |
| | | njp |
| 逸見 光 | 独立行政法人食品総合研究所 状態分析研究室 | 029-838-8033 |
| へんみ ひかる | 305-8642 | 029-838-7996 |
| | 茨城県つくば市観音台 2-1-12 | hemmi@nfri.affrc.gojp |
| 北條 正司 | 高知大学 | 088-844-8306 |
| ほうじょう まさし | 780-8520 | 088-844-8359 |
| | 高知市曙町 2-5-1 | mhojo@cc.kochi−u.ac.jp |
| 堀井 文敬 | 京都大学化学研究所 | 0774-38-3150 |
| ほりい ふみたか | 611-0011 | 0774-38-3148 |
| | 宇治市五ケ庄 | horii@scl.kyoto~u.ac.jp |
| 堀内 崇 | 横浜市立大学大学院総合理学研究科 | 045-503-9111(内 5154) |
| ほりうち たかし | 生体超分子システム科学専攻先端 MR 科学研究室 | 045-503-9641 |
| | 230-0045 | horiuchi@gsc.riken.go.jp |
| | 横浜市鶴見区末広町 1-7-29 | |
| 本多 賢吉 | 横浜市立大学 総合理学研究科 分子生理学研究室(柴田 | 045-508-7224 |
| ほんだ まさよし | 研) | 045-508-7364 |
| | 230-0045 | honda@tsurumi.yokohama-cu.a |
| | 横浜市鶴見区末広町 1-7-29 鶴見キャンパス B311 | cjp |
| 前澤 国芳 | 大阪大学院理学研究科 化学專攻資料先端研究室 | 06-6850-5779(内 5779) |
| まえざわ くによし | 560-0043 | 06-6850-5785 |
| | 豊中市待兼山 1~16 | kmaezawa@ch.wani.osaka-u.ac |

— 483 —

参加者名簿 名前	所属	Tel
石削	↑ 住所	FAX F-mail
前田 史郎	福井大学工学部 生物応用化学科	0776-27-8635
まえだ しろう	910-8507	0776-27-8747
	福井市文京 3-9-1	maeda@acbio.fukui~u.ac.jp
益富豐	日本新薬(株) 構造合成研究G	029-850-6241
ますとみ ゆたか	305-0003	029-850-6217
,	茨城県つくば市桜 3-14-1	y.masutomi@po.nippon-shinya
		ku.co.jp
松岡 茂	大阪大学大学院理学研究科 化学専攻生体分子化学研究室	06-6850-5789
まつおか しげる	560-0043	06-6850-5785
and the second	豊中市待兼山町 1-16	matsuoka@ch.wani.osaka-u.ac.
		qį
松田 善正	筑波大学物理工学系 巨瀬研究室	029-853-5214
まつだ よしまさ	305-0821	0298-53-5205
	茨城県つくば市天王台 1-1-1	matsuda@mrlab.bk.tsukuba.ac.j
		р
松田 裕生	帝人(株) 構造解析研究所	042-586-8121
まつだ ひろのり	191-8512	042-586-8123
	東京都日野市旭ヶ丘 4-3-2	h.matsuda@teijin.co.jp
丸吉 京介	大阪大学大学院理学研究科 化学専攻生体分子化学講座	06-6850-5790(内 5790)
まるよし けいすけ	560-0043	06-6850-5774
	豊中市待兼山町 1-16	maru@ch.wani.osaka−u.ac.jp
三島 正規	奈良先端科学技術大学院大学	0743-72-5576(内 5576)
みしま まさき	バイオサイエンス研究科 生体高分子構造学	0743-72-5579
	630-0101	misima@bs.aist-nara.ac.jp
	生駒市高山町 8916-5	
光照 故	宣報十学十学院理学研究社 化学事体公子様件化学研究室	075 752-4015
小野 奴みずの たかし	京都大学大学院理学研究科 化学导致力于博坦化学研究主 606-2502	075-753-4015
0,0,9 00 12/3-0	京都市左京区北白川追分町	mizuno@kuchem.kvoto-u.ac.ip
水野 元博	金沢大学理学部化学科 物質設計講座理論化学研究分野	076-264-5686
みずの もとひろ	920-1192	076-264-5742
	金沢市角間町	mizuno@wriron1.s.kanazawa-u.
		acjp
宮ノ入 洋平 みやのいり ようへい	横浜国立大学大学院環境情報学府 環境生命学専攻生命環 境	045-339-4271
•	240-8501	d02ta011@ynu.ac.jp
	横浜市保土ヶ谷区常盤台 79-7	

参加者名簿	斫属	Tal
名前		FAY
יה ם-	住所	E-mail
	理化学研究所 ゲノム科学総合研究センター	045-503-9317
日本 加大 みわまと かずひで		040 000 0017
07 00C N 9 U C	クシハノ貝福道・(成能研究ソルーン) 000,0045	
		miyamoto@gsc.riken.go.jp
	横浜市鶴見区末広町 1−7−22	
三好 利一	産業総合技術研究所 高分子基盤技術センター	029-861-9392
みよし、としかず	135-0064	03-3599-8166
	■ = = = = = = = = = = = = = = = = = = =	t-mivoshi@aist go in
向出 政伸	京都大学大学院理学研究科 化学専攻物理化学研究室	075-753-3976(内 3976)
むかいで まさのぶ	606~8502	075-753-4054
	京都市左京区北白川追分町	mukaide@kuchem.kyoto-u.ac.j
		q
		•
村上 美和	千葉工業大学ハイテクリサーチセンター 河合研究室	047-478-0425
むらかみ みわ	275-0016	047-478-0425
	習志野市津田沼 2-17-1	murakami@ic.it-chiba.ac.jp
村山 守男	装置事業本部	044-435-5862(内 256)
むらやま もりお	211-8502	044-434-9091
	神奈川県川崎市中原区 市ノ坪 370 番地	murayama~morio@toyoko~jp.c
		om
飯塚 舜介	鳥取大学大学院医学系研究科機能再生医学専攻	0859-34-8286
めしつか しゅんすけ	生体機能医工学講座	
	683-8503	mesh@grape.med.tottori-u.ac.j
	米子市西町 86	D
		•
森井 太一	横浜市立大学大学院総合理学研究科	045-508-7215
もりい たいち	生体超分子システム科学専攻計測科学講座	
	230-0045	morii@tsurumi.yokohama~cu.a
	横浜市鶴見区末広町 1−7−29	сјр
八木 宏昌	大阪大学蛋白質研究所 物性部門	06-6879-8598
やぎ ひろまさ	565-0871	06-6879-8599
	大阪府吹田市山田丘 3-2	hyagi@protein.osaka-u.ac.jp
八島 秀仁	ブルカー・バイオスピン株式会社 マーケティング部	029-852-1234(内 449)
やしま ひでひと	305-0051	029-858-0322
	茨城県つくば市二の宮 3-21-5	hidehito.yashima@bruker-bios
۵ (۱۰) ۱		pinjp
山内 一夫	The Netherlands University of Nijmegen Solid State NMR	+31-(0)24-36-53112
やまうち かずお	6525ED Toernooiveld 1 6525ED Nijmegen	+31-(0)24-36-52112
		kyam@solidmr.kun.nl

住所 E-mail 八巻健 北海道大学連挙研究科 生物科学専攻主体高分子解析学講 011-706-2936(7) 060-0810 tyanaki@sci.hokudai.ac.jp 山口 圭一 大阪大学蛋白質研究所 蛋白質溶液学研究部門 06-6677-5111((内 9252) 056-0871 06-8579-8616 大阪大学蛋白質研究所 蛋白質溶液学研究部門 06-8677-5111((内 9252) 056-0871 06-8579-8616 大阪府牧田市山田丘 3-2 keilchi@porteinoseka-u.ac.jp 山口 芳樹 名古屋市立大学大学院連掌研究科 生命分子構造学分野 やまぐち よしき 457-0027 名古屋市立大学大学院理工学研究科 03-5734-2880 小石 玲方じ 物質科学専攻安藤敷研究室 152-8552 yyaane@polymer.titech.ac.jp 東京都目黒区大岡山 2-12-1 28-652-1236(内 333) 山本 昭彦 ブルカー・バイオスビン株式会社 技術サービス部 029-652-1236(内 333) 029-652-1236(内 333) 029-652-1236(内 333) 029-652-1236(内 333) 029-652-1236(内 333) 029-652-1236(内 333) 029-652-1236(内 333) 029-652-1236(内 333) 029-652-1236(内 333) 029-652-1236(小 335) 029-652-1236(内 333) 152-6510 29-652-9585 支球県 つくば市御参が丘 21 yokoti@yamanouchi.co.jp 営業 楡子 素良女子大学大学学院、所覚白石(研 発行) <th>参加者名簿 名前</th> <th>所属 〒</th> <th>Tel FAX</th>	参加者名簿 名前	所属 〒	Tel FAX
八巻 健 北海道大学理学研究科 生物科学専攻生体点分子解析学講 011-706-2885(内 2985) (000-0810 14駅市北区北 10 西 6 011-706-2771 山口 主一 大阪大学蛋白質研究所 蛋白質溶液学研究部門 06-6877-5111(内 9252) (050-0871 06-6879-8816 keitchi@protein.osak=u.ac.jp 山口 芳樹 そ古屋市市立大学大学院栗学研究科 生命分子構造学分野 052-636-3450 (052-636-3450 052-636-3450 052-636-3450 (052-636-3450 052-636-3450 052-636-3450 (052-636-3450 03-6734-2880 03-5734-2880 (052-652) 東京都主殿区大岡山 2-12-1 03-6734-2880 山本 昭彦 フルカー・バイオスビン株式会社 技術サービス部 02-652-1236(内 330) (02-655-0322 支京都県のうば市二の宮 3-21-5 akhiko.yamanoto@bruker-bios 152-6562 支成県つくば市毎季が丘 21 02-652-1236(内 330) (03-6734-2880 02-655-0322 akhiko.yamanoto@bruker-bios 152-6562 305-0051 02-652-1236(内 330) 02-652-1236(内 330) 152-6565 文成県つくば市毎季が丘 21 04-647 04-647 山之内製薬(株) 分析代謝研究所分析研究室 02-652-1236(h 330) 03-3707-6585 支成県つくば市毎季が丘 21 03-5700-8547 04-26320 よたおか すみえ			E-mail
やまき たけし 座 011-708-2771 060-0810 14環市北区北 10 西 8 111-708-2771 山口 主一 大阪大学室白賀研究所 蛋白賀海波学研究部門 06-6877-5111(約 9252) やまぐち けしいち 585-0871 06-6879-8616 大阪府牧田市山田丘 3-2 keiichi@protein.osaka-u.ac.jp 山口 芳樹 4古屋市立大学大学院理工学研究科 052-636-3450 やまぐち よしき 457-0027 052-636-3450 マランマシード、 03-5734-2880 03-5734-2880 山田 芳樹 東京工業大学大学院理工学研究科 03-5734-2880 小菜 柏彦 ブルカー・バイオスビン株式会社 技術サービス部 03-5734-2880 ウラじ 海菜市都昌属区大岡山 2-12-1 03-5734-2880 山本 昭彦 ブルカー・バイオスビン株式会社 技術サービス部 029-652-1236(内 338) ウラビン フジーカー・バイオスビン株式会社 技術サービス部 029-652-1236(内 338) ウラビン 305-0051 22-652-9685 支城県つくば市山幸が丘 21 029-652-1236(内 338) 029-652-1236(内 338) ウストロシ 次城県つくば市山 第が丘 21 029-652-9685 03-3707-6950 よこい たかこ 第25-8585 205-9685 03-3707-6950 支城県 つくば市山幸が丘 21 03-3707-6950 03-3707-6950 よこおか ずみえ 第5627 20	八巻 健	北海道大学理学研究科 生物科学専攻生体高分子解析学講	011-706-2985(内 2985)
060-0810 札幌市北区北10百8 tyamaki@sci.hokudai.ac.jp 山口 ま一、 やまぐち けいいち た販店や吸田市山田丘 3-2 06-6877-5111(内 9252) 06-6879-8816 keiichi@protein.osaka-u.ac.jp 山口 芳樹 やまぐち よしき 名古屋市立大学大学院栗学研究科 生命分子構造学分野 407-0027 名古屋市瑞穂区田辺温 3-1 052-836-3450 052-836-3450 929-851-9350 052-836-3450 052-836-3450 052-836-3450 052-836-3450 052-836-3450 052-836-3450 052-836-3450 052-836-3450 052-836-3450 052-8365 299-852-1236(力 338) 03-5734-2880 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 029-852-9585 900 03-3707-6950 900 900-847 03-3707-6950 900 900-847 042-20-3461 200-0045 81 042-20-3461 200-0045 81 042-20-3461 200-0045 81 042-20-3461 200-0045 81 045-503-9641 900 20-503-9641 900 20-503-9641 900 20-503-9641 900 20-503-9641 900 20-503-9641 900 20-503-9641 900 20-503-9641 900 900 900 900 900 900 900 900 900 90	やまき たけし	座	011-706-2771
 ・ 札幌市北区北 10 酉 8 山口 主一 やまぐち けいいち ち65-0871 大阪府牧田市山田丘 3-2 山口 芳樹 やまぐち よしき 名古屋市立大学大学院栗学研究科 生命分子構造学分野 やまぐち よしき 名古屋市市瑞穂区田辺通 3-1 いの 芳樹 やまぐち よしき 取す 報告 です。な よしき 取す 都見 な方工業大学大学院理学研究科 467-0027 名古屋市瑞穂区田辺通 3-1 山根 粘治 やまね ゆうじ 満覧1単専攻安藤敷研究室 152-852 東京都目黒区大岡山 2-12-1 山本 昭彦 やまね ゆうじ ガレカー・バイオスビン株式会社 技術サービス部 029-852-1236(内 338) 029-852-0322 素城県つくば市価率が丘 21 102-6555 天城県つくば市御奉が丘 21 103-6505 大阪東都世田谷区 上用質 1-16-1 103-6507 なる一名263 奈良果奈良市北魚屋西町 奈良女子大学大学院 人間文化研究科 共生自然科学専 042-70-3461 042-70-3461 242-0-3461 24		060-0810	tyamaki@sci.hokudai.ac.jp
山口 主一 やまぐち けいいち大阪大学蛋白質研究所 蛋白質溶液学研究部門 565-0871 大阪府牧田市山田丘 3-206-6877-5111(内 9252) 06-6873-8616 keiichi@protein.osaka-u.acjp山口 芳樹 やまぐち よしきそ古屋市立大学大学院栗学研究科 生命分子構造学分野 467-0027 名古屋市環褐区田辺通 3-1052-836-3450 052-836-3450 yyoehiki@phar.nagoya-ou.acjp山根 祐治 やまね: ゆうじ東京工業大学大学院理工学研究科 物質科学専攻安羅熱研究室 152-6552 東京都目黒区大岡山 2-12-103-5734-2880 03-5734-2889 yyamane@polymer.titech.acjp山本 昭彦 やまもと あさいこブルカー・バイオスピン株式会社 技術サービス部 305-0051 求成県つくば市二の宮 3-21-5029-652-1236(内 338) 029-652-0322 akihiko.yamamoto@bruker-bios pinjp横井 貴子 よこい たかこ山之内製薬(株) 分析代謝研究所分析研究室 305-655 支城県つくば市御季が丘 21029-652-1236(内 338) 029-652-6322 akihiko.yamamoto@bruker-bios pinjp吉岡 澄江 よしおか ずみえ国立医薬品食品衛生研究所 東京都世田谷区 上用質 1-18-103-3707-6547 03-3707-6950 yoshick@nina.gojp吉陽 澄江 よしざわ あやこ 次 630-6223 充良県奈良市北魚屋西町 奈良女子大学大学院045-503-9641 042-72-03461 045-503-9641 myoshica@go,p好田 真由美 よしだ さゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴夏区末広町 1-7-22 中央研究棟 C116045-503-9647 0426-77-1111(内 3552) 0426-77-4373 0426-77-4173		札幌市北区北 10 西 8	
やまぐち けいいち565-0871 大阪存牧田市山田丘 3-206-6873-6616 keiichi@protein.osaka-u.acjp山口 芳樹 やまぐち よしき名古屋市立大学大学院薬学研究科 生命分子構造学分野 487-0027 名古屋市環穩区田辺通 3-1052-836-3450 052-836-3450 yyoehiki@phar.nagoya-ou.acjp山根 粘治 やまね ゆうじ東京工業大学大学院理学研究科 物質科学専攻安廉勲研究室 東京都昌黒区大岡山 2-12-103-5734-2880 03-5734-2880 03-5734-2889 152-8552 東京都昌黒区大岡山 2-12-1山本 昭彦 やまもと あきひこブルカー・バイオスピン株式会社 技術サービス部 206-0551 支城県つくば市二の宮 3-21-5029-852-1236(内 338) 029-852-1236(内 338) 029-852-0322 akihiko.yamamote@bruker-bios pinjp横井 貴子 よこい たかに山之内製薬(株) 分析代謝研究所分析研究室 文城県つくば市御拳が丘 21029-852-9585 yokit@yamanouchi.co.jp吉園 澄江 よしおか ずみえ国立医薬品食品衛生研究所 東京都世田谷区 上用質 1-18-103-3707-8950 yoshika@nite.ag.jp吉湯 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 な 630-8263 奈良泉奈良市北魚屋西町 奈良女子大学大学院045-503-0642 045-503-0642 045-503-0641 myoshika@gs.riken.go.jp皆田 真 由美 よしだ ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 10-20200426-77-1111(内 3552) 0426-77-4873 0426-77-4873 0426-77-4873	山口圭一	大阪大学蛋白質研究所 蛋白質溶液学研究部門	06-6877-5111(内 9252)
大阪府吹田市山田丘 3-2 kelichi@protein.oseka=u.ac.jp 山口 芳樹 やまぐち よしき 名古屋市立大学大学院薬学研究科 生命分子構造学分野 407-0027 名古屋市瑞穂区田辺通 3-1 052-836-3450 925-838-3450 929-858-3450 929-858-3450 929-858-3450 929-858-1280 929-858-1280 929-858-1280 929-858-0322 akhiko.yamamoto@bruker-bios pinjp 山東 昭彦 やまもと あさひこ ブルカー・バイオスピン株式会社 技術サービス部 935-0051 支城県つくば市二の宮 3-21-5 029-852-1236(内 338) 029-858-0322 akhiko.yamamoto@bruker-bios pinjp 横井 貴子 よこい たかこ 山之内製薬(株) 分析代謝研究所分析研究室 305-8585 支城県つくば市御孝が丘 21 029-852-9585 90610 909-8585 吉岡 澄江 よしおか すみえ 国立医薬品食品衛生研究所 158-8501 東京都世田谷区 上用賀 1-18-1 0-3-3707-8587 90-8547 03-3707-8950 90-8547 方法 空びう 案良果奈良市北魚屋西町 奈良女子大学大学院 045-503-9642 045-503-9641 myoshika@go.riken.go.jp 野田 真由美 よしだ あゆみ 東京都立大学大学院理学研究科 (化学専取名傳媒構造生物化学講座 1042-072-4073 0426-77-4873 0426-77-1111(ng 3552) 0426-77-4873	やまぐち けいいち	565-0871	06-6879-8616
山口 芳樹 や求ぐち よしき名古屋市立大学大学院薬学研究科 生命分子構造学分野 467-0027 名古屋市瑞穂区田辺通 3-1052-836-3450 052-836-3450 yyoshiki@phar.nagoya-ou.acjp山根 祐治 や求ね ゆうし東京工業大学大学院理工学研究科 物質科学専攻安藤勳研究室 152-8552 東京都目黒区大岡山 2-12-103-5734-2880 03-5734-2889 yyanane@polymertitech.acjp山本 昭彦 や求もと あさいこブルカー・バイオスピン株式会社 技術サービス部 305-051 茨城県つくば市二の宮 3-21-5029-852-1236(内 338) 029-852-1236(内 338) 029-858-0322 akihiko.yamamoto@bruker-bios pinjp横井 貴子 よこい たかこ山之内製薬(株) 分析代謝研究所分析研究室 305-8585 茨城県つくば市御奉が丘 21029-863-6487 029-852-9585 yokoit@yamanouchi.cojp吉岡 澄江 よしおか ずみえ国立医薬品食品衛生研究所 東京都世田谷区 上用賀 1-18-103-3707-6957 03-3707-6950 yoshick@mihs.gojp吉陽 綾子 よしざわ あや二 な 万 530-2863 奈良東京泉日北魚屋西町 奈良女子大学大学院0742-20-3461 2ayoshizaw@cc.nara~wu.acjp好田 真由美 よしだ ひとし聖尔学所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究様 C116045-503-9641 myoshida@gscriken.gojp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 120-0270 woshida@morchem.patronu ac woshida@gscriken.gojp		大阪府吹田市山田丘 3-2	keiichi@protein.osaka-u.ac.jp
やまぐちょしき467-0027 名古屋市瑞穂区田辺通 3-1052-836-3450 yyoshiki@phar.nagoya-cu.ac.jp山根 祐治 やまね ゆうじ東京工業大学大学院理工学研究科 物質科学専攻安藤勲研究室 東京都目黒区大岡山 2-12-103-5734-2880 03-5734-2889 yyanane@polymer.titeoh.ac.jp yyanane@polymer.titeoh.ac.jp yyanane@polymer.titeoh.ac.jp山本 昭彦 やまもと あさいこブルカー・バイオスピン株式会社 技術サービス部 305-0051 支城県つくば市二の宮 3-21-5029-852-1236(内 338) 029-858-0322 akihiko.yamamoto@pruker-bios pinjp横井 貴子 よこい たかこ山之内製薬(株) 分析代謝研究所分析研究室 305-8585 支城県つくば市御奉が丘 21029-863-6487 029-852-9585 yokoit@yamanouchi.co.jp吉岡 澄江 よしおか すみえ国立医薬品食品衛生研究所 東京都世田谷区 上用賀 1-18-103-3707-6950 yoshick@eniha.gojp吉澤 綾子 よしざわ あや二 シロ マレ マン なり スリーク15第6良女子大学大学院042-00-3461 2a.yoshizaw@cc.nara-wu.ac.jp好田 真由美 よしだ ひとし東京都立大学大学院理学研究科 化学専攻育権構造生物化学講座 化学専攻有権構造生物化学講座 24-20-74873 woshida@gsc.riken.go.jp042-77-1111(内 3552) 042-07-4874 woshida@gsc.riken.go.jp	山口 芳樹	名古屋市立大学大学院薬学研究科 生命分子構造学分野	052-836-3450
名古屋市瑞穂区田辺通 3-1 yyoshiki@phar.nagoya~cu.ac.jp 山根 祐治 やまね ゆうじ 東京工業大学大学院理工学研究科 物質科学専攻安藤勲研究室 東京都目黒区大岡山 2-12-1 03-5734-2880 33-5734-2889 yyamane@polymer.titech.ac.jp 山本 昭彦 やまもと あきひこ ブルカー・バイオスビン株式会社 技術サービス部 305-0051 茨城県つくば市二の宮 3-21-5 029-852-1236(内 338) 029-858-0322 akihiko.yamaneto@bruker-bios pin.jp 横井 貴子 よこい たかこ 山之内製薬(株) 分析代謝研究所分析研究室 305-8585 茨城県つくば市御幸が丘 21 029-863-6447 029-852-9585 yokit@yamanouchi.co.jp 青岡 澄江 よしおか ずみえ 国立医薬品食品衛生研究所 158-8501 東京都世田谷区 上用質 1-18-1 03-3700-8547 03-3707-6950 yoshicka@nihs.go.jp 吉澤 綾子 よしざわ あやこ 奈良女子大学大学院 人間文化研究科 共生自然科学専 (742-20-3461 azayoshiczaw@cc.nara-wu.ac.jp) 奈良県奈良県奈良用北魚屋西町 奈良女子大学大学院 045-503-9642 045-503-9641 myoshida@gsc.riken.go.jp 好田 真由美 よしだ みとし 東京都立大学大学院理学研究科 (29-074 0426-77-1111(力 3552) 0426-77-1111(力 3552) 0426-77-1111(力 3552) 0426-77-1111(力 3552) 青田 均 よしだ ひとし 東京都立大学大学院理学研究科 (29-074 0426-77-1111(力 3552) 0426-77-1111(力 3552) 0426-77-1111(力 3552)	やまぐち よしき	467-0027	052-836-3450
山根 粘治 やまね ゆうじ東京工業大学大学院理工学研究科 物質科学専攻安藤敷研究室 152-8552 東京都目黒区大岡山 2-12-103-5734-2880 03-5734-2889 yyaman@polymer.titech.ac.jp山本 昭彦 やまもと あきひこブルカー・バイオスピン株式会社 技術サービス部 305-0051 支城県つくば市二の宮 3-21-5029-852-1236(内 338) 029-852-0322 akihko.yamanco@bruker-bios pinjp横井 貴子 よこい たかこ山之内製薬(休)分析代謝研究所分析研究室 305-8585 支城県つくば市御幸が丘 21029-863-6487 029-852-9585 yokoit@yamanouchi.co.jp吉岡 澄江 よしおか ずみえ国立医薬品食品衛生研究所 東京都世田谷区 上用質 1-18-103-3700-8547 03-3707-6950 yoshick@enihs.go.jp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 改 630-6263 奈良県奈良市北魚屋西町 奈良女子大学大学院042-20-3461 2a.yoshica@en.rar=wu.ac.jp Atb好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究株 C1160426-77-1111(内 3552) 0426-77-4873 uveshida@mer.chem.metrc-u.e.		名古屋市瑞穂区田辺通 3-1	yyoshiki@phar.nagoya−cu.ac.jp
やまね、ゆうじ物質科学専攻安藤勲研究室 152-8552 東京都目黒区大岡山 2-12-103-5734-2889 yyanane@polymer.titech.ac.jp yyanane@polymer.titech.ac.jp yyanane@polymer.titech.ac.jp山本 昭彦ブルカー・バイオスピン株式会社 技術サービス部 305-0051 支城県つくば市二の宮 3-21-5029-852-1236(内 338) 029-858-0322 akihiko.yanamoto@bruker-bios pinjp横井 貴子 よこい たかこ山之内製薬(株) 分析代謝研究所分析研究室 305-8585 支城県つくば市御奉が丘 21029-863-6487 029-852-9585 yokoit@yamanouchi.cojp吉岡 澄江 よし志か すみえ国立医薬品食品衛生研究所 158-8501 東京都世田谷区 上用賀 1-18-103-3707-6950 yoshick@nihs.gojp吉澤 綾子 よしざわ あやこ 次 名30-6263 奈良県奈良市北魚屋西町 奈良女子大学大学院042-0-3461 0742-20-3461 za.yoshiza@cc.nara-wu.ac.jp好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 myoshida@gsc.riken.gojp吉田 均 よした ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 102-01700426-77-1111(内 3552) 0426-77-4873 yoshida@merchen metro-u ac postida@merchen metro-u ac postida@merchen metro-u ac postida@merchen metro-u ac postida@merchen metro-u ac postida@merchen metro-u ac	山根 祐治	東京工業大学大学院理工学研究科	03-5734-2880
152-8552 yyamane@polymer.titech.ac.jp 東京都目黒区大岡山 2-12-1 29-852-1236(内 338) 山本 昭彦 ブルカー・バイオスピン株式会社 技術サービス部 029-852-1236(内 338) ウジェもと あきひこ ブルカー・バイオスピン株式会社 技術サービス部 029-858-0322 滅場只つくば市二の宮 3-21-5 akihiko.yamamoto@bruker-bios 炭井 貴子 山之内製薬(株) 分析代謝研究所分析研究室 029-863-6487 よこい たかこ 305-8555 029-852-9585 支放場只つくば市御幸が丘 21 029-852-9585 方加 すみえ 国立医薬品食品衛生研究所 03-3700-8547 よしおか すみえ 158-8501 03-3707-6950 東京都世田谷区 上用賀 1-18-1 03-3707-6950 アム 支良会子大学大学院 人間文化研究科 共生自然科学専 0742-20-3461 デスピシ 次 奈良央子大学大学院 人間文化研究科 共生自然科学専 0742-20-3461 デスピシ 次 支良会3 230-0045 45-503-9642 オレビ デ 研究所 ゲノム科学総合研究センター 045-503-9642 045-503-9641 イレデ 研究所 ゲノム科学総合研究センター 045-503-9641 myoshida@gsc.riken.go.jp 学品 ち 東京都立大学大学院理学研究科 0426-77-1111((内 3552) イレデ やすび 内留 745 7467 7467 よしだ ひとし 東京都立大学大学院連挙研究科 0426-77-14873 0426-77-1487	やまね。ゆうじ	物質科学専攻安藤勲研究室	03-5734-2889
東京都目黒区大岡山 2-12-1山本 昭彦 やまもと あきひこブルカー・バイオスビン株式会社 技術サービス部 305-0051 波城県つくば市二の宮 3-21-5029-852-1236(内 338) 029-858-0322 akihiko.yamamoto@bruker-bios pinjp検井 貴子 よこい たかこ山之内製薬(株) 分析代謝研究所分析研究室 305-8555 波城県つくば市御幸が丘 21029-863-6487 029-852-9585 yokoit@yamanouchi.cojp吉岡 澄江 よしわか すみえ国立医薬品食品衛生研究所 東京都世田谷区 上用質 1-18-103-3700-8547 03-3707-6950 yoshick@nihs.go,jp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 ス良会263 奈良県奈良市北魚屋西町 奈良女子大学大学院0742-20-3461 0742-20-3461 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116野田 真由 共 よしだ ひとし東京都立大学大学院理学研究科 190-02700426-77-1111(内 3552) 0426-77-14873 yoshida@psc.riken.go,jp		152-8552	yyamane@polymer.titech.ac.jp
山本 昭彦 やまもと あきいこブルカー・バイオスピン株式会社 技術サービス部 305-0051 支城県つくば市二の宮 3-21-5029-852-1236(内 338) 029-858-0322 akihiko.yamamoto@bruker-bios pinjp横井 貴子 よこい たかこ山之内製薬(株) 分析代謝研究所分析研究室 305-8585 支城県つくば市御幸が丘 21029-863-6487 029-852-9585 yokoit@yamanouchi.cojp吉岡 澄江 よしおか すみえ国立医薬品食品衛生研究所 158-8501 東京都世田谷区 上用賀 1-18-103-3700-8547 03-3707-6950 yoshioka@nih.gojp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 な 630-8263 奈良県奈良市北魚屋西町 奈良女子大学大学院042-20-3461 2a.yoshizaw@cc.nara-wu.ac.jp好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 uyoshida@gsc.riken.gojp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 192-07300426-77-1111(内 3552) outer dem metrom and uschida@metroem metrom and		東京都目黒区大岡山 2-12-1	
やまもと あきひこ 気城県つくば市二の宮 3-21-5029-858-0322 akihiko.yamamoto@bruker-bios pin.jp横井 貴子 よこい たかこ山之内製薬(株) 分析代謝研究所分析研究室 305-8585 支城県つくば市御幸が丘 21029-863-6487 029-852-9585 yokoit@yamanouchi.cojp吉岡 澄江 よしおか すみえ国立医薬品食品衛生研究所 東京都世田谷区 上用賀 1-18-103-3700-8547 03-3707-6950 yoshika@nihs.go.jp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 文 630-8263 奈良県奈良市北魚屋西町 奈良女子大学大学院0742-20-3461 2aa.yoshizaw@cc.nara-wu.ac.jp好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 myoshida@gsc.riken.go.jp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 190-02700426-77-1111(内 3552) иorbid@more chem metro-u ac	山本 昭彦	ブルカー・バイオスピン株式会社 技術サービス部	029-852-1236(内 338)
茨城県つくば市二の宮 3-21-5akihiko.yamamoto@bruker-bios pinjp検井 貴子 よこい たかこ山之内製薬(株) 分析代謝研究所分析研究室 305-8585 茨城県つくば市御奉が丘 21029-863-6487 029-852-9585 yokoit@yamanouchi.cojp吉岡 澄江 よしおか すみえ国立医薬品食品衛生研究所 158-8501 東京都世田谷区 上用賀 1-18-103-3700-8547 03-3707-8550 yoshicka@nihs.gojp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 630-8263 奈良県奈良市北魚屋西町 奈良女子大学大学院0742-20-3461 za.yoshizaw@cc.nara-wu.ac.jp好田 真由美 よしだ 求ゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 myoshida@gsc.riken.gojp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物学講座 102-07200426-77-1111(内 3552) 0426-77-4873 woshid@mor chem metro-u ac	やまもと あきひこ	305-0051	029-858-0322
横井 貴子 よこい たかこ 山之内製薬(株) 分析代謝研究所分析研究室 305-8585 茨城県つくば市御幸が丘21 029-863-6487 029-852-9585 yokoit@yamanouchi.cojp 吉岡 澄江 よしおか ずみえ 国立医薬品食品衛生研究所 158-8501 東京都世田谷区 上用賀1-18-1 03-3700-8547 03-3707-6950 yoshioka@nihs.gojp 吉瀑 綾子 よしざわ あやこ 奈良女子大学大学院 人間文化研究科 共生自然科学専 衣良県奈良市北魚屋西町 奈良女子大学大学院 0742-20-3461 0742-20-3461 zaa.yoshizaw@cc.nara-wu.ac.jp 好田 真由美 よしだ まゆみ 理化学研究所 ゲノム科学総合研究センター 200-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116 045-503-9642 045-503-9641 myoshida@gsc.riken.gojp 吉田 均 よしだ ひとし 東京都立大学大学院理学研究科 (化学専攻有機構造生物化学講座 102-0276 0426-77-1111(内 3552) 0426-77-4873 yoshida@mor.chem.metrer_11 ac		茨城県つくば市二の宮 3-21-5	akihiko.yamamoto@bruker-bios
横井 貴子 よこい たかこ山之内製薬(株) 分析代謝研究所分析研究室 305-8585 茨城県つくば市御幸が丘 21029-863-6487 029-852-9585 yokoit@yamanouchi.cojp吉岡 澄江 よしおか すみえ国立医薬品食品衛生研究所 東京都世田谷区 上用賀 1-18-103-3700-8547 03-3707-6950 yoshick@nihs.gojp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 攻 630-8263 奈良県奈良市北魚屋西町 奈良女子大学大学院0742-20-3461 242-02-3461 230-9642 045-503-9642 045-503-9641 myoshida@gsc.riken.gojp好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 045-503-9641 myoshida@gsc.riken.gojp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 192-02700426-77-1111(hg 3552) 0426-77-4873 voshida@mmgr.chem.metror:u.ac			pin.jp
よこい たかこ305-8585 茨城県つくば市御幸が丘 21029-852-9585 yokoit@yamanouchi.co.jp吉岡 澄江 よしおか すみえ国立医薬品食品衛生研究所 東京都世田谷区 上用賀 1-18-103-3700-8547 03-3707-6950 yoshioka@nihs.go.jp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 び 742-20-3461 630-8263 奈良県奈良市北魚屋西町 奈良女子大学大学院0742-20-3461 2aa.yoshizaw@cc.nara-wu.ac.jp好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 0456-77-4873 109-0270吉田 均 よしだ ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 109-02700426-77-1111(内 3552) 0426-77-4873 voshida@pmr.cham.metro-11.ac.	横井 貴子	山之内製薬(株) 分析代謝研究所分析研究室	029-863-6487
茨城県つくば市御幸が丘 21yokoit@yamanouchi.co.jp吉岡 澄江 よしおか すみえ国立医薬品食品衛生研究所 158-8501 東京都世田谷区 上用賀 1-18-103-3700-8547 03-3707-6950 yoshioka@nihs.go.jp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 0742-20-3461 630-8263 奈良果奈良市北魚屋西町 奈良女子大学大学院0742-20-3461 2aa.yoshizaw@cc.nara-wu.ac.jp 奈良東奈良市北魚屋西町 奈良女子大学大学院好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 myoshida@gsc.riken.go.jp吉田 均 よした ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 192-027200426-77-1111(内 3552) 0426-77-4873 voshida@nor.chem metro-u.ac	よこい たかこ	305-8585	029-852-9585
吉岡 澄江 よしおか すみえ国立医薬品食品衛生研究所 158-8501 東京都世田谷区 上用賀 1-18-103-3700-8547 03-3707-6950 yoshicka@nihs.gojp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 攻 630-8263 奈良県奈良市北魚屋西町 奈良女子大学大学院0742-20-3461 0742-20-3461 zaa.yoshizaw@cc.nara-wu.ac.jp好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 045-503-9641 myoshida@gsc.riken.go,jp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 102-023200426-77-1111(内 3552) 0426-77-4873 uvoshida@mor chem metro-u ac voshida@mor chem metro-u ac		茨城県つくば市御幸が丘 21	yokoit@yamanouchi.co.jp
よしおか すみえ158-8501 東京都世田谷区 上用賀 1-18-103-3707-6950 yoshioka@nihs.gojp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 0742-20-3461 0742-20-3461 zaa.yoshizaw@cc.nara-wu.ac.jp0742-20-3461 2742-20-3461 zaa.yoshizaw@cc.nara-wu.ac.jp好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 045-503-9641 myoshida@gsc.riken.gojp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 102-02790426-77-1111(内 3552) 0426-77-4873 yoshida@nmr chem metro-u ac	吉岡 澄江	国立医薬品食品衛生研究所	03-3700-8547
東京都世田谷区 上用賀 1-18-1yoshioka@nihs.gojp吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 0742-20-3461 0742-20-3461 2aa.yoshizaw@cc.nara-wu.ac.jp 奈良県奈良市北魚屋西町 奈良女子大学大学院0742-20-3461 2aa.yoshizaw@cc.nara-wu.ac.jp好田 真由美 よしだ 志ゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 045-503-9641 myoshida@gsc.riken.gojp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 102-02790426-77-1111(内 3552) 0426-77-4873 yoshida@nmr.chem.metro-u.ac.jp	よしおか すみえ	158-8501	03-3707-6950
吉澤 綾子 よしざわ あやこ奈良女子大学大学院 人間文化研究科 共生自然科学専 文 630-8263 奈良県奈良市北魚屋西町 奈良女子大学大学院0742-20-3461 2aa.yoshizaw@cc.nara-wu.ac.jp好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 045-503-9641 myoshida@gsc.riken.gojp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 102-02790426-77-1111(内 3552) 0426-77-4873 yoshida@nmr.chem.metrou.ac.jp		東京都世田谷区 上用賀 1-18-1	yoshioka@nihs.gojp
よしざわ あやこ攻0742-20-3461630-8263zaa.yoshizaw@cc.nara-wu.ac.jp奈良県奈良市北魚屋西町 奈良女子大学大学院zaa.yoshizaw@cc.nara-wu.ac.jp好田 真由美理化学研究所 ゲノム科学総合研究センター045-503-9642よしだ まゆみ230-0045045-503-9641横浜市鶴見区末広町 1-7-22 中央研究棟 C116myoshida@gsc.riken.go.jp吉田 均東京都立大学大学院理学研究科0426-77-1111(内 3552)よしだ ひとし化学専攻有機構造生物化学講座0426-77-4873102-0279yoshida@pmr.chem.metro-u.ac.jp	吉澤 綾子	奈良女子大学大学院 人間文化研究科 共生自然科学専	0742-20-3461
630-8263 zaa.yoshizaw@cc.nara-wu.acjp 奈良県奈良市北魚屋西町 奈良女子大学院 2aa.yoshizaw@cc.nara-wu.acjp 好田 真由美 理化学研究所 ゲノム科学総合研究センター 045-503-9642 よしだ まゆみ 230-0045 045-503-9641 横浜市鶴見区末広町 1-7-22 中央研究棟 C116 myoshida@gsc.riken.gojp 吉田 均 東京都立大学大学院理学研究科 0426-77-1111(内 3552) よしだ ひとし 化学専攻有機構造生物化学講座 0426-77-4873 102-0279 voshida@nmr.chem.metro-u.ac	よしざわ あやこ	攻	0742-20-3461
奈良県奈良市北魚屋西町 奈良女子大学大学院 好田 真由美 理化学研究所 ゲノム科学総合研究センター 045-503-9642 よしだ まゆみ 230-0045 045-503-9641 横浜市鶴見区末広町 1-7-22 中央研究棟 C116 myoshida@gsc.riken.go.jp 吉田 均 東京都立大学大学院理学研究科 0426-77-1111(内 3552) よしだ ひとし 化学専攻有機構造生物化学講座 0426-77-4873 102-0279 vashida@nmr.chem.metroru.ac		630-8263	zaa.yoshizaw@cc.nara~wu.ac.jp
好田 真由美 よしだ まゆみ理化学研究所 ゲノム科学総合研究センター 230-0045 横浜市鶴見区末広町 1-7-22 中央研究棟 C116045-503-9642 045-503-9641 myoshida@gsc.riken.gojp吉田 均 よしだ ひとし東京都立大学大学院理学研究科 化学専攻有機構造生物化学講座 102-02790426-77-1111(内 3552) 0426-77-4873 voshida@nmr.chem.metro-u.ac		· 奈良県奈良市北魚屋西町 · 奈良女子大学大学院	
よしだ まゆみ 230-0045 045-503-9641 myoshida@gsc.riken.gojp 吉田 均 東京都立大学大学院理学研究科 0426-77-1111(内 3552) よしだ ひとし 化学専攻有機構造生物化学講座 0426-77-4873 voshida@nmr.chem.metroru.ac	好田 真由美	理化学研究所 ゲノム科学総合研究センター	045-503-9642
横浜市鶴見区末広町 1-7-22 中央研究棟 C116 myoshida@gsc.riken.go.jp 吉田 均 東京都立大学大学院理学研究科 0426-77-1111(内 3552) よしだ ひとし 化学専攻有機構造生物化学講座 0426-77-4873 102-0279 voshida@nmr.chem.metro-u.ac	よしだ まゆみ	230-0045	045-503-9641
吉田 均 東京都立大学大学院理学研究科 0426-77-1111(内 3552) よしだ ひとし 化学専攻有機構造生物化学講座 0426-77-4873 102-0279 vosbida@nmr.chem.metro-u.ac	· • •	横浜市鶴見区末広町 1−7−22 中央研究棟 C116	myoshida@gsc.riken.go.jp
ロロ ロ ス ス ホ 0420-77-111((N 3332)) よしだ ひとし 化学専攻有機構造生物化学講座 0426-77-4873 102-0279 voshida@nmr.chem.metro-u.ac	+m #	事方和六十尚十尚陀理学环办 到	0426-77-1111(中 2552)
よしに いてい 10子守以有滅情理工物10字時度 0420 ^{-1/1-40/3}		来 尽创业人子人于阮廷子 研为科 水学事功友继续冼生物化学 建 座	0420-77-4911((4)3002)
	AU/2 020	しずすみの月120時に二1101しず6時に上 102-0370	voshida@nmr.chem.metro-u.ac
東京都八王子市南大沢 1~1 in		東京都八王子市南大沢 1~1	.iD

参加者名簿	所属	Tel
名前	T Are	FAX
古水 壮佐	北海道大学大学阮棠学研究科 储垣生物学力野	
よしなが そうりい	186-0612	011-700-4979
		sosukeephann.nokudal.ac.jp
吉水 広明	名古屋工業大学大学院工学研究科 ながれ領域	052-735-5272
よしみず ひろあき	466-8555	052-735-5272
	名古屋市昭和区御器所町	yoshimizu.hiroaki@nitech.ac.jp
米山 桃子	奈良先端科学技術大学院大学バイオサイエンス研究科	0743-72-5577
よねやま ももこ	分子生物学専攻生体高分子構造学講座	0743-72-5579
	630-0101	m-yoneya@bs.aist-nara.ac.jp
·	奈良県生駒市高山町 8916-5-	
		•
李華	理化学研究所 ゲノム科学総合研究センター	045-503-9317
りか	タンパク質構造・機能研究グループ	
•	230-0045	lihua@gsc.riken.go.jp
	横浜市鶴見区末広町 1-7-22	
若井 篤志	秋田県立脳血管研究センター あきた産業振興機構	018-833-0115(内 346)
わかい あつし	010-0874	018-833-2104
	秋田市千秋久保田町 6-10	wakai@akita-noken.go.jp
若山 哲也	大阪大学大学院医学系研究科 保健学専攻医用物理工学講	06-6879-2577(内 2577)
わかやま てつや	座	06-6879-2577
	565-0871	waka@sahs.med.osaka-uac.jp
	大阪府吹田市山田丘 1-7	
和田武	ブルカー・バイオスピン株式会社 マーケティング部	029-852-1234(内 448)
わだたけし	305-0051	029-858-0322
	茨城県つくば市二の宮 3-21-5	takeshi.wada@bruker-biospin.j
		p
· •		
渡邊 英宏	国立環境研究所 環境ホルモン・ダイオキシン研究プロジェク	029-850-2138
わたなべ ひでひろ	⊢ F	029-850-2880
	生体機能評価研究チーム	hidewata@nies.go.jp
	305-8506	
	茨城県つくば市小野川 16-2	
渡邊 永治	順天堂大学 医学部化学研究室	0476-98-1001(内 392)
わたなべ えいじ	270-1695	0476-98-1036
•	千葉県印旛郡印旛村 平賀学園台 1-1	eiji−jun@umin.ac.jp
渡部 徳子	東京水産大学水産学部 食品生産学科	0354630643
わたなべ とくこ	108-8477	03-5463-0643
	東京都港区港南 4~5−7	tokuko@tokyo-u-fish.ac.ip

参加者名簿	所属	Tel
名前	T	FAX
	住所	E-mail
 渡辺 裕之	バリアンテクノロジーズジャパン NMR 応用部	03-5232-1238
わたなべ ひろゆき	108-0023	03-5232-1264
	東京都港区芝浦 4-16-36	hiroyuki.watanabe@varianinc.c
		0m